2024届高考一轮复习物理教案(新教材鲁科版):圆周运动
2024届高考一轮复习物理教案(新教材鲁科版):探究向心力大小与半径、角速度、质量的关系

实验六探究向心力大小与半径、角速度、质量的关系目标要求 1.会用控制变量法探究向心力大小与半径、角速度、质量的关系.2.会用作图法处理数据,掌握化曲为直的思想.实验技能储备1.实验思路本实验探究向心力与多个物理量之间的关系,因而实验方法采用了控制变量法,如图所示,匀速转动手柄,可以使塔轮、长槽和短槽匀速转动,槽内的小球也就随之做匀速圆周运动,此时小球向外挤压挡板,挡板对小球有一个向内(指向圆周运动的圆心)的弹力作为小球做匀速圆周运动的向心力,可以通过标尺上露出的红白相间等分标记,粗略计算出两球所需向心力的比值.在实验过程中可以通过两个小球同时做圆周运动对照,分别分析下列情形:(1)在质量、半径一定的情况下,探究向心力大小与角速度的关系.(2)在质量、角速度一定的情况下,探究向心力大小与半径的关系.(3)在半径、角速度一定的情况下,探究向心力大小与质量的关系.2.实验器材向心力演示器、小球.3.实验过程(1)分别将两个质量相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同,即圆周运动半径相同.将皮带放置在适当位置使两转盘转动,记录不同角速度下的向心力大小(格数).(2)分别将两个质量相等的小球放在实验仪器的长槽和短槽两个小槽中,将皮带放置在适当位置使两转盘转动角速度相等,小球到转轴(即圆心)距离不同,即圆周运动半径不等,记录不同半径的向心力大小(格数).(3)分别将两个质量不相等的小球放在实验仪器的两个小槽中,且小球到转轴(即圆心)距离相同,即圆周运动半径相等,将皮带放置在适当位置使两转盘转动角速度相等,记录不同质量下的向心力大小(格数).4.数据处理分别作出F-ω2、F-r、F-m的图像,分析向心力大小与角速度、半径、质量之间的关系,并得出结论.5.注意事项摇动手柄时应缓慢加速,注意观察其中一个标尺的格数.达到预定格数时,即保持转速恒定,观察并记录其余读数.考点一教材原型实验例1(2023·福建省漳州立人学校模拟)某实验小组利用如图所示的装置进行“探究向心力大小与半径、角速度、质量的关系”实验.转动手柄,可使变速塔轮、长槽和短槽随之匀速转动.塔轮至上而下有三层,每层左、右半径之比均不同.左、右塔轮通过皮带连接,并可通过改变皮带所处层来改变左、右塔轮的角速度之比.实验时,将两个小球分别放在短槽的挡板C处和长槽的挡板A(或B)处,A、C到左、右塔轮中心的距离相等,两个小球随塔轮做匀速圆周运动,向心力大小关系可由标尺露出的等分格的格数判断.(1)在研究向心力的大小F与质量m、角速度ω和半径r之间的关系时,我们主要用到了物理学中的________方法(填选项前的字母);A.理想实验法B.等效替代法C.控制变量法D.演绎法(2)实验中某同学把两个质量相等的钢球放在A、C位置,皮带所连接的左、右变速塔轮的半径之比为3∶1,转动手柄,观察左、右标出的刻度,回答下列两个问题:①该操作过程可用来探究向心力大小F与______(填选项前的字母);A.质量m的关系B.半径r的关系C.角速度ω的关系②该同学准确操作实验,则在误差允许范围内,标尺上的等分格显示出左、右两个小球所需向心力大小之比应为________.答案(1)C(2)①C②1∶9解析(1)在研究向心力的大小F与质量m、角速度ω和半径r之间的关系时,我们主要用到了物理学中的控制变量法,故选C.(2)①根据F=mω2r可知,两个钢球的质量和运动半径相等,是在研究向心力的大小与角速度的关系,故选C.②左、右塔轮半径之比为3∶1,两轮边缘处的线速度大小相等,根据v=ωr轮可知,两塔轮的角速度之比为1∶3,左、右两边小球所需的向心力大小之比为1∶9.例2用如图所示的向心力演示器探究向心力大小的表达式.匀速转动手柄,可以使变速塔轮以及长槽和短槽随之匀速转动,槽内的小球也随着做匀速圆周运动.使小球做匀速圆周运动的向心力由横臂的挡板对小球的压力提供,球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒下降,从而露出标尺.(1)为了探究向心力大小与物体质量的关系,可以采用______________________(选填“等效替代法”“控制变量法”或“理想模型法”).(2)根据标尺上露出的等分标记,可以粗略计算出两个球做圆周运动所需的向心力大小之比;为研究向心力大小跟转速的关系,应比较表中的第1组和第________组数据.组数小球的质量m/g转动半径r/cm转速n/(r·s-1)114.015.00 1228.015.00 1314.015.00 2414.030.00 1(3)本实验中产生误差的原因有__________________________.(写出一条即可)答案(1)控制变量法(2)3(3)见解析解析(1)根据F=mω2r,为了探究向心力大小与物体质量的关系,应控制半径r相等,角速度ω大小相等,即采用控制变量法.(2)为研究向心力大小跟转速的关系,必须要保证质量和转动半径均相等,则应比较表中的第1组和第3组数据.(3)本实验中产生误差的原因有:质量的测量引起的误差;弹簧测力套筒的读数引起的误差等.考点二 探索创新实验考向1 实验方案的创新例3 如图所示是“DIS 向心力实验器”,当质量为m 的砝码随旋转臂一起在水平面内做半径为r 的圆周运动时,所需的向心力可通过牵引杆由力传感器测得,旋转臂另一端的挡光杆(挡光杆的挡光宽度为Δs ,旋转半径为R )每经过光电门一次,通过力传感器和光电门就同时获得一组向心力大小F 和角速度ω的数据.(1)某次旋转过程中挡光杆经过光电门时的遮光时间为Δt ,则角速度ω=________.(2)以F 为纵坐标,以________(选填“Δt ”“1Δt ”“(Δt )2”或“1(Δt )2”)为横坐标,可在坐标纸中描出数据点作一条直线,该直线的斜率为k =________.(用上述已知量的字母表示)答案 (1)Δs R Δt (2)1(Δt )2m (Δs )2R 2r 解析 (1)挡光杆通过光电门时的线速度大小为v =Δs Δt ,由ω=v R ,解得ω=Δs R Δt(2)根据向心力公式有F =mω2r ,将ω=Δs R Δt ,代入上式解得F =m (Δs )2R 2(Δt )2r ,可以看出,以1(Δt )2为横坐标,以F 为纵坐标,可在坐标纸中描出数据点作一条直线,该直线的斜率为k =m (Δs )2R2r . 例4 (2023·河北省石家庄二中实验学校月考)某同学用如图(a)所示装置探究钢质小球自由摆动至最低点时的速度大小与此时细线拉力的关系.其中力传感器显示的是小球自由摆动过程中各个时刻细线拉力T 的大小,光电门测量的是钢球通过光电门的挡光时间Δt .(1)调整细线长度,使细线悬垂时,钢球中心恰好位于光电门中心.(2)要测量小球通过光电门的速度,还需测出__________(写出需要测量的物理量及其表示符号),小球通过光电门的速度表达式为v =__________.(用题中所给字母和测出的物理量符号表示)(3)由于光电门位于细线悬点的正下方,此时细线的拉力就是力传感器显示的各个时刻的拉力T 中的______________(选填“最大值”“最小值”或“平均值”).(4)改变小球通过光电门的速度,重复实验,测出多组速度v 和对应拉力T 的数据,作出T -v 2图像如图(b)所示.已知当地重力加速度g =9.7 m/s 2,则由图像可知,小球的质量为________ kg ,光电门到悬点的距离为__________ m.答案 (2)小球的直径d d Δt (3)最大值 (4)0.05 1 解析 (2)根据v =s t知,要测量速度,需要知道钢球在挡光时间内通过的位移,即小球的直径d ,速度表达式为v =d Δt. (3)小球摆动过程中受力分析如图所示,则有T -F 1=m v 2r ,F 1=mg cos θ,故T =mg cos θ+m v 2r ,由于F 2始终指向轨迹的最低点,故小球向最低点运动过程中速度增大,到达最低点时速度最大,故在最低点T 最大,所以应选拉力T 的最大值.(4)小球摆至最低点时,由向心力公式得细线的最大拉力T m =mg +m rv 2,当小球速度为零时,此时拉力与重力大小相等,对比图线可知mg =0.485 N ,解得m =0.05 kg ,由斜率k =m r=0.24kg/m ,解得r =1 m.考向2 实验目的的创新例5 如图甲所示,某同学为了比较不同物体与转盘间动摩擦因数的大小设计了该装置.已知固定于转轴上的角速度传感器和力传感器与电脑连接,通过一不可伸长的细绳连接物块,细绳刚好拉直,物块随转盘缓慢加速.在电脑上记录如图乙所示图像.换用形状和大小相同但材料不同的物块重复实验,得到物块a 、b 、c 分别对应的三条直线,发现a 与c 的纵截距相同,b 与c 的横截距相同,且符合一定的数量关系.回答下列问题:(1)物块没有看作质点对实验是否有影响?______(选填“是”或“否”)(2)物块a 、b 、c 的密度之比为________.(3)物块a 、b 、c 与转盘之间的动摩擦因数之比为________.答案 (1)否 (2)2∶2∶1 (3)1∶2∶2解析 (1)物块的形状和大小相同,做圆周运动的半径相同,所以物块没有看作质点对实验没有影响.(2)当物块随转盘缓慢加速过程中,物块所需的向心力先由静摩擦力提供,当达到最大静摩擦力后由绳子的拉力和最大静摩擦力提供,即F 向=F +μmg =mrω2,所以有F =mrω2-μmg ,题图乙中图线的斜率为mr ,与纵轴的截距为-μmg ,根据题图乙知a 的斜率k a =m a r =1 kg·m ,b 的斜率k b =m b r =1 kg·m ,c 的斜率k c =m c r =12kg·m ,所以a 、b 、c 的质量之比为2∶2∶1,因为体积相同,所以物块a 、b 、c 的密度之比为2∶2∶1.(3)由题图乙知a 的纵轴截距-μa m a g =-1 N ,b 的纵轴截距-μb m b g =-2 N ,c 的纵轴截距-μc m c g =-1 N ,结合质量之比得到物块a 、b 、c 与转盘之间的动摩擦因数之比为1∶2∶2.课时精练1.如图所示为向心力演示装置,匀速转动手柄1,可以使变速塔轮2和3以及长槽4和短槽5随之匀速转动,槽内的小球也随着做匀速圆周运动.使小球做匀速圆周运动的向心力由横臂6的挡板(即挡板A 、B 、C )对小球的压力提供.球对挡板的反作用力通过横臂的杠杆作用使弹簧测力套筒7下降,从而露出标尺8.根据标尺8上露出的红白相间等分标记,可以粗略计算出两个球做圆周运动所需的向心力的比值.利用此装置可以探究做匀速圆周运动的物体需要的向心力的大小与哪些因素有关.已知小球在挡板A、B、C处做圆周运动的轨迹半径之比为1∶2∶1.(1)要探究向心力与轨道半径的关系时,把皮带套在左、右两个塔轮的半径相同的位置,把两个质量________(选填“相同”或“不同”)的小球放置在挡板________和挡板________位置(选填“A”“B”或“C”).(2)把两个质量不同的小球分别放在挡板A和C位置,皮带套在左、右两个塔轮的半径之比为1∶2,则放在挡板A处的小球与C处的小球角速度大小之比为________.(3)把两个质量相同的小球分别放在挡板B和C位置,皮带套在左、右两边塔轮的半径之比为3∶1,则转动时左、右标尺上露出的红白相间的等分格数之比为________.答案(1)相同C B(或者B C)(2)2∶1(3) 2∶9解析(1)探究向心力与轨道半径的关系时,根据F=mω2r,采用控制变量法,应使两个相同质量的小球放在不同半径挡板处,以相同角速度运动,因此将质量相同的小球分别放在B和C处.(2)皮带套在左、右两个塔轮的半径之比为1∶2,两个塔轮边缘处的线速度大小相等,根据v =ωr可知,角速度与半径成反比,所以放在挡板A处的小球与C处的小球角速度大小之比为2∶1.(3) 把两个质量相同的小球分别放在挡板B和C位置,则两小球的转动半径关系为r1∶r2=2∶1,皮带套在左、右两边塔轮的半径之比为3∶1,两个塔轮边缘处的线速度大小相等,根据v=ωr可知,角速度与半径成反比,所以放在挡板B处的小球与C处的小球角速度大小之比为1∶3,即ω1∶ω2=1∶3,根据F=mω2r可知,两小球做圆周运动所需的向心力之比为F1∶F2=2∶9,则转动时左、右标尺上露出的红白相间的等分格数之比为2∶9. 2.(2023·山东泰安市模拟)为探究向心力大小与半径、角速度、质量的关系,小明按图甲装置进行实验,物块放在平台卡槽内,平台绕轴转动,物块做匀速圆周运动,平台转速可以控制,光电计时器可以记录转动快慢.(1)为了探究向心力与角速度的关系,需要控制__________保持不变,小明由计时器测转动的周期T ,计算ω2的表达式是____________.(2)小明按上述实验将测算得的结果用作图法来处理数据,如图乙所示,纵轴F 为力传感器读数,横轴为ω2,图线不过坐标原点的原因是__________________,用电子天平测得物块质量为1.50 kg ,直尺测得半径为50.00 cm ,图线斜率为__________ kg·m(结果保留两位有效数字). 答案 (1)质量和半径 ω2=4π2T 2(2)存在摩擦力的影响 0.75 解析 (1)由向心力公式F =mω2r 可知,探究向心力和角速度的关系,保持质量和半径不变,根据ω=2πT ,可得ω2=4π2T2. (2)实际表达式为F +f =mω2r ,图线不过坐标原点的原因是存在摩擦力的影响.斜率为k =mr =0.75 kg·m.3.(2023·山东烟台市模拟)某同学为了测量当地的重力加速度,设计了一套如图甲所示的实验装置.拉力传感器竖直固定,一根不可伸长的细线上端固定在传感器的固定挂钩上,下端系一小钢球,钢球底部固定有遮光片,在拉力传感器的正下方安装有光电门,钢球通过最低点时遮光片恰能通过光电门.小明同学进行了下列实验步骤:(1)用游标卡尺测量遮光片的宽度d ,如图乙所示,则d =____________ mm ;(2)用游标卡尺测量小钢球的直径为D ,用刻度尺测量小钢球到悬点的摆线长为l ;(3)拉起小钢球,使细线与竖直方向成不同角度,小钢球由静止释放后均在竖直平面内运动,记录遮光片每次通过光电门的遮光时间Δt 和对应的拉力传感器示数F ;(4)根据记录的数据描绘出如图所示的F -1(Δt )2图像,已知图像与纵轴交点为a ,图像斜率为k ,则通过以上信息可求出当地的重力加速度表达式为g =____________(用题目中所给物理量的符号表示);(5)如果在实验过程中所系的细线出现松动,则根据实验数据求出的当地重力加速度g 的值比实际值________(选填“偏大”“偏小”或“不变”).答案 (1)12.35 (4)2ad 2k (D +2l )(5)偏大 解析 (1)遮光片的宽度为d =12 mm +7×0.05 mm =12.35 mm.(4)在最低点,根据牛顿第二定律得F -mg =m v 2r =m (d Δt )2D 2+l ,解得F =2md 2D +2l (1Δt )2+mg ,则有2md 2D +2l =k ,a =mg ,所以有g =a m =2ad 2k (D +2l ). (5)如果在实验过程中所系的细线出现松动,则摆长真实值变大,则根据实验数据求出的当地重力加速度g 的值比实际值偏大.4.(2023·重庆市第八中学高三检测)小明同学为探究向心力F 与线速度v 的关系,用如图所示的实验装置完成实验.其中质量为m 的小圆柱体放在未画出的水平光滑圆盘上,沿图中虚线做匀速圆周运动.力电传感器测定圆柱体的向心力,光电传感器测定线速度,轨迹的半径为r .实验过程中保持圆柱体质量和运动半径不变.(1)该同学采用的实验方法为________.A .等效替代法B .理想化模型法C .控制变量法(2)改变线速度v ,并进行多次测量,该同学测出了五组F 、v 数据,如下表所示:v /(m·s -1)1.0 1.52.0 2.53.0 F /N0.88 1.98 3.50 5.50 7.90该同学利用实验数据作出了以下四个图像,其中能较为直观地展示向心力F 与线速度v 关系的图像是________.(3)根据图像分析的结果,小明可以得到实验结论__________.答案 (1)C (2)B (3)在质量和轨迹半径一定的情况下,向心力F 与线速度v 的平方成正比 解析 (1)探究向心力与质量、半径和线速度的关系时,为了只研究向心力与速度的关系,应采用控制变量法,故选C.(2)根据F =m v 2r可知F -v 2的图像是一条过原点的倾斜直线,在四幅题图中最为直观,故选B.(3)在质量和轨迹半径一定的情况下,向心力F 与线速度v 的平方成正比.5.某同学设计了用如图所示装置探究向心力与质量、半径关系的实验.水平杆光滑,竖直杆与水平杆铰合在一起,互相垂直,绕过定滑轮的细线两端分别与物块和力传感器连接.(1)探究向心力与质量关系时,让物块1、2的质量不同,测出物块1、2的质量分别为m 1、m 2,保持________相同,转动竖直杆,测出不同角速度下两力传感器的示数F 1、F 2,测出多组F 1、F 2,作出F 1-F 2图像,如果作出的图像是过原点的直线,且图像的斜率等于________,则表明在此实验过程中向心力与质量成正比.(2)探究向心力与半径关系时,让物块1、2的________相同,测出物块1和物块2到竖直杆的距离分别为r 1、r 2,转动竖直杆,测出不同角速度下两力传感器的示数F 1、F 2,测出多组F 1、F 2,作出F 1-F 2图像,如果作出的图像是过原点的直线,且图像的斜率等于________,则表明在此实验过程中向心力与半径成正比.答案 (1)物块到竖直杆距离 m 1m 2 (2)质量 r 1r 2解析 (1)探究向心力与质量关系时,让物块1、2的质量不同,保持物块到竖直杆的距离相同,转动竖直杆,测出不同角速度下两力传感器的示数F 1、F 2,测出多组F 1、F 2,作出F 1-F 2图像,由F =mrω2可知,F 1F 2=m 1m 2,因此如果作出的图像是过原点的直线,且图像的斜率等于m 1m 2,则表明在此实验过程中向心力与质量成正比. (2)探究向心力与半径关系时,让物块1、2的质量相同,测出物块1和物块2到竖直杆的距离分别为r 1、r 2,转动竖直杆,测出不同角速度下两力传感器的示数F 1、F 2,测出多组F 1、F 2,作出F 1-F 2图像,由F =mrω2可知,F 1F 2=r 1r 2,如果作出的图像是过原点的直线,且图像的斜率等于r 1r 2,则表明在此实验过程中向心力与半径成正比.。
2024-2025学年高中物理第四章匀速圆周运动第3节向心力的实例分析教案鲁科版必修2

3. 能力方面:学生在解决问题时,分析、推理、计算等能力有待提高。在圆周运动的学习中,学生需要将理论知识与实际情境相结合,运用物理规律解决问题。然而,部分学生在面对实际问题时,可能存在思路不清晰、无从下手的情况。
2024-2025学年高中物理 第四章 匀速圆周运动 第3节 向心力的实例分析教案 鲁科版必修2
课题:
科目:
班级:
课时:计划1课时
教师:
单位:
一、教学内容分析
本节课的主要教学内容为高中物理第四章匀速圆周运动中的第3节,主题为“向心力的实例分析”,使用鲁科版必修2教材。内容主要包括向心力的定义、向心加速度的计算、向心力的实际应用案例分析等。这些内容将帮助学生深入理解匀速圆周运动中向心力的作用及其重要性。
三、学情分析
本节课针对的是高中年级的学生,他们在知识、能力、素质等方面具备以下特点:
1. 学生层次:学生已经完成了初中物理的学习,具备一定的物理基础。在此基础上,他们已经进入了高中物理阶段的学习,对于物理概念、原理和公式的理解能力有所提高。然而,学生之间的物理水平仍存在一定差距,部分学生对物理学科的兴趣和积极性有待提高。
此外,结合以下教学手段,以提高教学效果和效率:
(1)实物演示:通过实物模型演示向心力的作用,使学生更直观地理解向心力的概念,提高学生的学习兴趣。
(2)板书设计:精心设计板书,将向心力的知识点进行系统梳理,有助于学生形成知识框架,提高记忆效果。
(3)课后辅导:针对学生个体差异,给予课后辅导,解答学生在学习过程中遇到的问题,巩固所学知识。
2024-2025学年高中物理第四章匀速圆周运动第2节向心力与向心加速度教案2鲁科版必修2

(2)介绍向心加速度:向心加速度是物体在圆周运动中的加速度,它的大小为a=v²/r,方向始终指向圆心。
(3)强调向心加速度与线速度、半径的关系。
3.实践探究
(1)实验一:测量向心加速度
a.分组进行实验,每组负责测量不同半径和速度下的向心加速度。
b.学生操作实验器材,记录数据。
c.分析数据,探讨向心加速度与半径、速度的关系。
-鼓励学生利用课后时间进行自主学习和拓展,深入理解匀速圆周运动的概念和原理;
-提供必要的指导和帮助,如推荐阅读材料、解答疑问等,帮助学生更好地进行拓展学习;
-鼓励学生将所学知识与实际生活相结合,观察和解释日常生活中的圆周运动现象;
-组织学生进行小组讨论和分享,互相交流学习心得和拓展成果,提高学习效果;
2024-2025学年高中物理第四章匀速圆周运动第2节向心力与向心加速度教案2鲁科版必修2
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教学内容
2024-2025学年高中物理第四章匀速圆周运动第2节向心力与向心加速度教案2,鲁科版必修2。本节课将围绕以下内容展开:
1.向心力的概念及其作用;
2.向心加速度的定义及计算公式;
-在随堂测试中,关注学生对知识点的应用能力,提高题目设置的难度梯度;
-针对学生的课堂表现,及时给予积极反馈,激发学生的学习兴趣和自信心。
总体来说,本节课的教学达到了预期目标,学生对向心力与向心加速度有了更深入的认识。在今后的教学中,我将继续关注学生的个体差异,因材施教,提高教学质量。同时,鼓励学生积极参与课堂讨论和实验操作,培养他们的科学思维和问题解决能力。
2024-2025学年高中物理第四章匀速圆周运动第3节向心力的实例分析教案鲁科版必修2

知识点梳理
本节课的主要知识点包括:
1.向心力的概念:向心力是指物体在做匀速圆周运动时,指向圆心的那个力。它是保持物体做圆周运动的必要条件。
2.向心力的表达式:向心力的表达式为F=mv²/r,其中F表示向心力,m表示物体的质量,v表示物体的线速度,r表示圆周运动的半径。
2024-2025学年高中物理第四章匀速圆周运动第3节向心力的实例分析教案鲁科版必修2
授课内容
授课时数
授课班级
授课人数
授课地点
授课时间
教学内容
本节课的教学内容来自2024-2025学年高中物理第四章《匀速圆周运动》的第3节《向心力的实例分析》。主要内容包括:
1.向心力的概念:向心力是指物体在做匀速圆周运动时,指向圆心的那个力。
但在知识方面,学生对圆周运动和向心力的理解不够深入,对向心力与线速度、半径、质量的关系以及向心力在实际中的应用还需进一步学习。在能力方面,学生需要提高运用物理知识解决实际问题的能力,以及逻辑思维能力和科学素养。
在行为习惯方面,部分学生课堂参与度较高,愿意主动思考和提问;但也有部分学生课堂参与度较低,学习积极性不足。对于课程学习,学生的学习态度和积极性对学习效果有直接影响。因此,在教学过程中,教师需要关注学生的学习态度,激发学生的学习兴趣,提高他们的学习积极性。
3.课堂互动不足:在课堂展示和点评环节,我发现学生的互动交流不够充分。我需要鼓励学生更多地参与到课堂讨论中,提高他们的表达能力和交流能力。
改进措施:
1.增强学生认识:我将在课堂上更多地强调向心力在实际中的应用和重要性,让学生认识到学习向心力的意义,从而提高他们的学习兴趣和参与度。
2024-2025学年高中物理第四章匀速圆周运动第1节匀速圆周运动快慢的描述教案鲁科版必修2

五、总结回顾(用时5分钟)
今天的学习,我们了解了匀速圆周运动的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对匀速圆周运动的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
九.课堂
课堂评价是教学过程中非常重要的环节,通过提问、观察、测试等方式,了解学生的学习情况,及时发现问题并进行解决。在本节课《匀速圆周运动快慢的描述》的教学中,我将采取以下评价方法:
1. 提问评价:在课堂上,我会通过提问的方式了解学生对匀速圆周运动快慢描述的理解程度。例如,我会问学生:“匀速圆周运动的线速度和角速度有什么区别?它们是如何描述匀速圆周运动快慢的?”通过学生的回答,我可以了解他们对概念的理解是否准确。
在行为习惯方面,学生的课堂参与度较高,但部分学生可能在学习过程中容易分心,影响学习效果。针对这一情况,老师在课堂上应采取多种教学手段,如提问、讨论等,以提高学生的注意力。同时,老师还应关注学生的个别差异,针对不同学生的学习需求进行有针对性的辅导。
四、教学资源准备
1. 教材:确保每位学生都有本节课所需的教材或学习资料,包括鲁科版必修2第四章第1节的相关内容,以便学生能够跟随教学进度进行学习和复习。
5. 鼓励学生进行跨学科学习。可以引导学生思考匀速圆周运动在其他学科中的应用,如在数学中的圆周率计算、在化学中的匀速圆周运动模型等,培养学生的跨学科思维能力。
6. 鼓励学生进行创新实践。可以引导学生思考如何将匀速圆周运动的知识应用到实际生活和工作中,如在设计运动器材、在研究车辆运动等方面,培养学生的创新实践能力。
2024届高考一轮复习物理教案(新教材鲁科版):圆周运动的临界问题

专题强化六圆周运动的临界问题目标要求 1.掌握水平面内、竖直面内和斜面上的圆周运动的动力学问题的分析方法.2.会分析水平面内、竖直面内和斜面上圆周运动的临界问题.题型一水平面内圆周运动的临界问题物体做圆周运动时,若物体的速度、角速度发生变化,会引起某些力(如拉力、支持力、摩擦力)发生变化,进而出现某些物理量或运动状态的突变,即出现临界状态.1.常见的临界情况(1)水平转盘上的物体恰好不发生相对滑动的临界条件是物体与盘间恰好达到最大静摩擦力.(2)物体间恰好分离的临界条件是物体间的弹力恰好为零.(3)绳的拉力出现临界条件的情形有:绳恰好拉直意味着绳上无弹力;绳上拉力恰好为最大承受力等.2.分析方法分析圆周运动临界问题的方法是让角速度或线速度从小逐渐增大,分析各量的变化,找出临界状态.确定了物体运动的临界状态和临界条件后,选择研究对象进行受力分析,利用牛顿第二定律列方程求解.例1(2018·浙江11月选考·9)如图所示,一质量为2.0×103kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为1.4×104 N,当汽车经过半径为80 m的弯道时,下列判断正确的是()A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力B.汽车转弯的速度为20 m/s时所需的向心力为1.4×104 NC.汽车转弯的速度为20 m/s时汽车会发生侧滑D.汽车能安全转弯的向心加速度不超过7.0 m/s2答案 D解析汽车转弯时所受的力有重力、弹力、摩擦力,向心力是由摩擦力提供的,A错误;汽,得所需的向心力为1.0×104 N,没有超过最大静摩车转弯的速度为20 m/s时,根据F=m v2R=擦力,所以汽车不会发生侧滑,B、C错误;汽车安全转弯时的最大向心加速度为a m=fm7.0 m/s 2,D 正确.例2 (多选)如图所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l .木块与圆盘间的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,且最大静摩擦力等于滑动摩擦力,下列说法正确的是( )A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增大时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a 有f a =mωa 2l ,当f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b 有f b =mωb 2·2l ,当f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,则ω=kg2l是b 开始滑动的临界角速度,所以b 先达到最大静摩擦力,即b 比a 先开始滑动,选项A 、C 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,则f b =mω2·2l ,f a <f b ,选项B 错误;ω=2kg3l<ωa =kg l ,a 没有滑动,则f a ′=mω2l =23kmg ,选项D 错误. 例3 细绳一端系住一个质量为m 的小球(可视为质点),另一端固定在光滑水平桌面上方h 高度处,绳长l 大于h ,使小球在桌面上做如图所示的匀速圆周运动,重力加速度为g .若要小球不离开桌面,其转速不得超过( )A.12πg l B .2πgh C.12πh gD.12πg h答案 D解析 对小球受力分析,小球受三个力的作用,重力mg 、水平桌面支持力N 、绳子拉力F .小球所受合力提供向心力,设绳子与竖直方向夹角为θ,由几何关系可知R =h tan θ,受力分析可知F cos θ+N =mg ,F sin θ=m v 2R =mω2R =4m π2n 2R =4m π2n 2h tan θ;当球即将离开水平桌面时,N =0,转速n 有最大值,此时n m =12πgh,故选D. 例4 (多选)(2023·湖北省公安县等六县质检)如图所示,AB 为竖直放置的光滑圆筒,一根长细绳穿过圆筒后一端连着质量为m 1=5 kg 的小球(可视为质点),另一端和细绳BC (悬点为B )在结点C 处共同连着一质量为m 2的小球(可视为质点),长细绳能承受的最大拉力为60 N ,细绳BC 能承受的最大拉力为27.6 N .圆筒顶端A 到C 点的距离l 1=1.5 m ,细绳BC 刚好被水平拉直时长l 2=0.9 m ,转动圆筒并逐渐缓慢增大角速度,在BC 绳被拉直之前,用手拿着m 1,保证其位置不变,在BC 绳被拉直之后,放开m 1,重力加速度g 取10 m/s 2,下列说法正确的是( )A .在BC 绳被拉直之前,AC 绳中拉力逐渐增大B .当角速度ω=53 3 rad/s 时,BC 绳刚好被拉直C .当角速度ω=3 rad/s 时,AC 绳刚好被拉断D .当角速度ω=4 rad/s 时,BC 绳刚好被拉断 答案 ABD解析 转动圆筒并逐渐缓慢增大角速度的过程中,AC 绳与竖直方向的夹角θ逐渐增大,m 2竖直方向处于平衡,由T A cos θ=m 2g ,可知在BC 绳被拉直之前,AC 绳中拉力逐渐增大,A 正确;BC 绳刚好被拉直时,由几何关系可知AC 绳与竖直方向的夹角的正弦值sin θ=35,对小球m 2受力分析,由牛顿第二定律可知m 2g tan θ=m 2ω12l 2,解得ω1=53 3 rad/s ,B 正确;当ω=3 rad/s>533 rad/s ,BC 绳被拉直且放开了m 1,m 1就一直处于平衡状态,AC 绳中拉力不变且为50 N ,小于AC 绳承受的最大拉力,AC 未被拉断,C 错误;对小球m 2,竖直方向有m1g cos θ=m2g,可得m2=4 kg,当BC被拉断时有m1g sin θ+T BC=m2ω22l2,解得ω2=4 rad/s,D正确.题型二竖直面内圆周运动的临界问题1.两类模型对比轻绳模型(最高点无支撑)轻杆模型(最高点有支撑)实例球与绳连接、水流星、沿内轨道运动的“过山车”等球与杆连接、球在光滑管道中运动等图示受力示意图F弹向下或等于零F弹向下、等于零或向上力学方程mg+F弹=mv2R mg±F弹=mv2R临界特征F弹=0mg=mv min2R即v min=gRv=0即F向=0F弹=mg讨论分析(1)最高点,若v≥gR,F弹+mg=mv2R,绳或轨道对球产生弹力F弹(2)若v<gR,则不能到达最高点,即到达最高点前小球已经脱离了圆轨道(1)当v=0时,F弹=mg,F弹背离圆心(2)当0<v<gR时,mg-F弹=mv2R,F弹背离圆心并随v的增大而减小(3)当v=gR时,F弹=0(4)当v>gR时,mg+F弹=mv2R,F弹指向圆心并随v的增大而增大2.解题技巧(1)物体通过圆周运动最低点、最高点时,利用合力提供向心力列牛顿第二定律方程;(2)物体从某一位置到另一位置的过程中,用动能定理找出两处速度关系;(3)注意:求对轨道的压力时,转换研究对象,先求物体所受支持力,再根据牛顿第三定律求出压力.例5 (2023·陕西延安市黄陵中学)如图所示,一质量为m =0.5 kg 的小球(可视为质点),用长为0.4 m 的轻绳拴着在竖直平面内做圆周运动,g =10 m/s 2,下列说法不正确的是( )A .小球要做完整的圆周运动,在最高点的速度至少为2 m/sB .当小球在最高点的速度为4 m/s 时,轻绳拉力为15 NC .若轻绳能承受的最大张力为45 N ,小球的最大速度不能超过4 2 m/sD .若轻绳能承受的最大张力为45 N ,小球的最大速度不能超过4 m/s 答案 D解析 设小球通过最高点时的最小速度为v 0,则根据牛顿第二定律有mg =m v 02R ,解得v 0=2m/s ,故A 正确;当小球在最高点的速度为v 1=4 m/s 时,设轻绳拉力大小为T ,根据牛顿第二定律有T +mg =m v 12R ,解得T =15 N ,故B 正确;小球在轨迹最低点处速度最大,此时轻绳的拉力最大,根据牛顿第二定律有T m -mg =m v m 2R ,解得v m =4 2 m/s ,故C 正确,D 错误.例6 (多选)(2023·福建泉州市质检)如图甲所示,质量为m 的小球与轻杆一端相连,绕杆的另一端点O 在竖直平面内做圆周运动,从小球经过最高点开始计时,杆对小球的作用力大小F 随杆转过角度θ的变化关系如图乙所示,忽略摩擦阻力,重力加速度大小为g ,则( )A .当θ=0时,小球的速度为0B .当θ=π时,力F 的大小为6mgC .当θ=π2时,小球受到的合力大于3mgD .当θ=π时,小球的加速度大小为6g 答案 BC解析 当θ=0时,刚好由重力提供向心力,则mg =m v 2l ,解得v =gl ,A 错误;当θ=π时,由合力提供向心力得F -mg =ma =m v ′2l ,最高点到最低点,由动能定理得mg ·2l =12m v ′2-12m v 2,联立解得F =6mg ,a =5g ,B 正确,D 错误;当θ=π2时,由水平方向上的合力提供向心力得F 合x =m v ′′2l ,角度由θ=0变为θ=π2过程中,由动能定理得mgl =12m v ′′2-12m v 2,解得F 合x =3mg .当θ=π2时,小球受到的合力大小为F 合=F 合x 2+(mg )2=10mg >3mg ,C 正确.题型三 斜面上圆周运动的临界问题物体在斜面上做圆周运动时,设斜面的倾角为θ,重力垂直斜面的分力与物体受到的支持力大小相等,解决此类问题时,可以按以下操作,把问题简化.物体在转动过程中,转动越快,最容易滑动的位置是最低点,恰好滑动时:μmg cos θ-mg sin θ=mω2R .例7 (多选)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴2.5 m 处有一小物体(可视为质点)与圆盘始终保持相对静止,设最大静摩擦力等于滑动摩擦力,盘面与水平面的夹角为30°,g 取10 m/s 2,则以下说法中正确的是( )A .小物体随圆盘以不同的角速度ω做匀速圆周运动时,ω越大时,小物体在最高点处受到的摩擦力一定越大B .小物体受到的摩擦力可能背离圆心C .若小物体与盘面间的动摩擦因数为32,则ω的最大值是1.0 rad/sD .若小物体与盘面间的动摩擦因数为32,则ω的最大值是 3 rad/s 答案 BC解析 当物体在最高点时,也可能受到重力、支持力与摩擦力三个力的作用,摩擦力的方向可能沿斜面向上(即背离圆心),也可能沿斜面向下(即指向圆心),摩擦力的方向沿斜面向上时,ω越大时,小物体在最高点处受到的摩擦力越小,故A 错误,B 正确;当物体转到圆盘的最低点恰好不滑动时,圆盘的角速度最大,此时小物体受竖直向下的重力、垂直于斜面向上的支持力、沿斜面指向圆心的摩擦力,由沿斜面的合力提供向心力,支持力 N =mg cos 30°,摩擦力f =μN =μmg cos 30°,又μmg cos 30°-mg sin 30°=mω2R ,解得ω=1.0 rad/s ,故C 正确,D 错误.课时精练1.一汽车通过拱形桥顶时速度为10 m/s ,车对桥顶的压力为车重的34,如果要使汽车在该桥顶对桥面恰好没有压力,车速为( ) A .15 m/s B .20 m/s C .25 m/s D .30 m/s答案 B解析 当N ′=N =34G 时,有G -N ′=m v 2r ,所以14G =m v 2r ;当N =0时,G =m v ′2r ,所以v ′=2v =20 m/s ,选项B 正确.2.(多选)如图所示,三角形为一光滑锥体的正视图,母线与竖直方向的夹角为θ=37°.一根长为l =1 m 的细线一端系在锥体顶端,另一端系着一可视为质点的小球,小球在水平面内绕锥体的轴做匀速圆周运动,重力加速度g =10 m/s 2,sin 37°=0.6,不计空气阻力,则( )A .小球受重力、支持力、拉力和向心力B .小球可能只受拉力和重力C .当ω=52 2 rad/s 时,小球对锥体的压力刚好为零D .当ω=2 5 rad/s 时,小球受重力、支持力和拉力作用 答案 BC解析 转速较小时,小球紧贴锥体,则T cos θ+N sin θ=mg ,T sin θ-N cos θ=mω2l sin θ,随着转速的增加,T 增大,N 减小,当角速度ω达到ω0时支持力为零,支持力恰好为零时有mg tan θ=mω02l sin θ,解得ω0=52 2 rad/s ,A 错误,B 、C 正确;当ω=2 5 rad/s 时,小球已经离开斜面,小球受重力和拉力的作用,D 错误.3.(多选)(2023·湖北省华大新高考联盟名校联考)如图所示,在竖直平面内有一半径为R 的光滑固定细管(忽略管的内径),半径OB 水平、OA 竖直,一个直径略小于管内径的小球(可视为质点)由B 点以某一初速度v 0进入细管,之后从管内的A 点以大小为v A 的水平速度飞出.忽略空气阻力,重力加速度为g ,下列说法正确的是( )A .为使小球能从A 点飞出,小球在B 点的初速度必须满足v 0>3gR B .为使小球能从A 点飞出,小球在B 点的初速度必须满足v 0>2gRC .为使小球从A 点水平飞出后再返回B 点,小球在B 点的初速度应为v 0=5gR2D .小球从A 点飞出的水平初速度必须满足v A >gR ,因而不可能使小球从A 点水平飞出后再返回B 点 答案 BC解析 小球能从A 点飞出,则在A 点的最小速度大于零,则由机械能守恒定律有12m v 02>mgR ,则小球在B 点的初速度必须满足v 0>2gR ,选项A 错误,B 正确;为使小球从A 点水平飞出后再返回B 点,则R =v A t ,R =12gt 2,联立解得v A =gR 2,12m v 02=mgR +12m v A 2,小球在B 点的初速度应为v 0=5gR2,选项C 正确;要使小球从A 点飞出,则小球在A 点的速度大于零即可,由选项C 的分析可知,只要小球在A 点的速度为gR2,小球就能从A 点水平飞出后再返回B点,选项D错误.4.(2023·福建省百校联考)半径为R的内壁光滑的圆环形轨道固定在水平桌面上,轨道的正上方和正下方分别有质量为m A和m B的小球A和B,A的质量是B的两倍,它们在轨道内沿逆时针方向滚动,经过最低点时速率相等;当B在最低点时,A球恰好在最高点,如图所示,此时轨道对桌面的压力恰好等于轨道重力,当地重力加速度为g.则小球在最低点的速率可表示为()A.3gRB.5gRC.11gR D.25gR答案 C解析设小球A、B在最低点时速率为v1,对A、B在最低点,由牛顿第二定律可得N A1-m A g=m A v12R ,N B-m B g=m B v12R,小球A从最低点运动到最高点(速率为v2)过程,由动能定理可得-2m A gR=12m A v22-12m A v12,小球A在最高点时,由牛顿第二定律可得N A2+m A g=m Av22R,由题意知N A2=N B,m A=2m B,联立以上各式可解得v1=11gR,故选C.5.(2023·湖南岳阳市第十四中学检测)如图所示,叠放在水平转台上的物体A、B及物体C能随转台一起以角速度ω匀速转动,A、B、C的质量分别为3m、2m、m,A与B、B和C与转台间的动摩擦因数都为μ,A和B、C离转台中心的距离分别为r和1.5r.最大静摩擦力等于滑动摩擦力,物体A、B、C均可视为质点,重力加速度为g,下列说法正确的是()A.B对A的摩擦力一定为3μmgB.B对A的摩擦力一定为3mω2rC.转台的角速度需要满足ω≤μg rD.若转台的角速度逐渐增大,最先滑动的是A物体答案 B解析 由于物体 A 、B 及物体 C 能随转台一起匀速转动,则三个物体受到的均为静摩擦力,由静摩擦力提供向心力,则B 对A 的摩擦力一定为f A =3mω2r ,又有0<f A ≤f max =3μmg ,由于角速度大小不确定,B 对A 的摩擦力不一定达到最大静摩擦力3μmg ,A 错误,B 正确;若物体A 达到最大静摩擦力,则3μmg =3mω12r ,解得ω1=μgr,若转台对物体B 达到最大静摩擦力,对A 、B 整体有5μmg =5mω22r ,解得ω2=μg r,若物体C 达到最大静摩擦力,则μmg =mω32×1.5r ,解得ω3=2μg3r,可知ω1=ω2>ω3,由于物体 A 、B 及物体 C 均随转台一起匀速转动,则转台的角速度需要满足ω≤ω3=2μg3r,该分析表明,当角速度逐渐增大时,物体C 所受摩擦力先达到最大静摩擦力,即若转台的角速度逐渐增大,最先滑动的是C 物体,C 、D 错误.6.(2023·四川绵阳市诊断)如图所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B (均可视为质点),光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力,重力加速度为g ,则球B 在最高点时( )A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即仅重力提供向心力,则有mg =m v B 22L ,解得v B =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v A =122gL ,故B 错误;B 球在最高点时,对杆无弹力,此时A 球受到的重力和拉力的合力提供向心力,有F -mg =m v A 2L,解得F =1.5mg ,即杆受到的弹力大小为1.5mg ,可知水平转轴对杆的作用力为1.5mg,C正确,D错误.7.(2023·重庆市西南大学附属中学月考)如图所示,在倾角为α=30°的光滑斜面上有一长L=0.8 m的轻杆,杆一端固定在O点,可绕O点自由转动,另一端系一质量为m=0.05 kg的小球(可视为质点),小球在斜面上做圆周运动,g取10 m/s2.要使小球能到达最高点A,则小球在最低点B的最小速度是()A.4 m/s B.210 m/sC.2 5 m/s D.2 2 m/s答案 A解析小球恰好到达A点时的速度大小为v A=0,此时对应B点的速度最小,设为v B,对小球从A到B的运动过程,由动能定理有12m v B2-12m v A2=2mgL sin α,代入数据解得v B=4 m/s,故选A.8.(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的水平细绳连接,木块与转盘间的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是(重力加速度为g)()A.当ω>2Kg3L时,A、B会相对于转盘滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大答案ABD解析当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,则有Kmg+Kmg=mω2L+mω2·2L,解得ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即有Kmg=m·2L·ω2,解得ω=Kg2L ,可知当ω>Kg2L时,绳子有弹力,B项正确;当ω>Kg2L时,B已达到最大静摩擦力,则ω在Kg2L<ω<2Kg3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<2Kg3L范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以由f-T=mLω2可知,当ω增大时,静摩擦力也增大,D项正确.9.(多选)(2023·湖北省重点中学检测)如图甲所示的陀螺可在圆轨道的外侧旋转而不脱落,好像轨道对它施加了魔法一样,被称为“魔力陀螺”,该玩具深受孩子们的喜爱.其物理原理可等效为如图乙所示的模型:半径为R的磁性圆轨道竖直固定,质量为m的小铁球(视为质点)在轨道外侧转动,A、B两点分别为轨道上的最高点、最低点.铁球受轨道的磁性引力始终指向圆心且大小不变,重力加速度为g,不计摩擦和空气阻力.下列说法正确的是()A.铁球可能做匀速圆周运动B.铁球绕轨道转动时机械能守恒C.铁球在A点的速度一定大于或等于gRD.要使铁球不脱轨,轨道对铁球的磁性引力至少为5mg答案BD解析铁球绕轨道转动受到重力、轨道的磁性引力和轨道的弹力作用,而轨道的磁性引力和弹力总是与速度方向垂直,故只有重力对铁球做功,铁球做变速圆周运动,铁球绕轨道转动时机械能守恒,选项B正确,A错误;铁球在A点时,有mg+F吸-N A=m v A2R,当N A=mg+F吸时,v A=0,选项C错误;铁球从A到B的过程,由动能定理有2mgR=12m v B2-12m v A2,当v A=0时,铁球在B点的速度最小,解得v B min=2gR,球在B点处,轨道对铁球的磁性引力最大,F吸-mg-N B=m v B2R,当v B=v B min=2gR且N B=0时,解得F吸min=5mg,故要使铁球不脱轨,轨道对铁球的磁性引力至少为5mg ,选项D 正确.10.(多选)如图所示,竖直平面内有一半径为R =0.35 m 且内壁光滑的圆形轨道,轨道底端与光滑水平面相切,一小球(可视为质点)以v 0=3.5 m/s 的初速度进入轨道,g =10 m/s 2,则( )A .小球不会脱离圆轨道B .小球会脱离圆轨道C .小球脱离轨道时的速度大小为72m/s D .小球脱离轨道的位置与圆心连线和水平方向间的夹角为30° 答案 BCD解析 若小球恰能到达最高点,由重力提供向心力,则有mg =m v 2R ,解得v =gR = 3.5 m/s ,若小球从最低点恰好能到最高点,根据机械能守恒定律得12m v 0′2=mg ·2R +12m v 2,解得v 0′=702m/s>v 0=3.5 m/s ,故小球不可能运动到最高点,小球会脱离圆轨道,故A 错误,B 正确;设当小球脱离轨道时,其位置与圆心连线和水平方向间的夹角为θ,小球此时只受重力作用,将重力分解如图所示.在脱离点,支持力等于0,由牛顿第二定律得mg sin θ=m v 12R ,从最低点到脱离点,由机械能守恒定律得12m v 02=mgR (1+sin θ)+12m v 12,联立解得sin θ=12,即θ=30°,则v 1=gR sin θ=72m/s ,故C 、D 正确.。
2024-2025学年新教材高中物理第3章圆周运动习题课4圆周运动规律及其应用教案鲁科版必修第二册

(1)研究圆周运动在交通工具中的应用:如自行车、汽车、火车等,分析其运动原理,了解圆周运动在提高交通工具性能方面的作用。
(2)探索圆周运动在航天领域的应用:研究卫星、行星等天体的圆周运动规律,了解其在航天技术中的重要性。
(3)研究圆周运动在生物界的应用:如动物运动、植物生长等,了解圆周运动在生物进化过程中的作用。
二、核心素养目标分析
本节课的核心素养目标旨在深化学生对物理学科本质的理解,培养其科学思维和科学探究能力。通过圆周运动规律的学习,学生将能够:一是发展模型建构与推理能力,能够运用物理模型分析圆周运动的规律,理解并推导向心加速度、线速度、角速度等物理量的关系;二是提升科学探究能力,通过实验和问题解决,学会设计实验方案,收集和处理数据,对圆周运动的现象进行科学解释;三是培养科学态度与责任,学生在探索圆周运动规律的过程中,培养对科学规律的尊重,认识到物理规律在技术发展和日常生活中的应用和意义;四是在跨学科综合应用中,能够将物理知识与其他学科知识相结合,解决实际问题,增强创新意识和实践能力。通过这些核心素养的培养,学生不仅掌握了圆周运动的知识,而且提高了解决复杂问题的综合能力,为未来的学习和生活打下坚实基础。
(2)实验:安排学生进行圆周运动实验,如测定向心加速度、线速度等,让学生在实践中掌握物理概念和规律。
(3)游戏:设计圆周运动相关的游戏,如模拟赛车游戏,让学生在游戏中体验圆周运动规律,提高学习兴趣。
3. 教学媒体和资源使用
(1)PPT:制作精美的PPT课件,展示圆周运动的基本概念、运动规律、实例等,便于学生理解和记忆。
(2)视频:播放圆周运动实验、案例等视频,让学生直观地感受圆周运动规律在实际中的应用。
(3)在线工资料和拓展阅读。
高三物理(鲁科版)一轮复习教学案 第4章 第3节 圆周运动

第三节圆周运动一、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、转速、向心加速度、向心力等,现比较如下表:1.离心运动的本质(1)离心现象是________的表现。
(2)离心运动并非沿半径方向飞出的运动,而是运动的半径变大,或沿切线方向飞出。
2.向心运动当提供向心力的合外力大于做圆周运动所需向心力时,即________,物体渐渐向圆心运动。
1.(2012·江苏赣榆月考)如图所示是摩托车比赛转弯时的情形。
转弯处路面常是外高内低,摩托车转弯有一个最大安全速度,若超过此速度,摩托车将发生滑动。
对于摩托车滑动的问题,下列论述正确的是( )A .摩托车一直受到沿半径方向向外的离心力作用B .摩托车所受外力的合力小于所需的向心力C .摩托车将沿其线速度的方向沿直线滑去D .摩托车将沿其半径方向沿直线滑去 2.(2012·金华十校第三次联考)如图是自行车传动结构的示意图,其中Ⅰ是半径为r 1的大齿轮,Ⅱ是半径为r 2的小齿轮,Ⅲ是半径为r 3的后轮,假设脚踏板的转速为n r/s ,则自行车前进的速度为( )A.错误!B.错误!C.错误!D.错误!3.(2012·上海复旦、交大、华师大附中联考)关于做匀速圆周运动的线速度、角速度、周期的关系,以下说法中正确的是()A.线速度较大的物体其角速度一定较大B.线速度较大的物体其周期一定较小C.角速度较大的物体其运动半径一定较小D.角速度较大的物体其周期一定较小4.请你判断下列表述正确与否,对不正确的,请予以更正。
A.匀速圆周运动是匀变速运动。
B.圆周运动的合力就是向心力。
C.做圆周运动的物体,除受向心力外,还受其他的力。
D.根据a=ω2R可知a与半径R成正比,根据a=v2/R可知a 与半径R成反比.E.物体做离心运动是因为受到离心力的作用。
一、在传动装置中各物理量之间的关系自主探究1如图所示,靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲圆周运动目标要求 1.熟练掌握描述圆周运动的各物理量之间的关系.2.掌握匀速圆周运动由周期性引起的多解问题的分析方法.3.会分析圆周运动的向心力来源,掌握圆周运动的动力学问题的分析方法,掌握圆锥摆模型.考点一圆周运动的运动学问题1.描述圆周运动的物理量2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.1.匀速圆周运动是匀变速曲线运动.(×)2.物体做匀速圆周运动时,其线速度是不变的.(×)3.物体做匀速圆周运动时,其所受合外力是变力.(√)4.匀速圆周运动的向心加速度与半径成反比.(×)1.对公式v=ωr的理解当ω一定时,v与r成正比.当v 一定时,ω与r 成反比. 2.对a =v 2r=ω2r 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 3.常见的传动方式及特点同轴转动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点特点 角速度、周期相同线速度大小相等线速度大小相等转向相同相同相反规律线速度与半径成正比: v A v B =r R向心加速度与半径成正比:a A a B =r R角速度与半径成反比: ωA ωB =r R向心加速度与半径成反比: a A a B =r R角速度与半径成反比: ωA ωB =r 2r 1向心加速度与半径成反比:a A a B =r 2r 1考向1 圆周运动物理量的分析和计算例1 (2023·福建省莆田二中模拟)地球绕地轴自西向东做匀速圆周运动,一质量为1 kg 的物体甲位于赤道上,另一个质量为2 kg 的物体乙位于北纬60°的地面上,地球可视为一个球体,下列说法正确的是( )A .物体甲、乙的线速度大小相等B .物体甲、乙的向心力方向都指向地心C .物体甲、乙的向心力大小之比为1∶1D .物体甲、乙的向心加速度大小之比为1∶2 答案 C解析 物体甲、乙同轴转动,两者的角速度相等,物体甲、乙做圆周运动的半径为r 甲=R ,r 乙=R cos 60°=12R ,由于两物体转动的半径不相等,由v =ωr 可知,两物体的线速度大小不相等,A错误;物体甲的向心力方向指向地心,物体乙的向心力方向垂直指向北纬60°的地轴,B错误;物体甲、乙圆周半径之比为2∶1,由a=ω2r可知,向心加速度大小之比为2∶1,物体甲、乙的质量之比为1∶2,由向心力公式F=mω2r,可得向心力大小之比为1∶1,C正确,D错误.考向2圆周传动问题例2(多选)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮传动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,下列说法正确的是()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.A点和B点的线速度大小之比为1∶3答案AC解析题图中三个齿轮边缘的线速度大小相等,则A点和B点的线速度大小之比为1∶1,由v=ωr可知,线速度一定时,角速度与半径成反比,则A点和B点角速度之比为3∶1,故A、C正确,B、D错误.考向3圆周运动的多解问题例3(多选)如图所示,直径为d的竖直圆筒绕中心轴线以恒定的转速匀速转动.一子弹以水平速度沿圆筒直径方向从左侧射入圆筒,从右侧射穿圆筒后发现两弹孔在同一竖直线上且相距为h,重力加速度为g,则()A.子弹在圆筒中的水平速度为d g 2hB .子弹在圆筒中的水平速度为2d g 2hC .圆筒转动的角速度可能为πg 2hD .圆筒转动的角速度可能为3πg 2h答案 ACD解析 子弹在圆筒中运动的时间与自由下落高度h 的时间相同,即t =2h g ,则v 0=d t=dg2h,故A 正确,B 错误;在此段时间内圆筒转过的圈数为半圈的奇数倍,即ωt =(2n +1)π(n =0,1,2,…),所以ω=(2n +1)πt=(2n +1)πg2h(n =0,1,2,…),故C 、D 正确. 考点二 圆周运动的动力学问题1.匀速圆周运动的向心力 (1)作用效果向心力产生向心加速度,只改变速度的方向,不改变速度的大小. (2)大小F =m v 2r =mrω2=m 4π2T 2r =mωv .(3)方向始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 2.离心运动和近心运动(1)离心运动:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动. (2)受力特点(如图)①当F =0时,物体沿切线方向飞出,做匀速直线运动. ②当0<F <mrω2时,物体逐渐远离圆心,做离心运动. ③当F >mrω2时,物体逐渐向圆心靠近,做近心运动.(3)本质:离心运动的本质并不是受到离心力的作用,而是提供的力小于做匀速圆周运动需要的向心力.3.匀速圆周运动与变速圆周运动中合力、向心力的特点(1)匀速圆周运动的合力:提供向心力.(2)变速圆周运动的合力(如图)①与圆周相切的分力F t产生切向加速度a t,改变线速度的大小,当a t与v同向时,速度增大,做加速圆周运动,反向时做减速圆周运动.②指向圆心的分力F提供向心力,产生向心加速度a,改变线速度的方向.1.做匀速圆周运动的物体,当所受合外力突然减小时,物体将沿切线方向飞出.(×) 2.摩托车转弯时速度过大就会向外发生滑动,这是摩托车受沿转弯半径向外的离心力作用的缘故.(×)3.向心力可以由物体受到的某一个力提供,也可以由物体受到的合力提供.(√)4.在变速圆周运动中,向心力不指向圆心.(×)1.向心力来源向心力是按力的作用效果命名的,可以由重力、弹力、摩擦力等各种力提供,也可以是几个力的合力或某个力的分力提供,因此在受力分析中要避免再另外添加一个向心力.2.匀速圆周运动中向心力来源运动模型向心力的来源图示汽车在水平路面转弯水平转台(光滑)圆锥摆飞车走壁飞机水平转弯火车转弯3.变速圆周运动中向心力来源如图所示,当小球在竖直面内摆动时,沿半径方向的合力提供向心力,F =T -mg cos θ=m v 2R ,如图所示.4.圆周运动中动力学问题的分析思路考向1 圆周运动的动力学问题例4 (多选)(2021·河北卷·9)如图,矩形金属框MNQP 竖直放置,其中MN 、PQ 足够长,且PQ 杆光滑,一根轻弹簧一端固定在M 点,另一端连接一个质量为m 的小球,小球穿过PQ 杆,金属框绕MN 轴分别以角速度ω和ω′匀速转动时,小球均相对PQ 杆静止,若ω′>ω,则与以ω匀速转动时相比,以ω′匀速转动时( )A .小球的高度一定降低B .弹簧弹力的大小一定不变C .小球对杆压力的大小一定变大D .小球所受合外力的大小一定变大 答案 BD解析 对小球受力分析,设弹簧弹力为T ,弹簧与水平方向的夹角为θ,则对小球竖直方向有T sin θ=mg ,而T =k ⎝⎛⎭⎫MPcos θ-l 0 可知θ为定值,T 不变,则当转速增大后,小球的高度不变,弹簧的弹力不变,A 错误,B 正确;水平方向当转速较小,杆对小球的弹力N 背离转轴时,则T cos θ-N =mω2r 即N =T cos θ-mω2r当转速较大,N 指向转轴时, 则T cos θ+N ′=mω′2r 即N ′=mω′2r -T cos θ因ω′>ω,根据牛顿第三定律可知,小球对杆的压力不一定变大,C 错误; 根据F 合=mω2r 可知,因角速度变大,则小球所受合外力变大,D 正确.例5 (2022·全国甲卷·14)北京2022年冬奥会首钢滑雪大跳台局部示意图如图所示.运动员从a 处由静止自由滑下,到b 处起跳,c 点为a 、b 之间的最低点,a 、c 两处的高度差为h .要求运动员经过c 点时对滑雪板的压力不大于自身所受重力的k 倍,运动过程中将运动员视为质点并忽略所有阻力,则c 点处这一段圆弧雪道的半径不应小于( )A.h k +1B.h kC.2h kD.2h k -1答案 D解析 运动员从a 到c 根据动能定理有mgh =12m v c 2,在c 点有N c -mg =m v c 2R c ,N c ≤ kmg ,联立有R c ≥2hk -1,故选D.考向2 圆锥摆模型例6 (2023·辽宁省六校联考)四个完全相同的小球A 、B 、C 、D 均在水平面内做圆锥摆运动.如图甲所示,小球A 、B 在同一水平面内做圆锥摆运动(连接B 球的绳较长);如图乙所示,小球C 、D 在不同水平面内做圆锥摆运动,但是连接C 、D 的绳与竖直方向之间的夹角相等(连接D 球的绳较长),则下列说法错误的是( )A .小球A 、B 角速度相等 B .小球A 、B 线速度大小相等C .小球C 、D 所需的向心加速度大小相等D .小球D 受到绳的拉力与小球C 受到绳的拉力大小相等 答案 B解析 对题图甲中A 、B 分析,设绳与竖直方向的夹角为θ,绳长为l ,小球的质量为m ,小球A 、B 到悬点O 的竖直距离为h ,则mg tan θ=mω2l sin θ,解得ω=gl cos θ=gh,所以小球A 、B 的角速度相等,线速度大小不相等,故A 正确,B 错误;对题图乙中C 、D 分析,设绳与竖直方向的夹角为θ,小球的质量为m ,绳上拉力为T ,则有mg tan θ=ma ,T cos θ=mg ,得a =g tan θ,T =mgcos θ,所以小球C 、D 所需的向心加速度大小相等,小球C 、D 受到绳的拉力大小也相等,故C 、D 正确.例7如图所示,质量相等的甲、乙两个小球,在光滑玻璃漏斗内壁做水平面内的匀速圆周运动,甲在乙的上方.则()A.球甲的角速度一定大于球乙的角速度B.球甲的线速度一定大于球乙的线速度C.球甲的运动周期一定小于球乙的运动周期D.甲对内壁的压力一定大于乙对内壁的压力答案 B解析对小球受力分析,小球受到重力和支持力,它们的合力提供向心力,设支持力与竖直方向夹角为θ,根据牛顿第二定律有mg tan θ=m v2R =mRω2,解得v=gR tan θ,ω=g tan θR,由题图可知,球甲的轨迹半径大,则球甲的角速度一定小于球乙的角速度,球甲的线速度一定大于球乙的线速度,故A错误,B正确;根据T=2πω,因为球甲的角速度一定小于球乙的角速度,则球甲的运动周期一定大于球乙的运动周期,故C错误;因为支持力N=mgcos θ,结合牛顿第三定律,球甲对内壁的压力一定等于球乙对内壁的压力,故D错误.例8(多选)(2023·福建省泉州五中检测)如图所示,内壁光滑的玻璃管内用长为L的轻绳悬挂一个小球.当玻璃管绕竖直轴以角速度ω匀速转动时,小球与玻璃管间恰无压力作用.下列说法正确的是()A.仅增加绳长后,小球将受到玻璃管斜向下方的压力B.仅增加绳长后,若要保持小球与玻璃管间仍无压力,需增大ωC.仅增加小球质量后,小球将受到玻璃管斜向上方的压力D.仅增加角速度后,小球将受到玻璃管斜向下方的压力答案AD解析 因为玻璃管绕竖直轴以角速度ω匀速转动,小球与玻璃管间恰无压力作用,对小球进行受力分析,如图所示,小球做匀速圆周运动的半径为R =L sin θ,小球所受的合力提供小球做匀速圆周运动所需的向心力,即mg tan θ=mω2R =mω2L sin θ,仅增加绳长后,小球所需向心力增大,则小球将受到上玻璃管壁斜向下方的压力,A 正确;仅增加绳长后,若要保持小球与玻璃管间仍无压力,则小球所受合力不变,即向心力大小不变,需要减小角速度,B 错误;仅增加小球质量后,根据mg tan θ=mω2R =mω2L sin θ可知,向心力公式两边都有m ,因此质量可以约掉,小球不受玻璃管壁斜向上方的压力,C 错误;仅增加角速度后,小球做圆周运动所需向心力增大,则小球将受到上玻璃管壁斜向下方的压力,D 正确.圆锥摆模型1.如图所示,向心力F 向=mg tan θ=m v 2r =mω2r ,且r =L sin θ,联立解得v =gL tan θsin θ,ω=gL cos θ.2.稳定状态下,θ角越大,对应的角速度ω和线速度v 就越大,小球受到的拉力F =mgcos θ和运动所需的向心力也越大.考向3 生活中的圆周运动例9 列车转弯时的受力分析如图所示,铁路转弯处的圆弧半径为R ,两铁轨之间的距离为d ,内外轨的高度差为h ,铁轨平面和水平面间的夹角为α(α很小,可近似认为tan α≈sin α),重力加速度为g ,下列说法正确的是( )A .列车转弯时受到重力、支持力和向心力的作用B .列车过转弯处的速度v =gRh d 时,列车轮缘不会挤压内轨和外轨C .列车过转弯处的速度v <gRh d时,列车轮缘会挤压外轨 D .若减小α角,可提高列车安全过转弯处的速度答案 B解析 列车以规定速度转弯时受到重力、支持力的作用,重力和支持力的合力提供向心力,A 错误;当重力和支持力的合力提供向心力时,有m v 2R =mg tan α=mg h d,解得v =gRh d ,故当列车过转弯处的速度v =gRh d 时,列车轮缘不会挤压内轨和外轨,B 正确;列车过转弯处的速度v <gRh d时,转弯所需的向心力F <mg tan α,故此时列车内轨受挤压,C 错误;若要提高列车过转弯处的速度,则列车所需的向心力增大,故需要增大α,D 错误.课时精练1.空中飞椅深受年轻人的喜爱,飞椅的位置不同,感受也不同,关于飞椅的运动,下列说法正确的是( )A .乘坐飞椅的所有爱好者一起做圆周运动,最外侧的飞椅角速度最大B .缆绳一样长,悬挂点在最外侧的飞椅与悬挂在内侧的飞椅向心加速度大小相等C .飞椅中的人随飞椅一起做圆周运动,受重力、飞椅的支持力与向心力D.不管飞椅在什么位置,缆绳长短如何,做圆周运动的飞椅角速度都相同答案 D解析乘坐飞椅的所有爱好者一起做匀速圆周运动,其角速度相同,故A错误,D正确;根据a=rω2,由A可知角速度相同,当转动半径越大,向心加速度越大,故悬挂在最外侧飞椅的向心加速度大,故B错误;向心力是由重力和支持力的合力提供的,故C错误.2.2022年2月7日,我国运动员任子威、李文龙在北京冬奥会短道速滑男子1 000米决赛中分别获得冠、亚军.如图所示为短道速滑比赛场地示意图,比赛场地周长约为111.12 m,其中直道长度为28.85 m,弯道半径为8 m.若一质量为50 kg的运动员在弯道紧邻黑色标志块处做匀速圆周运动,转弯时冰刀与冰面间的动摩擦因数为0.2,最大静摩擦力等于滑动摩擦力,运动员可看作质点,重力加速度g取10 m/s2,则()A.该运动员在弯道转弯时不发生侧滑的最大速度为4 m/sB.该运动员在弯道转弯时不发生侧滑的最大速度为8 m/sC.该运动员受到冰面的作用力最大为100 ND.该运动员受到冰面的作用力最大为500 N答案 A解析最大静摩擦力等于滑动摩擦力,设运动员在弯道转弯时不发生侧滑的最大速度为v,,解得v=4 m/s,故B错误,A正确;运动员在水平根据静摩擦力提供向心力有μmg=m v2R=100 N,运动员在竖直方向受力平衡,则面内做匀速圆周运动需要的向心力大小为F=m v2R有N=mg=500 N,所以运动员受到冰面的作用力最大为F合=F2+N2≈510 N,故C、D 错误.3.无级变速箱是自动挡车型变速箱的一种,比普通的自动变速箱换挡更平顺,没有冲击感.如图为其原理图,通过改变滚轮位置实现在变速范围内任意连续变换速度.A、B为滚轮轴上两点,变速过程中主动轮转速不变,各轮间不打滑,则()A.从动轮和主动轮转动方向始终相反B.滚轮在B处时,从动轮角速度小于主动轮角速度C .滚轮从A 到B ,从动轮线速度先增大后减小D .滚轮从A 到B ,从动轮转速先增大后减小答案 B解析 因为从动轮和主动轮转动方向都和滚轮的转动方向相反,所以从动轮和主动轮转动方向始终相同,A 错误;滚轮在B 处时,从动轮和主动轮与滚轮接触点的线速度大小相等,此处从动轮的半径大于主动轮的半径,根据v =ωr 可知,从动轮角速度小于主动轮角速度,B 正确;主动轮转速不变,滚轮从A 到B ,主动轮的半径越来越小,主动轮与滚轮接触点的线速度一直减小,从动轮线速度与滚轮线速度大小相等,故一直减小,C 错误;滚轮从A 到B ,从动轮线速度一直减小,又因为从动轮半径在变大,又v =ωr =2πnr ,滚轮从A 到B ,从动轮转速一直减小,D 错误.4.(2023·广东惠州市调研)如图所示,一根细线下端拴一个金属小球Q ,细线穿过小孔(小孔光滑)另一端连接在金属块P 上,P 始终静止在水平桌面上,若不计空气阻力,小球在某一水平面内做匀速圆周运动(圆锥摆).实际上,小球在运动过程中不可避免地受到空气阻力作用.因阻力作用,小球Q 的运动轨迹发生缓慢的变化(可视为一系列半径不同的圆周运动).下列判断正确的是( )A .小球Q 的位置越来越高B .细线的拉力减小C .小球Q 运动的角速度增大D .金属块P 受到桌面的静摩擦力增大答案 B解析 由于小球受到空气阻力作用,线速度减小,则所需要的向心力减小,小球做近心运动,小球的位置越来越低,故A 项错误;设小孔下面细线与竖直方向的夹角为θ,细线的拉力大小为T ,细线的长度为L ,当小球做匀速圆周运动时,由重力和细线的拉力的合力提供向心力,如图所示,则有T =mg cos θ,mg tan θ=m v 2L sin θ=mω2L sin θ,解得ω=g L cos θ,由于小球受到空气阻力作用,线速度减小,θ减小,cos θ增大,因此细线的拉力T 减小,角速度ω减小,故B 项正确,C 项错误;对金属块P ,由平衡条件知,P 受到桌面的静摩擦力大小等于细线的拉力大小,则静摩擦力减小,故D 项错误.5.如图所示,一个半径为5 m 的圆盘正绕其圆心匀速转动,当圆盘边缘上的一点A 处在如图所示位置的时候,在其圆心正上方20 m 的高度有一个小球(视为质点)正在向边缘的A 点以一定的速度水平抛出,取g =10 m/s 2,不计空气阻力,要使得小球正好落在A 点,则( )A .小球平抛的初速度一定是2.5 m/sB .小球平抛的初速度可能是2.5 m/sC .圆盘转动的角速度一定是π rad/sD .圆盘转动的加速度大小可能是π2 m/s 2答案 A解析 根据h =12gt 2可得t =2h g =2 s ,则小球平抛的初速度v 0=r t=2.5 m/s ,A 正确,B 错误;根据ωt =2n π(n =1,2,3,…),解得圆盘转动的角速度ω=2n πt=n π rad/s(n =1,2,3,…),圆盘转动的加速度大小为a =ω2r =n 2π2r =5n 2π2 m/s 2(n =1,2,3,…),C 、D 错误.6.(2023·内蒙古包头市模拟)如图所示,两等长轻绳一端打结,记为O 点,并系在小球上.两轻绳的另一端分别系在同一水平杆上的A 、B 两点,两轻绳与固定的水平杆夹角均为53°.给小球垂直纸面的速度,使小球在垂直纸面的竖直面内做往复运动.某次小球运动到最低点时,轻绳OB 从O 点断开,小球恰好做匀速圆周运动.已知sin 53°=0.8,cos 53°=0.6,则轻绳OB 断开前后瞬间,轻绳OA 的张力之比为( )A .1∶1B .25∶32C .25∶24D .3∶4答案 B 解析 轻绳OB 断开前,小球以A 、B 中点为圆心的圆弧做往复运动,设小球经过最低点的速度大小为v ,绳长为L ,小球质量为m ,轻绳的张力为F 1,由向心力公式有2F 1sin 53°-mg=m v 2L sin 53°,轻绳OB 断开后,小球在水平面内做匀速圆周运动,其圆心在A 点的正下方,设轻绳的张力为F 2,有F 2cos 53°=m v 2L cos 53°,F 2sin 53°=mg ,联立解得F 1F 2=2532,故B 正确. 7.(2023·浙江省镇海中学模拟)如图为自行车气嘴灯及其结构图,弹簧一端固定在A 端,另一端拴接重物,当车轮高速旋转时,LED 灯就会发光.下列说法正确的是( )A .安装时A 端比B 端更远离圆心B .高速旋转时,重物由于受到离心力的作用拉伸弹簧从而使触点接触C .增大重物质量可使LED 灯在较低转速下也能发光D .匀速行驶时,若LED 灯转到最低点时能发光,则在最高点时也一定能发光答案 C解析 要使重物做离心运动,M 、N 接触,则A 端应靠近圆心,因此安装时B 端比A 端更远离圆心,A 错误;转速越大,所需向心力越大,弹簧拉伸越长,M 、N 能接触,灯会发光,不能说重物受到离心力的作用,B 错误;灯在最低点时有F 弹-mg =mrω2,解得ω=F 弹mr -g r,又ω=2πn ,因此增大重物质量可使LED 灯在较低转速下也能发光,C 正确;匀速行驶时,灯在最低点时有F 1-mg =m v 2r ,灯在最高点时有F 2+mg =m v 2r,在最低点时弹簧对重物的弹力大于在最高点时对重物的弹力,因此匀速行驶时,若LED 灯转到最低点时能发光,则在最高点时不一定能发光,D 错误.8.(2023·浙江山水联盟联考)如图所示,内壁光滑的空心圆柱体竖直固定在水平地面上,圆柱体的内径为R .沿着水平切向给贴在内壁左侧O 点的小滑块一个初速度v 0,小滑块将沿着柱体的内壁旋转向下运动,最终落在柱体的底面上.已知小滑块可看成质点,质量为m ,重力加速度为g ,O 点距柱体的底面距离为h .下列判断正确的是( )A .v 0越大,小滑块在圆柱体中运动时间越短B .小滑块运动中的加速度越来越大C .小滑块运动中对圆柱体内表面的压力越来越大D .小滑块落至底面时的速度大小为v 02+2gh答案 D解析 小滑块在竖直方向做自由落体运动,加速度恒定不变,根据h =12gt 2,可得t =2h g,可知小滑块在圆柱体中的运动时间与v 0无关,小滑块在水平方向的加速度大小也不变,则小滑块的加速度大小不变,故A 、B 错误;小滑块沿着圆柱体表面切向的速度大小不变,所需向心力不变,则小滑块运动中对圆柱体内表面的压力不变,故C 错误;小滑块落至底面时竖直方向的速度v y =2gh ,小滑块落至底面时的速度大小v =v 02+v y 2=v 02+2gh ,故D 正确.9.(2023·河北张家口市模拟)如图所示,O 为半球形容器的球心,半球形容器绕通过O 的竖直轴以角速度ω匀速转动,放在容器内的两个质量相等的小物块a 和b 相对容器静止,b 与容器壁间恰好没有摩擦力的作用.已知a 和O 、b 和O 的连线与竖直方向的夹角分别为60°和30°,则下列说法正确的是( )A .小物块a 和b 做圆周运动所需的向心力大小之比为3∶1B .小物块a 和b 对容器壁的压力大小之比为3∶1C .小物块a 与容器壁之间无摩擦力D .容器壁对小物块a 的摩擦力方向沿器壁切线向下答案 A解析 a 、b 角速度相等,向心力大小可表示为F =mω2R sin α,所以a 、b 所需向心力大小之比为sin 60°∶sin 30°=3∶1,A 正确;对b 分析可得mg tan 30°=mω2R sin 30°,结合对b 分析结果,对a 分析有mω2R sin 60°<mg tan 60°,即支持力在指向转轴方向的分力大于所需要的向心力,因此摩擦力有背离转轴方向的分力,即容器壁对a 的摩擦力沿切线方向向上,C 、D错误;对b 有N b cos 30°=mg ,对a 有N a cos 60°+f sin 60°=mg ,所以N a N b ≠cos 30°cos 60°=31,B 错误.10.(多选)(2023·山西吕梁市模拟)2022年2月12日,在速度滑冰男子500米决赛上,高亭宇以34秒32的成绩刷新奥运纪录.国家速度滑冰队在训练弯道技术时采用人体高速弹射装置,在实际应用中装置在前方通过绳子拉着运动员,使运动员做匀加速直线运动,到达设定速度时,运动员松开绳子,进行高速入弯训练,已知弯道半径为25 m ,人体弹射装置可以使运动员在4.5 s 内由静止达到入弯速度18 m/s ,入弯时冰刀与冰面的接触情况如图所示,运动员质量为50 kg ,重力加速度取g =10 m/s 2,忽略弯道内外高度差及绳子与冰面的夹角、冰刀与冰面间的摩擦,下列说法正确的是( )A .运动员匀加速运动的距离为81 mB .匀加速过程中,绳子的平均弹力大小为200 NC .运动员入弯时的向心力大小为648 ND .入弯时冰刀与水平冰面的夹角大于45°答案 BC解析 运动员匀加速运动的距离为x =v 2t =182×4.5 m =40.5 m ,A 错误;在匀加速过程中,加速度a =v t =184.5m/s 2=4 m/s 2,由牛顿第二定律,绳子的平均弹力大小为F =ma =50×4 N =200 N ,B 正确;运动员入弯时所需的向心力大小为F 向=m v 2r =50×18225N =648 N ,C 正确;设入弯时冰刀与水平冰面的夹角为θ,则tan θ=mg F 向=gr v 2=250324<1,得θ<45°,D 错误.11.(2022·山东卷·8)无人配送小车某次性能测试路径如图所示,半径为3 m 的半圆弧BC 与长8 m 的直线路径AB 相切于B 点,与半径为4 m 的半圆弧CD 相切于C 点.小车以最大速度从A 点驶入路径,到适当位置调整速率运动到B 点,然后保持速率不变依次经过BC 和CD .为保证安全,小车速率最大为4 m/s ,在ABC 段的加速度最大为2 m/s 2,CD 段的加速度最大为1 m/s 2.小车视为质点,小车从A 到D 所需最短时间t 及在AB 段做匀速直线运动的最长距离l 为( )A .t =⎝⎛⎭⎫2+7π4 s ,l =8 m B .t =⎝⎛⎭⎫94+7π2 s ,l =5 mC .t =⎝⎛⎭⎫2+5126+76π6 s ,l =5.5 m D .t =⎣⎢⎡⎦⎥⎤2+512 6+(6+4)π2 s ,l =5.5 m 答案 B解析 在BC 段的最大加速度为a 1=2 m/s 2,则根据a 1=v 1m 2r 1,可得在BC 段的最大速度为v 1m = 6 m/s ,在CD 段的最大加速度为a 2=1 m/s 2,则根据a 2=v 2m 2r 2,可得在BC 段的最大速度为v 2m =2 m/s<v 1m ,可知在BCD 段运动时的速度为v =2 m/s ,在BCD 段运动的时间为t 3=πr 1+πr 2v =7π2 s ,若小车从A 到D 所需时间最短,则AB 段小车应先以v m 匀速,再以a 1减速至v ,AB 段从最大速度v m 减速到v 的时间t 1=v m -v a 1=4-22 s =1 s ,位移x 2=v m 2-v 22a 1=3 m ,在AB 段匀速的最长距离为l =8 m -3 m =5 m ,则匀速运动的时间t 2=l v m =54s ,则从A 到D 最短时间为t =t 1+t 2+t 3=(94+7π2) s ,故选B. 12.(2022·辽宁卷·13)2022年北京冬奥会短道速滑混合团体2 000米接力决赛中,我国短道速滑队夺得中国队在本届冬奥会的首金.。