酶分子的修饰与固定化
酶分子的化学修饰

酶分子的化学修饰
酶分子化学修饰就是在分子水平上 对酶进行改造,以达到改构和改性的目 的。在体外将酶分子通过人工的方法与 一些化学物质,特别是一些有生物相容 性的物质进行共价连接,从而改变酶的 结构和性质。这些化学物质称为修饰试 剂,酶化学修饰主要用于基础酶学的研 究和疾病治疗。
酶化学修饰的应用领域
例如用聚乙二醇共价修饰超氧化物歧化 酶(SOD),不仅可以降低或消除酶的抗 原性,而且提高了抗蛋白酶的能力,延 长了半衰期,从而提高了药效。
PEG是线性大分子,具有良好的生物相容 性和水溶性,在体内无毒性、无残留、 无免疫原性,并可消除酶分子的抗原性, 被广泛用于酶的修饰。
PEG末端活化后可以与酶产生交联,使酶 分子被覆盖上一层疏松的亲水外壳,导 致动力学发生改变,从而产生许多有用 的性质,如可以在广泛的pH范围内溶解、 不被离子交换剂吸附,电泳迁移率下降 等。
加酶液
E E E
S
P
图:反相胶团的结构和酶的分布
二、酶分子的内部修饰 (一)非催化活性基团的修饰:通过对 非催化残基的修饰可以改变酶的动力学 性质,改变酶对特殊底物的亲和力;
(二)酶蛋白主链的修饰:主要是靠酶 法进行修饰,用蛋白酶对主联进行部分 水解,可以改变酶的催化特性。
(三)催化活性基团的修饰:通过选择 性修饰催化活性氨基酸的侧链来实现氨 基酸残基的取代,使一种氨基酸侧链转 化为另一种氨基酸侧链,这种方法又称 为化学突变法。
46
40 20 50 0
64
90 99 95 80
二、抗原性:修饰酶的抗原性与修饰剂 有关,目前比较公认的是PEP和人血清白 蛋白在消除酶分子抗原性方面效果较好。
修饰酶的抗原性变化
酶
胰蛋白酶 过氧化氢酶 Arg 酶
酶分子的化学修饰

酶分子的化学修饰,就是在分子水平上对 酶分子的化学修饰 酶进行改造,以达到改构和改性的目的。 即:在体外将酶分子通过人工的方法与一 些化学基团(物质),特别是具有生物相容 性的物质,进行共价连接,从而改变酶的 结构和性质。这种物质被称为修饰试剂 修饰试剂。 修饰试剂 化学修饰酶主要用于基础酶学的研究和疾 病治疗。医疗用酶要求酶的稳定性高、纯 度高、无免疫原性。
•脂质体包裹 脂质体包裹
酶脂质体包埋属于固定化修饰之一。许多医 药酶,如SOD、溶菌酶等,由于分子量大,不 易进入细胞内,而且在体内半衰期短,产生 免疫原性反应。这些是酶在临床上必须解决 的问题。为此,可通过酶的表面化学修饰来 解决。例如:SOD用聚乙二醇(PEG)修饰后, 其在体内的稳定件及免疫原性都大大改善。 至于如何进入细胞内,用脂质体包裹是个有 效的方法。
(2)酶蛋白主链的修饰
至今,酶蛋白主链修饰主要是靠 酶法。例如:用蛋白酶对ATP酶有 限水解,切除其十几个残基后,酶 活力提高了5.5倍。该活化酶仍为 四聚体,亚单位分子量变化不大。 这说明天然酶并非总是处于最佳的 催化构象状态。
(3)催化活性基团的修饰
通过选择性修饰氨基酸侧链成分来实现氨基酸的 取代,这种将一种氨基酸侧链转化为另一种新的 氨基酸侧链的方法叫化学突变法 化学突变法。例如:Berder 化学突变法 等人,将枯草杆菌蛋白酶活性部位的Ser残基转 化为Cys残基,新产生的巯基蛋白酶对肽或酯没 有水解能力,但能水解硝基苯酯等高度活化的底 物。这种方法由于受到专一试剂、有机化学工业 水平的限制,没有蛋白质工程技术普遍,但它通 过产生非蛋白质氨基酸的能力,可以有力地补充 蛋白质工程技术。
②大分子共价修饰
用可溶性大分子,如聚乙二醇、右旋糖苷、肝素 等,通过共价键连接于酶分子的表面、形成一层 覆盖层。这种可溶性酶有许多有用的性质:如用 聚乙二醇修饰超氧物歧化酶(S0D),不仅可以降 低或消除酶的抗原性,而且提高了抗蛋白酶的能 力,延长了酶在体内的半衰期,从而提高了酶药 效。日本学者将聚乙二醇连到脂肪酶、胰凝乳蛋 白酶上所得产物溶于有机溶剂,仍能有效地起作 用。嗜热菌蛋白酶通常在水介质中催化肽链裂解, 但用聚乙二醇共价修饰后,可在有机溶剂中催化 肽键合成,已用于合成甜味剂。
酶分子的化学修饰

作用: (1)提高酶活力 (2)增加酶的稳定性 (3)降低抗原抗体反应
资料仅供参考,不当之处,请联系改正。
根据修饰分子的大小和对酶分子的作用方式,可分为 大分子的非共价修饰和大分子的共价修饰两类。
(1)大分子的非共价修饰 使用一些能与酶非共价地相互作用而又能有效地保护
资料仅供参考,不当之处,请联系改正。
二、酶化学修饰的基本要求:
决定化学修饰成败的关键是修饰的专一性, 尽量少破坏必需基团,得到高的酶活力回 收。为此,有时需要通过反复试验来确定。
选择修饰剂 选择酶反应条件 反应的专一性
资料仅供参考,不当之处,请联系改正。
三、酶分子化学修饰的主要方法
(一)酶分子的主链修饰 (二)酶分子的侧链基团修饰 (三)酶分子的化学交联修饰 (四)酶分子的大分子结合修饰 (五)酶分子的亲和标记修饰 (六)酶分子的基因修饰 (七)与辅助因子相关的修饰
资料仅供参考,不当之处,请联系改正。
侧链基团修饰的主要作用
1.探测酶和蛋白质的必须氨基酸残基的性 质和数目。
2.用于酶蛋白的纯度的分析与鉴定
3.探索酶蛋白作用的化学机理
4.用于酶蛋白分子的固定化
(三)酶分子的化学交联修饰 资料仅供参考,不当之处,请联系改正。
概念:既可以酶分子内部亚基之间,也可 以在分子与分子之间。
资料仅供参考,不当之处,请联系改正。
(二)酶分子的侧链基团修饰
概念:采用人工方法使酶蛋白的氨基酸残基的侧 链基团与修饰剂发生化学反应,从而改变酶分子 的性质和功能的修饰方法称为侧链修饰基团。
选择性修饰试剂必须要与多肽链中某—种特定的 氨基酸残基侧链基团发生化学反应,并形成紧密 共价结合。酶分子中经常被修饰的氨基酸残基侧 链基团有:巯基、氨基、羧基、咪唑基、羟基、 酚基、胍基、吲哚基、硫醚基及二硫键等。
酶固定化技术的方法

酶固定化技术的方法
酶固定化是将酶与载体物质结合在一起,以增强酶的稳定性和重复使用性的技术。
常见的酶固定化方法包括以下几种:
1. 吸附固定化:将酶溶液与载体物质(如活性炭、陶瓷颗粒)接触,酶分子通过吸附作用与载体物质结合。
2. 凝胶固定化:将酶溶液与凝胶物质(如明胶、琼脂)混合,酶通过物理交联或化学交联与凝胶物质牢固结合。
3. 包埋固定化:将酶溶液与聚合物物质(如聚乙烯醇、明胶)混合,然后通过共混或交联反应,使酶被包裹在聚合物内部。
4. 共价固定化:将酶溶液与活性基团多的载体物质(如硅胶、纳米颗粒、聚乙二醇)反应,形成酶与载体物质之间的共价键连接。
5. 薄膜固定化:在载体表面形成一层薄膜,然后将酶与薄膜固定在一起,常见的方法有溶液浸渍、层层自组装等。
这些方法各有优缺点,选择合适的固定化方法应根据具体的酶性质、应用需求和实际操作条件进行综合考虑。
固定化酶的三种方法

固定化酶的三种方法固定化酶是把酶结合到一定的表面上,使其失去活性的过程,因此可以用来改变酶的性质、增加酶的稳定性和提高酶的反应效率。
固定化酶的三种方法是物理化学固定化、生物化学固定化和免疫化学固定化。
一、物理化学固定化物理化学固定化是一种将未固定化酶与支架分子相互作用,使酶与支架分子结合,形成可操作的固定化酶系统的方法。
其基本原理是通过多种物理、化学或生物学方法,将酶与支架分子进行结合,从而形成一个可操作的固定化酶系统。
物理化学固定化可以大大提高酶的反应活性、稳定性和重复利用性,并可以改变酶的特性。
常用的物理化学固定化方法有水解结合、热结合、冷结合、电结合、化学结合、离子结合和生物结合等。
二、生物化学固定化生物化学固定化是指将酶与生物聚合物结合,使酶形成可操作的固定化酶系统的方法。
其基本原理是在酶表面分子和支架分子之间形成一种亲和力,使得酶和支架分子之间形成紧密的结合。
生物化学固定化的优势在于,它可以改变酶的特性,使酶更加稳定和可操作,而且不必进行大量的实验,可以节省时间和费用。
常用的生物化学固定化方法有抗体结合法、抑制剂结合法和蛋白结合法等。
三、免疫化学固定化免疫化学固定化是一种将酶与抗体结合,形成可操作的固定化酶系统的方法。
其基本原理是将酶和抗体进行结合,从而形成一个稳定的固定化酶系统。
免疫化学固定化具有较强的特异性,可以在具有极强抗性的环境中实现高效固定化;且不仅能实现酶的固定化,还可以改变酶的特性,使酶更加稳定和可操作。
常用的免疫化学固定化方法有免疫结合法、单克隆抗体结合法和抗体体外表达法等。
综上所述,固定化酶的三种方法是:物理化学固定化、生物化学固定化和免疫化学固定化。
它们可以改变酶的特性,使酶更加稳定和可操作,提高酶的反应活性、稳定性和重复利用性,从而更好地满足人们在实验中的需求。
第三章酶的化学修饰

第三章酶的化学修饰第一节酶的分子修饰一、酶的化学修饰原因1、稳定性2、酶反应的最适条件3、酶的专一性4、米式常数过大5、临床应用的特殊要求6、酶种类的限制改变酶特性有两种主要的方法:1)通过分子修饰的方法来改变已分离出来的天然酶的活性。
2)通过基因工程方法改变编码酶分子的基因而达到改造酶的目的。
二、酶分子修饰通过各种方法使酶分子的结构发生某些改变,从而改变酶的某些特性和功能的技术过程称为酶分子修饰。
即在体外将酶分子通过人工的方法与一些化学基团(物质),特别是具有生物相容性的物质,进行共价连接,从而改变酶的结构和性质。
三、酶分子修饰的意义⏹提高酶的活力⏹增强酶的稳定性⏹降低或消除酶的抗原性⏹研究和了解酶分子中主链、侧链、组成单位、金属离子和各种物理因素对酶分子空间构象的影响化学修饰效果举例用纤维蛋白的专一性单克隆抗体修饰尿激酶,使其溶血栓性提高了100倍。
用乙醛酸修饰胰凝乳蛋白酶的表面氨基,形成亲水性的α-NHCH2COOH后,该酶对60℃热处理的稳定性增高了1000倍。
超氧化物歧化酶(SOD)、L-谷氨酰胺酶、L-天门冬酰胺酶、尿酸酶等用PEG(聚乙二醇)修饰后,完全消除了酶的抗原性和免疫原性,减慢了它们在动物血液循环中被清除的速度,酶的活力可以保存15%-45%。
四、酶化学修饰的基本原理1、如何增强酶天然构象的稳定性与耐热性修饰剂分子存在多个反应基团,可与酶形成多点交联。
使酶的天然构象产生“刚性”结构。
2、如何保护酶活性部位与抗抑制剂大分子修饰剂与酶结合后,产生的空间障碍或静电斥力阻挡抑制剂,“遮盖”了酶的活性部位。
3、如何维持酶功能结构的完整性与抗蛋白水解酶酶化学修饰后通过两种途径抗蛋白水解酶:A 大分子修饰剂产生空间障碍阻挡蛋白水解酶接近酶分子。
“遮盖”酶分子上敏感键免遭破坏。
B 酶分子上许多敏感基团交联上修饰剂后,减少了受蛋白水解酶破坏的可能性。
4、如何消除酶的抗原性酶蛋白氨基酸组成的抗原决定簇,与修饰剂形成了共价键。
酶的固定化名词解释

酶的固定化名词解释为了更好地理解酶的固定化,我们需要先了解一些基本的概念和名词。
酶是一种生物催化剂,它能够将化学反应的速率加快数百倍,甚至几千倍。
酶能够在体内进行催化作用,但是在工业中,酶的使用通常需要将其提取出来并进行固定化处理。
酶的固定化是对酶进行处理,使其能够在固定的材料上稳定存在并进行催化作用。
将酶固定在固体支持材料(例如聚四氟乙烯、聚丙烯等)上,然后将其包装成固定化酶催化剂,可以大大提高酶的稳定性和重复使用率,从而减少了生产成本和废弃物的产生。
下面,我们来具体了解一些与酶的固定化相关的名词和概念。
一、酶的特性1、酶的亲和力酶的亲和力指的是酶与反应物之间结合的强度。
酶与反应物之间的亲和力越大,酶的催化效率就越高。
2、酶的催化效率酶的催化效率指的是在特定条件下,酶催化反应的速率。
酶的催化效率越高,酶能够催化反应的速度越快。
3、酶的稳定性酶的稳定性指的是酶在特定条件下的稳定性。
稳定的酶能够长时间地保持其催化活性,从而减少了酶失活的可能性。
二、酶的固定化方式1、吸附法吸附法是将酶分子直接吸附到固体材料表面上,例如有机树脂、硅胶、纤维素等。
吸附法具有操作简单、易于控制等优点,但其中的酶易于脱落,稳定性较差。
2、包埋法包埋法是将酶固定在聚丙烯、聚乙烯等材料中。
在制备过程中,在酶与材料之间添加辅料,或利用聚合反应构筑复合材料结构。
包埋法的优点是稳定性强,但是酶催化效率较低。
3、共价固定化共价固定化是将固体支持材料和酶分子通过化学键或其他共价键结合在一起,从而形成一种新的化合物。
共价固定化的优点是稳定性强,催化效率高,但需要复杂的制备过程和化学反应条件的严格掌控。
三、固定化酶的应用1、废水处理将固定化酶催化剂添加到废水中,可以有效地去除废水中的有害物质和污染物,从而达到净化废水的目的。
2、食品加工固定化酶催化剂可以在食品加工中发挥重要作用,例如在面包、奶酪和啤酒等食品的制备过程中,利用固定化酶催化剂进行酵素催化反应。
05-酶的化学修饰

(二)酶蛋白主链的修饰 ——主要是靠酶法进行修饰,用 蛋白酶对主联进行部分水解,可 以改变酶的催化特性。
(三)催化活性基团的修饰 ——通过选择性修饰催化活性氨 基酸的侧链来实现氨基酸残基的 取代,使一种氨基酸侧链转化为 另一种氨基酸侧链,这种方法又 称为化学突变法。
(四)肽链伸展后的修饰 ——酶蛋白经过脲、盐酸胍处理, 使肽链充分伸展,对酶分子内部 的疏水基团进行修饰,然后在适 当条件下,重新进行折叠。
(三)酶的大分子修饰作用 ——非共价修饰 ——共价修饰
1、大分子非共价修饰
——利用一些大分子试剂通过与酶非共价相互 作用,对酶进行有效的保护 ——例如聚乙二醇、右旋糖苷等通过氢键固定 于酶分子的表面,同时又有效地与外部水相连, 从而保护酶的活力;一些多元醇、多糖、多聚 氨基酸、多胺等能通过调节酶的微环境来保护 酶活力;另外一些蛋白质可以通过相互作用, 排除分子表面的水分子,降低介电常数,使酶 的稳定性增加。
在基础酶学研究上
探测酶活性必需氨基酸的性质和数目 酶蛋白一级结构的测定
酶蛋白的结构变化与运动
酶蛋白部分区域的构象状态 酶的作用机理与催化反应历程 酶分子的拓扑学以及寡聚酶的亚基结合状态 酶的固定化技术 酶纯度的分析与检测
在疾病治疗上
—克服酶在体内的不稳定性
—消除或降低酶的抗原性 —有助于酶分子到达并集中于病灶细胞 在工业上的应用
第五章
酶分子的化学修饰
酶分子化学修饰
——在分子水平上对酶进行改造,以达 到改变结构和改性的目的。在体外将酶 分子通过人工的方法与一些化学物质, 特别是一些有生物相容性的物质进行共 价连接,从而改变酶的结构和性质。这 些化学物质称为修饰试剂,酶化学修饰 主要用于基础酶学的研究和疾病治疗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
降低或消除酶的抗原性 immunological property
改变酶的底物专一性和最适pH 研究和了解酶分子中主链、侧链、组成单位、金属离子 和各种物理因素对酶分子空间构象的影响 structure
回本章目录
5.2 酶分子修饰的基本要求和条件
对酶分子进行修饰必须在修饰原理、修饰剂和反应条件的 选择以及酶学性质等方面都要有足够的了解。 (1)酶的稳定性
采用一定的方法(一般为化学法)使酶 蛋白的侧链基团发生改变,从而改变酶 分子的特性和功能的修饰方法。 可以用于研究各种基团在酶分子中的作 用及其对酶的结构、特性和功能的影响。 在研究酶的活性中心中的必需基团时经 常采用。 酶蛋白的侧链基团是指组成蛋白质的氨 基酸残基上的功能团。主要包括氨基、 羧基、巯基、胍基、酚基等。这些基团 可以形成各种副键,对酶蛋白空间结构 的形成和稳定有重要作用。侧链基团一 旦改变将引起酶蛋白空间构象的改变, 从而改变酶的特性和功能。
金属离子置换修饰的过程
a. 酶的分离纯化:首先将欲进行修饰的酶经过分离纯化,除去杂质,获
得具有一定纯度的酶液。
b. 除去原有的金属离子:在经过纯化的酶液中加入一定量的金属螯合剂,
如乙二胺四乙酸(EDTA)等,使酶分子中的金属离子与EDTA等形成螯合物。 通过透析、超滤、分子筛层析等方法,将EDTA-金属螯合物从酶液中除去。 此时,酶往往成为无活性状态。
回本章目录
5.3 酶分子的修饰方法
金属离子置换修饰, 侧链基团修饰(5.2) 大分子结合修饰(共价/非共价)(P114-5.3) 酶的分子内交联(P125-5.5) 肽链有限水解修饰 氨基酸置换修饰
酶分子的物理修饰
(1) 酶的金属离子置换修饰
把酶分子中的金属离子换成另一种金属离子,使酶的特性和功能
通过各种方法使酶分子的结构发生某些改变,从而改 变酶的某些特性和功能的技术过程称为酶分子修饰。 即:在体外将酶分子通过人工的方法与一些化学基团 (物质),特别是具有生物相容性的物质,进行共价连 接,从而改变酶的结构和性质。
酶分子修饰的意义
提高酶的活力 activity 增强酶的稳定性 stability
催化活性/非催化活性基团的修饰
对非催化基团修饰可改变酶的动力学性质,改变酶对 特殊底物的束缚能力。 经常被修饰的残基是: 亲核的Ser、Cys、Met、Thr、Lys、His 亲电的Tyr、Trp 对催化活性基团可以通过选择性修饰侧链成分来实现 氨基酸的取代。
常见基团的化学修饰反应:羧基
常见基团的化学修饰反应:氨基
常用氨基修饰试剂:亚硝酸、醋酸酐、琥珀酸 酐、2,4,6-三硝基苯磺酸(TNBS)、2, 4-二硝基氟苯(DNFB)、碘代乙酸、丹磺酰 氯(DNS)、O-甲基异脲。
亚硝酸可以与氨基酸残基上的氨基反应,通过脱氨基作用,生成 羟基酸:
R-CH-COOH + HNO2 = R-CH-COOH + N2 + H2O | | NH2 OH
常见基团的化学修饰反应:巯基
N-乙基马来酰亚胺(NEM)是一种反应专一性很 强的巯基修饰剂,能与酶分子的巯基形成稳定的衍生 物,反应产物在300nm处有最大光吸收。
有机汞试剂,如对氯汞苯甲酸对巯基专一性最强,修 饰产物在250nm处有最大光吸收。
其中烷基化试剂(如碘乙酸等)是一种重要的巯 基修饰剂,经过烷基化修饰的酶分子相当稳定, 而且通过荧光检测技术很容易检测其修饰结果。 现在已经开发出许多含有碘乙酸的荧光试剂。
热稳定性、酸碱稳定性、作用温度、pH、抑制剂等。
(2)酶活性中心的状况 活性中心基团、辅因子等。其他如分子大小、性状、 亚基数等。
酶分子修饰的条件
修饰反应尽可能在酶稳定条件下进行,并尽量不破坏 酶活性功能的必需基团,使修饰率高,同时酶的活力 回收高。
(1)pH与离子强度 pH决定了酶蛋白分子中反应基团的解离状态。由 于它们的解离状态不同,反应性能也不同。 (2)修饰反应的温度与时间 严格控制温度和时间可以减少以至消除一些非专 一性的修饰反应。 (3)反应体系中酶与修饰剂的比例
Chapter 5 Modifica酶的分子修饰
Contents of chapter 5
Go
1、什么是酶分子修饰 2、酶分子修饰的基本要求和条件 3、酶分子的修饰方法 4、酶修饰后的性质变化及修饰酶的应用 5、酶的定向进化
Go
Go
Go
Go
5.1 什么是酶分子修饰?
c. 加入置换离子:于去离子的酶液中加入一定量的另一种金属离子,酶
蛋白与新加入的金属离子结合,除去多余的置换离子,就可以得到经过金属 离子置换后的酶。
金属离子置换修饰只适用于那些在分子结构中本来含有金属离子的酶。 用于金属离子置换修饰的金属离子,一般都是二价金属离子。
(2) 酶分子的侧链基团修饰
发生改变的修饰方法称为金属离子置换修饰。 α -淀粉酶中的钙离子(Ca2+),谷氨酸脱氢酶中的锌离子(Zn2+), 过氧化氢酶分子中的铁离子(Fe2+),酰基氨基酸酶分子中的锌离子 (Zn2+),超氧化物歧化酶分子中的铜、锌离子(Cu2+,Zn2+) 若从酶分子中除去其所含的金属离子,酶往往会丧失其催化活性。 如果重新加入原有的金属离子,酶的催化活性可以恢复或者部分 恢复。若用另一种金属离子进行置换,则可使酶呈现出不同的特 性。有的可以使酶的活性降低甚至丧失,有的却可以使酶的活力 提高或者增加酶的稳定性。
如,用亚硝酸修饰天冬酰胺酶,使其氨基末 端的亮氨酸和肽链中的赖氨酸残基上的氨基产生 脱胺作用,变成羟基。经过修饰后,酶的稳定性 大大提高,使其在体内的半衰期延长2倍。
DNFB法是一种肽 链N-末端分析法。 在弱碱性溶液中, 肽链N-末端的氨 基酸残基可与 2,4-二硝基氟苯 反应生成二硝基 苯肽(DNB-肽), 经盐酸水解生成 黄色的2,4-二硝 基苯氨基酸,可 用乙醚提取后, 用层析方法鉴定。