初中数学专题复习——统计与概率(附带答案及详细解析考点解读)
初三数学统计与概率试题答案及解析

初三数学统计与概率试题答案及解析1.某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球;B乒乓球;C羽毛球;D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)【答案】(1)200;(2)补图见解析;(3).【解析】(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.试题解析:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁所有等可能的结果为12种,其中符合要求的只有2种,则P=.【考点】1.条形统计图;2.扇形统计图;3.列表法与树状图法.2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1-5月新注册小型企业一共有家.请将折线统计图补充完整.(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.【答案】(1)15,将折线统计图补充完整见解析;(2).【解析】(1)根据3月份有4家,占25%,可求出某镇今年1-5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整.(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.试题解析:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1-5月新注册小型企业一共有:4÷25%=16(家),1月份有:16-2-4-3-2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:∵共有12种等可能的结果,甲、乙2家企业恰好被抽到的有2种情况,∴所抽取的2家企业恰好都是餐饮企业的概率为:.【考点】1.折线统计图;2.扇形统计图;3.频数、频率和总量的关系;4.列表法或树状图法;5.概率.3.小伟调查了某校八年级学生和家长对“中学生不穿校服”现象的看法,制作了如下的统计图学生及家长对“中学生不穿校服”的态度统计图家长对“中学生不穿校服”的态度统计图(1)求参加这次调查的家长人数;(2)求图2中表示家长“反对”的圆心角的度数;(3)小伟随机调查了表示“赞成”的10位学生的成绩,其各科平均分如下:57,88,72,60,58,80,78,78,91,65,请写出这组数据的中位数和众数;(4)小伟从表示“赞成”的4位同学中随机选择2位进行深入调查,其中包含小明和小亮,请你利用树状图或列表的方法,求出小明和小亮被同时选中的概率.【答案】(1)400;(2)252°;(3)75,78;(4).【解析】(1)根据条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,据此即可求出家长总人数;(2)根据反对人数和(1)中求出的家长总人数,算出“反对”家长的百分比,即可得到表示家长“反对”的圆心角的度数;(3)先把数据从小到大排列,第五与第六个数的平均数即为这组数据的中位数,众数就是出现次数最多的数;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,画出树状图即可.(1)∵由条形统计图,无所谓的家长有80人,根据扇形统计图,无所谓的家长占20%,∴家长人数是80÷20%=400人;(2)表示家长“反对”的圆心角的度数为×360=252°;(3)把数据从小到大排列为,57,58,60,65,72,78,78,80,88,91,中位数是,众数是78;(4)设小明和小亮分别用A、B表示,另外两个同学用C、D表示,列树状图如下:∴一共有12种等可能的结果,同时选中小明和小亮有2种情况,∴P(小明和小亮同时被选中)=.【考点】1.条形统计图;2.扇形统计图;3.中位数;4.众数;5.列表法与树状图法.4.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?【答案】解:(1)补全频数分布直方图如下:,中位数位于第三组。
中考数学复习高频考点精讲精练(全国通用):专题28 统计与概率(解析版)

D.了解一批灯泡的使用寿命,适合进行抽样调查,故本选项不合题意;
答案:C.
2.(2022•宁夏中考)某学习小组做摸球试验,在一个不透明的袋子里装有红、黄两种颜色的小球共 20 个,除颜色
外都相同.将球搅匀后,随机摸出 5 个球,发现 3 个是红球,估计袋中红球的个数是( )
A.12
B.9
C.8
D.6
A.了解全国中学生的睡眠时间 B.了解某河流的水质情况 C.调查全班同学的视力情况 D.了解一批灯泡的使用寿命 解:A.了解全国中学生的睡眠时间,适合进行抽样调查,故本选项不合题意;
B.了解某河流的水质情况,适合进行抽样调查,故本选项不合题意;
C.调查全班同学的视力情况,适合进行全面调查,故本选项符合题意;
鱼苗分别是 5 条、10 条,可以初步估计鱼苗数目较多的是 甲 鱼池.(填甲或乙)
解:由题意可得,
甲鱼池中的鱼苗数量约为:100÷
5 100
=2000(条),
乙鱼池中的鱼苗数量约为:100÷
10 100
=1000(条),
∵2000>1000,
∴初步估计鱼苗数目较多的是甲鱼池,
答案:甲.
8.(2022•上海中考)为了解学生的阅读情况,对某校六年级部分学生的阅读情况展开调查,并列出了相应的频数 分布直方图(如图所示)(每组数据含最小值,不含最大值)(0﹣1 小时 4 人,1﹣2 小时 10 人,2﹣3 小时 14 人, 3﹣4 小时 16 人,4﹣5 小时 6 人),若共有 200 名学生,则该学校六年级学生阅读时间不低于 3 小时的人数是 88 .
答案:D.
4.(2022•苏州中考)为迎接党的二十大胜利召开,某校开展了“学党史,悟初心”系列活动.学校对学生参加各
统计和概率经典例题(含答案解析和解析)

统计与概率经典例题(含答案及解析)1.(本题8分)为了解学区九年级学生对数学知识的掌握情况,在一次数学检测中,从学区2000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:⑴表中a和b所表示的数分别为:a= .,b= .;⑵请在图中补全频数分布直方图;⑶如果把成绩在70分以上(含70分)定为合格,那么该学区2000名九年级考生数学成绩为合格的学生约有多少名?2.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.3.(12分)一个不透明的口袋装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制如图不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.4.(本题10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)128 80 m 48(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?5.(10分)将如图所示的版面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上(“A”看做是“1”)。
中考数学专题冲刺《统计与概率》练习题含答案

专题八统计与概率【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:S甲=17,S乙=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定答案:B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁测试成绩 (百分制) 面试 86 92 90 83笔试 90 83 83 92如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B )A .甲B .乙C .丙D .丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A .①②③B .①②C .①③D .②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是35.三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S甲,S乙哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
中考数学复习:统计与概率

中考数学复习:统计与概率1.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15C.13,20 D.15,15【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.2.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是()A.两枚骰子向上一面的点数之和大于1B.两枚骰子向上一面的点数之和等于1C.两枚骰子向上一面的点数之和大于12D.两枚骰子向上一面的点数之和等于12【分析】根据事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件进行分析即可.【解答】解:A、两枚骰子向上一面的点数之和大于1,是必然事件,故此选项错误;B、两枚骰子向上一面的点数之和等于1,是不可能事件,故此选项错误;C、两枚骰子向上一面的点数之和大于12,是不可能事件,故此选项错误;D、两枚骰子向上一面的点数之和等于12,是随机事件,故此选项正确;故选:D.【点评】此题主要考查了随机事件,关键是掌握随机事件定义.3.如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是 ( )A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳定【分析】折线图是用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来.以折线的上升或下降来表示统计数量增减变化.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好【解答】解:A.甲的数学成绩高于班级平均分,且成绩比较稳定,正确;B.乙的数学成绩在班级平均分附近波动,且比丙好,正确;C.丙的数学成绩低于班级平均分,但成绩逐次提高,正确;D.就甲、乙、丙三个人而言,丙的数学成绩最不稳,故D错误.故选:D.【点评】本题是折线统计图,要通过坐标轴以及图例等读懂本图,根据图中所示的数量解决问题。
初中数学考点统计与概率.docx

统计初步与概率初步考点一、平均数1、平均数的概念(1)平均数:一般地,如果有 n 个数x1, x2, , x n,那么,1( x1 x2x n ) 叫xn做 n 个数的平均数,x作“x拔”。
(2)加平均数:如果 n 个数中,x1出f1次,x2出 f 2次,⋯, x k出 f k次(里 f1 f 2 f k n ),那么,根据平均数的定,n 个数的平均数可以表示x x1 f 1x2 f2x k fk,求得的平均数 x 叫做加平均数,其中 f1 , f 2 ,, fk叫做n。
2、平均数的算方法(1)定法当所数据 x1 , x2 , , x n , 比分散,一般用定公式:x 1( x1x2x n ) n(2)加平均数法:当所数据重复出,一般用加平均数公式:x x1 f1x2 f 2x k f k,其n中 f 1 f 2f k n 。
(3)新数据法:当所数据都在某一常数 a 的上下波,一般用化公式:x x' a 。
其中,常数 a 通常取接近数据平均数的“整”的数,x'1x1 a ,x' 2x2 a ,⋯,x'n x n a 。
x'1n( x'1x'2x'n) 是新数据的平均数(通常把x1, x2 ,, x n , 叫做原数据,x'1, x' 2 ,, x'n, 叫做新数据)。
考点二、学中的几个基本概念1、体所有考察象的全体叫做体。
2、个体总体中每一个考察对象叫做个体。
3、样本从总体中所抽取的一部分个体叫做总体的一个样本。
4、样本容量样本中个体的数目叫做样本容量。
5、样本平均数样本中所有个体的平均数叫做样本平均数。
6、总体平均数总体中所有个体的平均数叫做总体平均数,在统计中,通常用样本平均数估计总体平均数。
考点三、众数、中位数1、众数在一组数据中,出现次数最多的数据叫做这组数据的众数。
2、中位数将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
初一数学统计与概率试题答案及解析

初一数学统计与概率试题答案及解析1.下列事件是不确定事件的是………………………………………………()A.三角形一条中线把三角形分成面积相等的两部分;B.在图形的旋转变换中,面积不会改变C.掷一枚硬币,停止后正面朝上D.抛出的石子会下落【答案】C【解析】ABD都是一定会发生的事件,而C正面朝上的概率为,为不确定时间,故选C2.某班学生在颁奖大会上得知该班获得奖励的情况如下表:-项目三好学生优秀学生干部优秀团员-已知该班共有28人获得奖励,其中获得两项奖励的有13人,那么该班获得奖励最多的一位同学可获得的奖励为( )- A.3项- B.4项- C.5项- D.6项【答案】B【解析】试题考查知识点:概率问题思路分析:抓住学生和班干部是不兼容的具体解答过程:如果某同学是一位班干部,那么他最多可获得的奖励可以有市级、校级优秀学生干部和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(是团员),那么他最多可获得的奖励可以有市级、校级三好学生和市级、校级优秀团员等四项奖励;如果某同学是一位普通学生(不是团员),那么他最多可获得的奖励可以有市级、校级三好学生等两项奖励;综上所述,该班获得奖励最多的一位同学可获得的奖励为4项。
试题点评:分情况讨论即可。
3.一个扇形统计图,某一部分所对应扇形的圆心角为108°,则该部分在总体中所占的百分比是.【答案】30%.【解析】因为圆心角的度数=百分比×360°,所以该部分在总体中所占有的百分比=108°÷360°=30%.【考点】扇形统计图.4.小明是2013年入学的,现就读的班级是2014-2015学年八年级2班,座位号是15号,他发现他的学号是20130215.若小英的学号是20120310,则小英现就读的班级是班,座位号是号.【答案】2015届九年级3班,10.【解析】根据学号的表示:前四位是年级, 56位是班级,七八位是座位号,可得答案.小英的学号是20120310,则小英现就读的班级是2015届九年级3班,座位号是10号,【考点】用数字表示事件5.已知样本容量为30,在频数分布直方图中共有三个小长方形,各个小长方形的高的比值是2:4:3,则第三组的频数为()A.10B.12C.9D.8【答案】A.【解析】用30乘以第三组的高所占的比例即可,即第三组的频数为30×=10.故答案选A.【考点】频数(率)分布直方图.6.某次测验后,60﹣70分这组人数占全班总人数的20%,若全班有45人,则该组的频数为.【答案】9.【解析】用总人数45乘以60﹣70分这组人数占全班总人数的百分比即可得该组的频数,即频数=45×20%=9.【考点】频数与频率.7.下列调查方式,你认为最合适的是()A.了解恒安新区每天的流动人口数,采用抽样调查方式B.要了解全市七年级学生英语单词的掌握情况,采用全面调查方式C.了解矿区居民日平均用水量,采用全面调查方式D.旅客进火车站上车前的安检,采用抽样调查方式【答案】A.【解析】选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.由此可得选项A,了解恒安新区每天的流动人口数,宜采用抽样调查方式;选项B,要了解全市七年级学生英语单词的掌握情况,宜采用抽样调查方式;选项C,了解矿区居民日平均用水量,宜采用抽样调查方式;选项D,旅客进火车站上车前的安检,宜采用全面调查方式.故答案选A.【考点】全面调查与抽样调查.8.(3分)下列抽样调查较科学的是()①小琪为了了解某市2007年的平均气温,上网查询了2007年7月份31天的气温情况②小华为了了解初中三个年级平均身高,在2014-2015学年七年级抽取了一个班的学生做调查③小智为了了解初中三个年级的平均体重,在七、八、2015届九年级各抽一个班学生进行调查④小明为了知道烤箱内的面包是否熟了,任意取出一小块品尝.A.①②B.②③C.③④D.②④【答案】C.【解析】抽样调查只考查总体中的一部分个体,因此它的优点是调查范围小,节省人力、物力、财力,但结果往往不如全面调查得到的结果准确,为了获得较为准确的调查结果,抽样时要注意样本的代表性和广泛性.由此可得①一年中不同季节气温变化是很大的,调查时只选了一天的情况,调查的对象太少,缺乏代表性,也不符合广泛性;②要了解初中三个年级的情况,一个年级的学生不具代表性,不科学;③和④的抽样调查符合样本的代表性和广泛性的标准,是较科学的,故答案选C.【考点】全面调查与抽样调查.9.下列调查中,适合全面调查方式的是()A.调查人们的环保意识B.调查端午节期间市场上粽子的质量C.调查某班50名同学的体重D.调查某类烟花爆炸燃放安全质量【答案】C【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.A、人数多,不容易调查,因而适合抽样调查;B、数量较多,不易全面调查;C、数量较少,易全面调查;D、数量较多,具有破坏性,不易全面调查.【考点】全面调查与抽样调查10.下列调查中,最适宜采用全面调查方式(普查)的是()A.对重庆市中学生每天学习所用时间的调查B.对全国中学生心理健康现状的调查C.对某班学生进行6月5日是“世界环境日”知晓情况的调查D.对重庆市初中学生课外阅读量的调查【答案】C.【解析】A、对重庆市中学生每天学习所用时间的调查,人数众多,适宜采用抽样调查,故此选项错误;B、对全国中学生心理健康现状的调查,人数众多,适宜采用抽样调查,故此选项错误;C、对某班学生进行6月5日是“世界环境日”知晓情况的调查,人数不多,适宜采用全面调查,故此选项正确;D、对重庆市初中学生课外阅读量的调查,人数众多,适宜采用抽样调查,故此选项错误;故选C.【考点】全面调查与抽样调查.11.綦江县教委在推进课堂教学改革的过程中,为了切实减轻学生的课业负担,对义务教育阶段低年级学生原则上要求老师不布置课外作业,2015届九年级学生每天的课外作业总时间不得超过1小时(学生阅读、自学除外):为了了解各校情况,县教委对其中40个学校2015届九年级学生课外完成作业时间调研后进行了统计,并根据收集的数据绘制了下面两幅不完整的统计图,请你根据图中提供的信息,解答下面的问题:(1)计算出学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角;(2)将图中的条形图补充完整;(3)计算出学生课外完成作业时间在60~75分钟的学校占调研学校总数的百分比.【答案】(1)162°;(2)补图见解析,(3)10%.【解析】由扇形统计图可知:(1)学生课外完成作业时间在30~45分钟的学校对应的扇形圆心角为360°×45%=162°;(2)15-30段的学校个数为40×30%=12个;(3)60-75分的学校为40-12-18-6=4个,则占的百分比为×100%=10%.试题解析:(1)360°×45%=162°;(2)40×30%=12;如图;(3)40-12-18-6=4,×100%=10%.【考点】1.条形统计图;2.扇形统计图.12.(4分)一组样本数据:101,98,102,100,99的方差是()A.0B.1C.10D.2【答案】D【解析】欲求“方差”,根据题意,先求出这组数据的平均数,再利用方差公式计算.即平均数=(99+98+101+102+100)=100,方差s2=[(99﹣100)2+(98﹣100)2+(101﹣100)2+(102﹣100)2+(100﹣100)2]=2.故选D.【考点】方差13.下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查【答案】B【解析】:A、为了了解某一品牌家具的甲醛含量,因为普查工作量大,适合抽样调查,故本选项错误;B、为了了解某公园的游客流量,选择抽样调查,故本项正确;C、为了了解神州飞船的设备零件的质量情况的调查是精确度要求高的调查,适于全面调查,故本选项错误;D、为了了解一批袋装食品是否有防腐剂,选择抽样调查,故本项错误,故选:B.【考点】抽样调查和全面调查14.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2:3:5,若已知中学生被抽到的人数为150人,则应抽取的样本容量等于()A.1500B.1000C.150D.500【答案】 D【解析】大、中、小学生的人数比为2:3:5,所以3份为150人,每份50人,故总数为50×10=500人,故选D.【考点】抽样调查15.已知样本数据为1,2,3,4,5,则它的方差为()A.10B.C.2D.【答案】C.【解析】先计算出数据的平均数,然后根据方差公式计算.平均数=(1+2+3+4+5)=3,所以s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.故选C.【考点】方差.16.(2015秋•陕西校级期末)在“国庆车展”期间,某汽车经销商推出A、B、C、D四种型号的轿车共1000辆进行展销.C型号轿车销售的成交率为50%,图①是各型号参展轿车的百分比,图②是已售出的各型号轿车的数量.(两幅统计图尚不完整)(1)参加展销的D型号轿车有多少辆?(2)请你将图②的统计图补充完整;(3)通过计算说明哪一款型号的轿车销售情况最好?【答案】(1)250辆;(2)见解析;(3)D型号的轿车销售的情况最好【解析】(1)先利用扇形统计图计算出参加展销的D型号轿车所占的百分比,然后用这个百分比乘以1000即可得到参加展销的D型号轿车的数量;(2)先利用扇形统计图得到参加展销的C型号轿车所占的百分比,则可计算出参加展销的C型号轿车的数量,然后把参加展销的C型号轿车的数量乘以50%得到售出的C型号轿车的数量,再补全条形统计图;(3)分别计算出各型号轿车的销售的成交率,然后比较它们的大小即可判断哪一款型号的轿车销售情况最好.解:(1)1000×(1﹣35%﹣20%﹣20%)=1000×25%=250(辆),所以参加展销的D型号轿车有250辆;(2)1000×20%×50%=100(辆),如图2,(3)四种轿车的成交率分别为:A:×100%=48%,B:×100%=49%,C:50%,D:×100%=52%.所以D型号的轿车销售的情况最好.【考点】条形统计图;扇形统计图.17.下列调查中,适合采用普查方式的是()A.对小北江水质情况的调查B.对市场上腊味质量情况的调查C.对某班48名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查【答案】C.【解析】A、对小北江水质情况的调查,不适合采用普查,故选项错误;B、对市场上腊味质量情况的调查,费事费力,不适合采用普查,故选项错误;C、对某班48名同学体重情况的调查,调查范围较小,比较容易做到,适合普查,故本选项正确;D、对某类烟花爆竹燃放安全情况的调查,不适合采用普查,故选项错误.故选C.【考点】全面调查与抽样调查.18.为了了解某校1500名学生的体重情况,从中抽取了100名学生的体重,就这个问题来说,下面说法正确的是()A.1500名学生是总体B.1500名学生的体重是总体C.每个学生是个体D.100名学生是所抽取的一个样本【答案】B【解析】根据题意由抽样调查的意义,可知总体是1500名学生的体重情况,每个学生的体重是个体,100名学生的体重是所抽取的一个样本.故选B【考点】抽样调查19.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就这个问题来说,下面说法中正确的是()A.2000名运动员是总体B.每个运动员是个体C.100名运动员是抽取的一个样本D.抽取的100名运动员的年龄是样本【答案】D【解析】2000名运动员的年龄是总体;每个运动员的年龄是个体;100名运动员的年龄是抽取的样本.【考点】总体、个体、样本的定义20.(2015•路北区一模)如图所示是甲、乙两户居民家庭全年各项支出的统计图.根据统计图,下列对两户居民家庭教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大B.乙户比甲户大C.甲、乙两户一样大D.无法确定哪一户大【答案】B【解析】根据条形统计图及扇形统计图分别求出甲乙两人教育支出所占的百分比,比较大小即可做出判断.解:由条形统计图可知,甲户居民全年总支出为1200+2000+1200+1600=6000(元),教育支出占总支出的百分比为×100%=20%,乙户居民教育支出占总支出的百分比为25%,则乙户居民比甲户居民教育支出占总支出的百分比大.故选B.【考点】条形统计图;扇形统计图.21.(2014•湖州)下面的频数分布折线图分别表示我国A市与B市在2014年4月份的日平均气温的情况,记该月A市和B市日平均气温是8℃的天数分别为a天和b天,则a+b= .【答案】12【解析】根据折线图即可求得a、b的值,从而求得代数式的值.解:根据图表可得:a=10,b=2,则a+b=10+2=12.故答案为:12.【考点】频数(率)分布折线图.22.(2015秋•岑溪市期末)为了了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.在这个问题中,样本是指()A.150B.被抽取的150名考生C.被抽取的150名考生的一模数学成绩D.我区2014年一模考试数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:了解我区2014年一模考试数学学科各分数段成绩分布情况,从中抽取150名考生的一模数学成绩进行统计分析.样本是被抽取的150名考生的一模数学成绩.故选:C.【考点】总体、个体、样本、样本容量.23.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是;(2)表中a= ,b= ,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是.【答案】(1)抽样调查,40;(2)a=0.350;b=5;(3)45°.【解析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式,根据已知的一组数据可以求出接受调查的总人数c;(2)总人数乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)用周角乘以其所在小组的频率即可求得其所在扇形的圆心角;解:(1)填抽样调查或抽查;总人数为:8÷0.200=40;(2)a=1﹣0.200﹣0.250﹣0.125﹣0.075=0.350;b=8÷0.200×0.125=5;频数分布直方图如图所示:(3)“40~50”的圆心角的度数是0.125×360°=45°.故答案为:抽样调查,40;a=0.350,b=5;45°.【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图.24.为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查.下列抽取学生的方法最合适的是()A.随机抽取该校一个班级的学生B.随机抽取该校一个年级的学生C.随机抽取该校一部分男生D.分别从该校初一、初二、初三年级中各随机抽取10%的学生【答案】D【解析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.解:因为要了解初中的视力情况范围较大、难度较大,所以应采取抽样调查的方法比较合适,本题考查的是调查方法的选择,正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析,故只有D符合实际并具有普遍性,故选:D.【考点】全面调查与抽样调查.25.(2015•南昌)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数为.(2)把条形统计图补充完整(3)若将“稍加询问”和“从来不管”视为“管理不严”,已知全校共1500名学生,请估计该校对孩子使用手机“管理不严”的家长大约有多少人?【答案】(1)120,30°;(2)见解析;(3)1375人.【解析】(1)用“从来不管”的问卷数除以其所占百分比求出回收的问卷总数;用“严加干涉”部分的问卷数除以问卷总数得出百分比,再乘以360°即可;(2)用问卷总数减去其他两个部分的问卷数,得到“稍加询问”的问卷数,进而补全条形统计图;(3)用“稍加询问”和“从来不管”两部分所占的百分比的和乘以1500即可得到结果.解:(1)回收的问卷数为:30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为:×360°=30°.故答案为:120,30°;(2)“稍加询问”的问卷数为:120﹣(30+10)=80(份),补全条形统计图,如图所示:(3)根据题意得:1500×=1375(人),则估计该校对孩子使用手机“管理不严”的家长大约有1375人.【考点】条形统计图;用样本估计总体;扇形统计图.26.如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款不少于15元的有()A.40人B.32人C.20人D.12人【答案】B【解析】利用频数分布直方图可得各捐款数段的人数,然后把后两组的人数相加即可.解:由频数分布直方图得后两组的捐款不少于15元,所以捐款不少于15元的有20+12=32(人).故选B.【考点】频数(率)分布直方图.27.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A 1.5小时以上;B 1~1.5小时;C 0.5~1小时;D 0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【答案】(1)本次一共调查了200位学生;(2)画图见解析;(3)学校有150人平均每天参加体育锻炼在0.5小时以下.【解析】(1)读图可得:A类有60人,占30%即可求得总人数;(2)计算可得:“B”是100人,据此补全条形图;(3)用样本估计总体,若该校有3000名学生,则学校有3000×5%=150人平均每天参加体育锻炼在0.5小时以下.解:(1)读图可得:A类有60人,占30%;则本次一共调查了60÷30%=200人;本次一共调查了200位学生;(2)“B”有200﹣60﹣30﹣10=100人,画图正确;(3)用样本估计总体,每天参加体育锻炼在0.5小时以下占5%;则3000×5%=150,学校有150人平均每天参加体育锻炼在0.5小时以下.【考点】扇形统计图;用样本估计总体;条形统计图.28.在我市百万读书工程活动中,就我县中小学教师阅读状况进行了一次问卷调查,并根据调查结果绘制了教师每年阅读书籍数量的统计图(不完整),设x表示阅读书籍的数量(x为正整数,单位:本),其中A:1≤x≤3,B:4≤x≤6,C:7≤x≤9,D:x≥10.(1)本次共调查了名教师;(2)扇形统计图中扇形D的圆心角的度数为 °.【答案】(1)200;(2)72.【解析】(1)用A组的频数除以A组所占的百分比即可求得抽查的教师人数;(2)用总人数减去A、B、C组的频数即可求得D组的频数,用该组的频数除以总人数乘以周角的度数即可求得圆心角的度数.解:(1)本次共调查教师38÷19%=200(人),故答案为:200;(2)D组的频数为:200﹣38﹣74﹣48=40,扇形统计图中扇形D的圆心角的度数360°×=72°,故答案为:72.29.为了了解某校七年级期末考数学科各分数段成绩分布情况,从该校七年级抽取200名学生的期末考数学成绩进行统计分析,在这个问题中,样本是()A.200B.被抽取的200名学生C.被抽取的200名学生的期末考数学成绩D.某校七年级期末考数学成绩【答案】C【解析】根据从总体中取出的一部分个体叫做这个总体的一个样本;再根据被收集数据的这一部分对象找出样本,即可得出答案.解:为了了解某校七年级考数学科各分数段成绩分布情况,从中抽取200名考生的段考数学成绩进行统计分析,在这个问题中,样本是被抽取的200名考生的段考数学成绩,故选:C.30.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A.2B.4C.12D.16【答案】B【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:=,解得:x=4.∴黄球的个数为4.故选B.。
中考数学复习攻略 专题5 统计与概率综合(含答案)

专题五 统计与概率综合统计图表:认真审题,从统计图表中获取有用信息,根据题意求出相应的量.统计量的计算:中位数是排出来的,众数是数出来的,平均数、方差是算出来的.概率的计算和应用:利用画树状图或列表法列举所有等可能结果是解决这类题目的关键.利用画树状图或列表法可以不重复不遗漏地列出所有等可能的结果,列表法适合于两步完成的事件,画树状图适合两步或两步以上完成的事件.注意用到的知识点:概率等于所求情况数与总情况数之比.中考重难点突破 统计图表与三数的综合【例1】(2021·苏州中考)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表.班级一班 二班 三班 四班 五班 废纸质量/kg4.54.45.13.35.7则每个班级回收废纸的平均质量为( C ) A .5 kg B .4.8 kg C .4.6 kg D .4.5 kg【解析】求五个班废纸回收质量的平均数即可得出答案.1.(2021·盘锦中考)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( C )A .甲B .乙C .丙D .丁概率的计算【例2】(2019·百色适应性演练)欢度端午节,小新用不透明袋子装了4个粽子来学校与同学分享,其中有豆沙棕和肉棕各1个,板栗粽2个,这些粽子形状与大小完全一样.(1)若小新随机从袋子中取出一个粽子,取出的是肉粽的概率是多少?(2)若小新随机从袋子中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小新取出的两个都是板栗粽的概率.【解析】(1)直接根据概率公式计算可得结果;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得结果. 【解答】解:(1)∵一共有4个粽子,其中肉粽有1个,∴取出的是肉粽的概率是14;(2)由题意,画树状图:由图可知,共有12种等可能的结果,其中小新取出的两个都是板栗粽的结果有2种,∴小新取出的两个都是板栗粽的概率为212 =16.2.(2021·南通中考)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4. (1)随机摸取一个小球的标号是奇数,该事件的概率为________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.解:(1)12;(2)由题意,画树状图:由图可知,共有16种等可能的结果,其中两次取出小球标号的和等于5的结果有4种,∴两次取出小球标号的和等于5的概率为416 =14.统计与概率的综合【例3】(2021·西藏中考)为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调查结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.甲 乙(1)在抽取的200名学生中,选择“演讲比赛”的人数为________,在扇形统计图中,m 的值为________; (2)根据本次调查结果,估计全校2 000名学生中选择“文艺汇演”的学生大约有多少人?(3)现从喜爱“知识竞赛”的四名同学a ,b ,c ,d 中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a 同学参加的概率.【解析】(1)总人数乘以A 对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C 方案人数,再用C 方案人数除以总人数即可得出m 的值;(2)用总人数乘以样本中B 方案人数所占比例即可得出答案;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)40;30;[选择“演讲比赛”的人数为200×20%=40(人),则选择“书画展览”的人数为200-(40+80+20)=60(人),∴在扇形统计图中,m %=60200×100%=30%,即m =30.](2)估计全校2 000名学生中选择“文艺汇演”的学生大约有2 000×80200=800(人);(3)由题意,列表:a b c da (b ,a ) (c ,a )(d ,a ) b (a ,b )(c ,b ) (d ,b ) c (a ,c ) (b ,c ) (d ,c ) d (a ,d ) (b ,d ) (c ,d )由表可知,共有12种等可能的结果,其中a 同学参加的结果有6种,∴a 同学参加的概率为612 =12.3.(2020·百色一模)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中D 类学生所对应的圆心角是多少度?(3)为了共同进步,陈老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.解:(1)20;(2)C 类学生人数为20×25%=5(名),C 类女生人数为5-2=3(名).D 类学生所占的百分比为1-15%-50%-25%=10%,D 类学生人数为20×10%=2(名),D 类男生人数为2-1=1(名).补充条形统计图如图所示.扇形统计图中D 类学生所对应的圆心角是360°×10%=36°; (3)A 类学生中的两名女生分别记为A 1和A 2, 由题意,列表:女A 1 女A 2 男A 男D (女A 1,男D) (女A 2男D) (男A ,男D) 女D (女A 1,女D) (女A 2,女D) (男A ,女D)由表可知,共有6种等可能结果,其中一男一女的结果有3种,∴所选两位同学恰好是一名男生和一名女生的概率为36 =12 .中考专题过关1.(2021·陕西中考)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图.根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为________,众数为________; (2)求这60天的日平均气温的平均数;(3)若日平均气温在18 ℃~21 ℃的范围内(包含18 ℃和21 ℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.解:(1)19.5 ℃;19 ℃;[这60天的日平均气温的中位数为19+202=19.5(℃),众数为19 ℃.](2)这60天的日平均气温的平均数为160×(17×5+18×12+19×13+20×9+21×6+22×4+23×6+24×5)=20(℃);(3)∵12+13+9+660×30=20(天),∴估计西安市今年9月份日平均气温为“舒适温度”的天数为20天. 2.(2021·营口中考)李老师为缓解小如和小意的压力,准备了四个完全相同(不透明)的锦囊,里面各装有一张纸条,分别写有:A.转移注意力,B.合理宣泄,C.自我暗示,D.放松训练.(1)若小如随机取走一个锦囊,则取走的是写有“自我暗示”的概率是________; (2)若小如和小意每人先后随机抽取一个锦囊(取走后不放回),请用列表法或画树状图的方法求小如和小意都没有取走“合理宣泄”的概率.解:(1)14;(2)由题意,画树状图:由图可知,共有12种等可能的结果,其中小如和小意都没有取走“合理宣泄”的结果有6种,∴小如和小意都没有取走“合理宣泄”的概率为612 =12.3.(2021·盐城中考)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.祖冲之(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)解:(1)110;(2) 甲 乙 丙 丁 甲 (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) (丁,丙) 丁 (甲,丁) (乙,丁) (丙,丁)由表可知,共有∴其中有一幅是祖冲之的概率为612 =12.4.(2021·枣庄中考)某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了A ,B ,C ,D 四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.图1图2(1)王老师采取的调查方式是________(填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品______件,并补全条形统计图;(2)在扇形统计图中,表示C 班的扇形圆心角的度数为________;(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)解:(1)抽样调查;24;B 班级的件数有4÷60°360°-4-10-4=6(件),补全条形统计图如图所示;(2)150°;[1024×360°=150°.](3)由题意,画树状图如图:由图可知,共有12种等可能的结果,其中恰好抽中一男一女的结果有6种,∴P (恰好抽中一男一女)=612 =12.5.(2021·济宁中考)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是________; (2)请补全条形统计图;(3)若该校九年级共有学生1 200人,则估计该校“良好”的人数是________;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率.解:(1)108°;[在这次调查中,“优秀”所在扇形的圆心角的度数是360°×30%=108°.] (2)这次调查的人数为12÷30%=40(人).则及格的人数为40-3-17-12=8(人).补全条形统计图如图;(3)510人;[估计该校“良好”的人数为1 200×1740=510(人).](4)由题意,画树状图如图:由图可知,共有6种等可能的结果,其中抽到两名男生的结果有2种,26=1 3.∴抽到两名男生的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学专题复习——统计与概率一、单选题(共18题;共36分)1.体育老师对甲、乙两名同学分别进行了8次跳高测试,经计算这两名同学成绩的平均数相同,甲同学的方差是s2甲=6.4,乙同学的方差是s2乙=8.2,那么这两名同学跳高成绩比较稳定的是()A. 甲B. 乙C. 甲乙一样D. 无法确定2.(2020·鹿邑模拟)在四张大小、材质完全相同的卡片上写有“翼、装、飞、行”四个字,将四张卡片放置于暗箱内摇匀后先后随机抽取两张,则两张卡片上的汉字恰为“飞”,“行”二字的概率是()A. 18B. 16C. 14D. 123.(2019九上·乐亭期中)为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳成绩,下列统计中能用来比较两人成绩稳定程度的是()A. 平均数B. 中位数C. 众数D. 方差4.(2017·海南)今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A. 15,14B. 15,15C. 16,14D. 16,155.(2018·万全模拟)下列说法中,正确的是()A. 检测我市正在销售的酸奶的质量,应该采用抽样调查的方式B. 在连续5次数学周考测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C. 某同学连续10次投掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D. “打开电视机,正在播放少儿节目”是必然事件6.下列事件是必然事件的为()A. 明天太阳从西方升起B. 掷一枚硬币,正面朝上C. 打开电视机,正在播放“河池新闻”D. 任意﹣个三角形,它的内角和等于180°7.(2018九上·东台月考)盒子中装有2个红球和4个绿球,每个球除颜色外完全相同,从盒子中任意摸出一个球,是绿球的概率是( )A. 14B. 13C. 23D. 128.(2017七下·西华期末)下列四种调查:①调查某批汽车的抗撞击能力;②调查某城市的空气质量;③调查某风景区全年的游客流量;④调查某班学生的身高情况.其中适合用全面调查方式的是( ).A. ①B. ②C. ③D. ④ 9.(2018·辽阳)学习全等三角形时,某班举行了以“生活中的全等”为主题的测试活动,全班学生的测试成绩统计如下表:则这些学生得分的中位数是( )A. 89B. 91C. 93D. 96 10.(2019七上·高州期末)下列调查中,适合采用抽样调查的是( )A. 对乘坐高铁的乘客进行安检B. 调查本班学生的身高C. 为保证某种新研发的战斗机试飞成功,对其零部件进行检查D. 调查一批英雄牌钢笔的使用寿命11.以下问题,不适合用普查的是( )A. 了解一批灯泡的使用寿命B. 中学生参加高考时的体检C. 了解全校学生的课外读书时间D. 旅客上飞机前的安检12.甲、乙、丙三个旅行团的游客人数都相等,且毎团游客的平均年龄都是32岁,这三个团游客年龄的方差分别是S 甲2=27,S 乙2=19.6,S 丙2=1.6,导游小王最喜欢带游客年龄相近的团队,若在三个团中选择一个,则他应选( )A. 甲团B. 乙团C. 丙团D. 甲或乙团 13.(2017·乐清模拟)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A. 134石B. 169石C. 338石D. 1365石 14.某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图频数分布直方图,则下列说法正确的是( )A. 该班人数最多的身高段的学生数为7人B. 该班身高最高段的学生数为7人C. 该班身高最高段的学生数为20人D. 该班身高低于160.5cm 的学生数为15人 15.(2017八下·钦州期末)数据0,﹣1,6,1,x 的众数为﹣1,则这组数据的方差是( ) A. 2 B. 345 C. √2 D. 26516.(2017八上·西安期末)甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:根据以上数据,判断甲、乙两人命中环数的稳定性( ).A. 甲的稳定性大B. 乙的稳定性大C. 甲、乙稳定性一样大D. 无法比较17.如图,直线a ∥b ,直线c 与a 、b 都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是A. 35B. 25C. 15D. 2318.(2017八下·大冶期末)五名学生投篮球,规定每人投20次,统计他们每人投中的次数.得到五个数据.若这五个数据的中位数是6.唯一众数是7,则他们投中次数的总和可能是()A. 20B. 28C. 30D. 31二、填空题(共16题;共16分)19.学校篮球集训队11名队员进行定点投篮训练,11名队员在1分钟内投进篮框的球数和人数如下表:则11名队员投进篮框的球数的中位数是________ 个.20.(2020八下·洪泽期中)在整数20200520中,数字“0”出现的频率是________.21.(2012·锦州)已知三角形的两条边长分别是7和3,第三边长为整数,则这个三角形的周长是偶数的概率是________.22.小亮家上个月支出伙食费用800元,教育费用200元,其他费用500元,本月小亮家这三项费用分别增长了10%,30%和20%,小亮家本月的总费用比上个月增长的百分比是________.23.(2019九下·杭州期中)在2,-2,0三个整数中,任取一个,恰好使分式x+2有意义的概x−2率是________。
24.(2019八下·江阴期中)小芳抛一枚硬币5次,有4次正面朝上,当她抛第5次时,正面朝上的概率为________.25.(2020九上·新昌期末)小李与小陈做猜拳游戏,规定每人每次出一只手,且至少要出一个手指,两人出拳的手指数之和为偶数时小李获胜,那么________(填“小李”或“小陈”)获胜的可能性较大.26.(2018·洪泽模拟)一枚质地均匀的骰子的6个面上分别刻有1~6的点数,抛掷这枚骰子1次,向上一面的点数是5的概率是________.27.在一个袋子中装入大小、形状完全相同的若干个小球,要使得摸到红球的概率是20%,请你设计一个实验方案:________28.(2019七下·南平期末)样本容量为90的数据中,最大值是133,最小值是40,取组距为10,则可以分成________组.29.(2020九下·双台子月考)一个游戏转盘上有红、黄、蓝三种颜色,其中红、黄、蓝所在区域的扇形圆心角度数分别为60°,90°,210°.则指针落在黄色区域的概率是________.30.(2017·海曙模拟)如图,某中学制作了学生拓展性课程中选择棋类、球类、美术、书法四门课程情况的扇形统计图,从图中可以看出选择书法的学生的百分比为________.31.(2018·青岛)已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2________S乙2(填“>”、“=”、“<”)32.(2016·昆都仑模拟)在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,,则n=________.其余均相同.若从中随机摸出一个球,它是白球的概率为2333.(2020·自贡)某中学新建食堂正式投入使用,为提高服务质量,食堂管理人员对学生进行了“最受欢迎菜品”的调查统计,以下是打乱了的调查统计顺序,请按符合题意顺序重新排序(只填番号)________.①.绘制扇形图;②.收集最受学生欢迎菜品的数据;③.利用扇形图分析出受欢迎的统计图;④.整理所收集的数据.34.(2019九下·长兴月考)某校九年级在“唱响《我和我的祖国》”比赛中,各班代表队得分如下(单位:分):8,7,9,6,9,7,8,则各代表队得分的中位数是________。
三、解答题(共16题;共95分)35.对某电视机厂生产的电视机进行抽样检测的数据如下,请你通过计算填出相应合格品的概率:并求该厂生产的电视机次品的概率.36.(2019八下·邳州期中)①四边形内角和是180°;②今年的五四青年节是晴天;③367人中有2人同月同日生.指出上述3个事件分别是什么事件?并按事件发生的可能性由大到小排列.37.七年(2)班的同学在募捐活动中,自愿捐款如下:根据表中给的信息回答下列问题:(1)该班有多少名学生?(2)全班共捐款多少元?38.(2021·苍南模拟)某校学生的数学期末总评成绩由参与教学活动、作业、期末考试成绩3部分组成.各部分所占比例如图所示.小明参与数学活动、作业和期末考试得分依次为84分、92分、88分.则小明的数学期末总评成绩是多少?39.(2019·二道模拟)把0,1,2三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下数字.放回后洗匀,再从中抽取一张卡片,记录下数字.请用列表法或树状图法求两次抽取的卡片上的数字都是偶数的概率.40.下列调查方式是普查还是抽样调查?如果是抽样调查,请指出总体、个体、样本和样本容量.(1)为了了解七(2)班同学穿鞋的尺码,对全班同学做调查;(2)为了了解一批空调的使用寿命,从中抽取10台做调查.41.(2019八下·龙州期末)某校在招聘数学教师时以考评成绩确定人选.甲、乙两位高校毕业生的各项考评成绩如下.如果按笔试成绩占30%、模拟上课占60%、答辩占10%来计算各人的考评成绩,那么谁将优先录取?42.(2017·湖州)为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了20天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第7天,这一路口的行人交通违章次数是多少次?这20天中,行人交通违章6次的有多少天?(2)请把图2中的频数直方图补充完整;(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了4次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?43.如下表是七年级某班5名同学数学测试成绩,根据信息完成下列问题:①完成表中的空格信息;②5人中最高分是谁?最低分是谁?分数与全班平均分最接近的是谁?44.(2017·南通)不透明袋子中装有2个红球,1个白球和1个黑球,这些球除颜色外无其他差别,随机摸出1个球不放回,再随机摸出1个球,求两次均摸到红球的概率.45.中秋节是我国民间的一个传统节日,在中秋节吃月饼就成为了千古流传的习俗.在今年中秋节前夕,我校某班学生在班主任的带领下组织了一次制作“爱心月饼”活动,每个学生将自己制作的月饼全部送给敬老院的老人们.现统计全班学生制作月饼的个数,将制作月饼数量相同的学生分为一组,全班学生可分为A,B,C,D四个组,各组每人制作的月饼个数分别为4、5、6、7.根据图中提供的信息,请补全两个不完整的统计图并求出该班学生制作月饼个数的平均数.46.在研究抛两枚硬币,出现都是正面朝上的概率问题时,假如你的手上没有硬币,怎么办?请设计出一种试验方案代替它.47.“五一”假日期间,某网店为了促销,设计了一种抽奖送积分活动,在该网店网页上显示如图所示的圆形转盘,转盘被均等的分成四份,四个扇形上分别标有“谢谢惠顾”、“10分”、“20分”、“40分”字样.参与抽奖的顾客只需用鼠标点击转盘,指针就会在转动的过程中随机的停在某个扇形区域,指针指向扇形上的积分就是顾客获得的奖励积分,凡是在活动期间下单的顾客,均可获得两次抽奖机会,求两次抽奖顾客获得的总积分不低于30分的概率.48.(2019·德惠模拟)中华文化,源远流长,在文学方面,《西游记》、《三国演义》、《水浒传》、《红楼梦》被称为“四大古典名著”,是我国古代长篇小说的经典代表,小花和等等两名同学,准备从这四大名著中各自随机选择一部来阅读,请你用画树状图(或列表)的方法,求他们选中同一名著的概率.49.(2019·宝鸡模拟)新年游园会中有一款电子飞镖的游戏. 如图,A靶被等分成2个区域,分别涂上红色和蓝色,B靶被等分成3个区域,分别涂上红色、蓝色、和白色. 小彬向A 靶、小颖向B靶分别投掷一枚电子飞镖,飞镖随机落在靶盘的某一位置,若两枚飞镖命中部分的颜色恰好配成紫色,小彬获得奖品,否则,小颖获得奖品(若飞镖落在边界线上时,重投一次,直到落在某一区域).这个游戏公平吗?说明理由.50.在一个口袋中有5个小球,其中有两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到小球的条件下,从袋中随机地取出一个小球.求取出的小球是红球的概率;把这5个小球中的两个都标号为1,其余分布标号为2、3、4,随机地取出一个小球后不放回,再随机地取出一个小球.利用树状图或列表的方法,求第二次取出小球标号大于第一次取出小球标号的概率.答案解析部分一、单选题1.【答案】A【考点】方差【解析】解:∵s2甲=6.4,s2乙=8.2,∴S甲2<S乙2,∴成绩较稳定的同学是甲.故选A.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.2.【答案】B【考点】列表法与树状图法【解析】【解答】解:根据题意画树状图如下:共有12种可能,其中恰为:“飞”“行”二字的有2种,故概率P=212=16.故答案为:B【分析】根据题意画树状图,由树状图可知共有12种可能,其中符合题意的有2种,再根据概率公式计算即可求解.3.【答案】D【考点】方差【解析】【解答】解:根据题意可知,可以比较稳定程度的是方差,故答案为:D。