光学薄膜

合集下载

光学薄膜的工作温度范围

光学薄膜的工作温度范围

光学薄膜的工作温度范围光学薄膜是一种用于改变光的传播特性的材料,通常用于制作光学滤波器、镀膜镜片等光学元件。

由于在实际应用中,光学薄膜可能会受到不同的工作温度范围的影响,因此了解光学薄膜的工作温度范围对于正确选择和使用光学薄膜至关重要。

本文将探讨光学薄膜的工作温度范围及其影响因素。

我们需要了解光学薄膜的基本特性。

光学薄膜通常由一层或多层不同材料和厚度的薄膜层组成,这些薄膜层的折射率和厚度会影响光的透过、反射和衍射特性。

在设计光学薄膜的时候,工程师会根据所需的光学性能和材料特性来选择合适的材料和薄膜层结构。

这些材料的性能也会受到温度的影响。

光学薄膜的工作温度范围通常受到材料的热胀冷缩性能、热稳定性以及结构的影响。

在一般情况下,光学薄膜的工作温度范围通常指其可以安全、稳定地工作的温度范围。

这个范围取决于材料的热膨胀系数、热传导性、玻璃转变温度等参数。

一般来说,材料的热膨胀系数越大,材料在温度变化下的尺寸变化也就越大,这可能会导致光学薄膜层之间的应力积累,从而影响光学薄膜的光学性能。

不同材料对温度的响应也是不同的,例如光学玻璃的热膨胀系数一般较小,而金属薄膜的热膨胀系数则比较大。

在选择光学薄膜材料时需要考虑其工作温度范围是否符合实际应用需求。

由于光学薄膜通常是多层薄膜的堆叠,各层薄膜材料的热膨胀系数和热传导性能也需要考虑到,以避免在温度变化下导致薄膜层之间的应力累积和破坏。

除了材料的热膨胀系数和热传导性能外,光学薄膜的工作温度范围还受到其制备工艺的影响。

在蒸发镀膜或溅射镀膜的工艺中,薄膜材料通常会被加热到一定的温度,以保证薄膜的致密性和均匀性。

薄膜层的工作温度范围也会受到制备温度的限制。

光学薄膜的工作温度范围是一个综合考虑材料、薄膜结构、制备工艺等因素的结果。

在实际应用中,必须全面考虑这些因素,以保证光学薄膜在各种温度环境下都能够正常工作并保持其设计的光学性能。

在设计新型光学薄膜时,也需要充分考虑其在不同温度下的性能,以满足各种实际应用的需求。

《光学薄膜设计理论》课件

《光学薄膜设计理论》课件

总结词
随着光电器件的发展,光学薄膜的应用领域也在不断 扩展。新型光电器件对光学薄膜的要求更高,需要不 断探索新的应用领域和场景。
详细描述
光学薄膜在新型光电器件中具有广泛的应用前景。例 如,在激光器、太阳能电池、光电传感器等领域中, 光学薄膜可以起到增益介质、反射镜、滤光片、保护 膜等作用。此外,随着光电器件的微型化和集成化发 展,光学薄膜的应用场景也在不断扩展,如光子晶体 、微纳光学器件等。这些新型光电器件的发展将进一 步推动光学薄膜技术的进步和应用领域的拓展。
薄膜的均质膜系法
总结词
将多层薄膜视为一个整体,并使用均质膜系法来计算反射、透射和吸收系数的方 法。
详细描述
均质膜系法是一种更精确的光学薄膜设计方法。它将多层薄膜视为一个整体,并 使用均质膜系法来计算反射、透射和吸收系数。这种方法适用于薄膜层数较多、 折射率变化较大的情况,能够更准确地模拟薄膜的光学性能。
光的波动理论概述
光的波动理论认为光是一种波动现象,具有振动 、传播和干涉等特性。
波动方程的推导
通过麦克斯韦方程组推导出波动方程,描述光波 在介质中的传播规律。
波前的概念
光的波动理论中引入了波前的概念,用于描述光 波的相位和振幅。
光的干涉理论
光的干涉现象
光的干涉是指两束或多束相干光波在空间某一点叠加时,产生明 暗相间的干涉条纹的现象。
按制备方法分类
03
物理气相沉积、化学气相沉积、溶胶-凝胶法等。
光学薄膜的应用
光学仪器
照相机、望远镜、显微镜等。
光电子
激光器、光探测器、光放大器等。
通信
光纤、光波导、光放大器等。
摄影
滤镜、镜头镀膜等。
02
光学薄膜设计基础

光学薄膜基础知识介绍

光学薄膜基础知识介绍

光学薄膜基础知识介绍光学薄膜是一种具有特定光学性质的薄膜材料,通常由多个不同折射率的材料层次交替排列组成。

它以其特殊的折射、反射、透射等光学性质,在光学领域中得到广泛应用。

下面将介绍光学薄膜的基础知识。

一、光学薄膜的分类1.反射膜:反射膜是一种具有高反射特性的光学薄膜,适用于折射率较高的材料上,如金属、半导体、绝缘体等。

2.透射膜:透射膜是一种具有高透射特性的光学薄膜,适用于折射率较低的材料上,如玻璃、塑料等。

二、光学薄膜的制备方法1.蒸镀法:蒸镀法是最常用的制备光学薄膜的方法之一、它通过将所需材料加热至一定温度,使其蒸发或升华,并在基板上形成薄膜。

2.溅射法:溅射法是另一种常用的光学薄膜制备方法。

它通过在真空环境中,使用离子束或电子束激活靶材料,并将其溅射到基板上形成薄膜。

3.化学气相沉积法:化学气相沉积法是一种以气体化学反应为基础的制备光学薄膜的方法。

它通过将反应气体通入反应室中,在基板表面沉积出所需的材料薄膜。

三、光学薄膜的性质和应用1.折射率:光学薄膜的折射率是指光线在薄膜中传播时的折射程度,决定了光的传播速度和路径。

根据折射率的不同,可以制备出不同属性的光学薄膜,如透明薄膜、反射薄膜等。

2.反射率:光学薄膜的反射率是指光线在薄膜表面发生反射的程度,决定了光的反射效果。

反射薄膜广泛应用于光学镜片、反光镜、光器件等领域。

3.透射率:光学薄膜的透射率是指光线透过薄膜并达到基板的程度,决定了光的透射效果。

透射薄膜常用于光学滤波器、镜片涂层、光学器件等领域。

四、光学薄膜的设计与优化光学薄膜的设计与优化是制备高性能光学薄膜的关键。

根据所需的光学性质,可以通过调节不同层次的材料及其厚度,来达到特定的光学效果。

常用的设计方法包括正向设计、反向设计、全息设计等。

通过有效的设计与优化,可以实现特定波长的高反射、高透射、全反射等特性,满足不同光学器件的需求。

总结:光学薄膜是一种具有特殊光学性质的材料,广泛应用于光学领域中。

光学薄膜的原理和用途

光学薄膜的原理和用途

光学薄膜的原理和用途光学薄膜(Optical thin film)是一种特殊的多层膜结构,由多种材料的交替堆积而成,用于控制光的传播和改变光的性质。

它的原理基于光的干涉、反射和透射等现象,通过调控不同介质之间的折射率、厚度和结构等参数,实现对光波的选择性传播和反射,从而实现光的分光、滤波和增透等功能。

光学薄膜广泛应用于光学器件、光学仪器和光学信息存储等领域。

以下将分别介绍光学薄膜的原理和用途。

1.光学薄膜的原理光学薄膜的原理基于光的干涉和反射现象。

当一束光波垂直入射到薄膜表面时,部分光波在不同介质之间的反射和透射过程中发生相位差,从而产生干涉现象。

通过调整薄膜的厚度和材料的折射率,可以控制光波在薄膜内部的反射、透射和干涉现象,实现对光的选择性传播和反射。

光学薄膜的基本结构是由多个不同折射率的材料交替构成的多层膜。

根据不同的应用需求,可以设计出不同的薄膜结构,如全反射薄膜、透射薄膜、反射薄膜等。

通过精确控制薄膜中每一层的材料和厚度,可以实现对光的频率、波长和相位等性质的调控。

2.光学薄膜的用途2.1光学器件光学薄膜在各种光学器件中发挥着重要作用。

例如,在光学镜片和镜面反射器等元件中,通过在玻璃或金属表面沉积光学薄膜,可以显著提高镜面的反射率和透过率,改善光学器件的光学性能。

同时,通过设计多层膜结构,可以实现对特定波长的透射和反射,实现光学滤波和分光仪的功能。

2.2光学仪器光学薄膜在各种光学仪器中也具有广泛应用。

例如,在显微镜和光学显微镜中,通过在镜片上沉积适当的薄膜,可以减少反射和散射的损失,提高成像质量和分辨率。

在光学仪表、激光仪器和光学通信等领域,光学薄膜也可以用于制作光学器件的保护层、反射镜和滤波器等,以实现对光波的控制和操纵。

2.3光学信息存储光学薄膜还广泛应用于光学信息存储领域。

例如,光盘和DVD等光学存储介质中,通过在介质表面沉积光学薄膜,可以实现对激光光束的反射和散射,从而实现对信息的记录和读取。

光学薄膜基础知识

光学薄膜基础知识
光学薄膜材料需要适应各 种环境条件,如湿度、紫 外线等,以保证其光学性 能的稳定。
机械性能
硬度与耐磨性
光学薄膜需要有足够的硬 度和耐磨性,以抵抗摩擦 和划痕对光学表面的影响。
韧性
光学薄膜材料需要具有一 定的韧性,以防止因受到 外力而破裂或变形。
附着力
光学薄膜与基材之间的附 着力需要足够强,以保证 薄膜的稳定性和使用寿命。
表面处理与涂层技术
通过表面处理与涂层技术,可以改善光学薄膜的表面质量、提高附着力、增强抗划伤能力等,从而提高其稳定性 和使用寿命。
降低制造成本
规模化生产
通过规模化生产,可以实现成本的降 低和效率的提高,同时提高产品的可 靠性和一致性。
优化工艺参数
通过优化工艺参数,可以减少生产过 程中的浪费和损耗,降低制造成本。 同时,采用先进的生产设备和管理模 式,也能够实现成本的降低和效率的 提高。Fra bibliotek环保照明
光学薄膜可以用于LED照明设备中,提高光 效和照明质量,降低能耗和热量的产生,同 时还可以实现可调色温、可调亮度等功能, 为环保照明提供更多可能性。
THANKS
感谢观看
根据材料分类
光学薄膜可以分为金属膜、介质膜、半导体膜等,不同的材料对光的 反射、透射、吸收等特性有显著差异。
02
光学薄膜的特性
光学性能
反射与透射
光学薄膜能够根据需要改变光的 反射和透射行为,如增反膜增加 反射,减反膜减少反射并增加透
射。
干涉效应
薄膜的厚度和材料会影响光的干涉, 通过调整薄膜的厚度和材料,可以 实现对特定波长的光的干涉增强或 减弱。
光学薄膜广泛应用于光学仪器、摄影 器材、照明设备、显示屏幕等领域, 对提高光学元件的性能和改善光束质 量具有重要作用。

光学薄膜的工作原理及光学性能分析

光学薄膜的工作原理及光学性能分析

光学薄膜的工作原理及光学性能分析一、引言光学薄膜是一种非常重要的光学材料,具有广泛的应用领域,如光学器件、光伏电池、激光技术等。

本文将重点介绍光学薄膜的工作原理以及对其光学性能的分析。

二、光学薄膜的工作原理光学薄膜是由一层或多层透明材料组成的膜层结构,在光学上表现出特定的光学性质。

其工作原理主要涉及薄膜的干涉效应和反射、透射等光学过程。

1. 干涉效应光学薄膜的干涉效应是指光波在不同介质之间反射、透射时,发生相位差导致光波叠加出现干涉现象。

光学薄膜利用干涉效应控制特定波长的光的传播,实现光的反射增强或衰减。

2. 反射和透射光学薄膜的反射和透射性能取决于入射光波的波长和薄膜的光学参数。

当入射光波与薄膜的折射率不同,一部分光波将发生反射,其反射强度与入射波和薄膜参数有关。

另一部分光波将透过薄膜,其透射强度也与入射波和薄膜参数有关。

三、光学薄膜的光学性能分析光学薄膜的光学性能分析是指对其反射、透射、吸收等光学特性进行定量研究。

1. 反射率与透射率的测量反射率和透射率是评价光学薄膜性能的重要指标。

可以通过光谱测量,通过测量入射光、反射光和透射光的强度,计算得到反射率和透射率。

2. 全波段光学性能分析除了对特定波长的光学性能分析外,还需要对光学薄膜在全波段范围内的性能进行研究。

这可以通过利用光学薄膜在不同波长下的反射和透射特性,进行光学模拟和仿真计算得到。

3. 色散性能研究光学薄膜的色散性能是指其折射率随波长的变化关系。

色散性能对光学器件的性能和应用有重要影响。

可以通过光谱色散测量系统测量得到光学薄膜的色散曲线。

4. 热稳定性分析光学薄膜在高温环境下的性能稳定性也是重要的考量指标。

可以通过热循环测试和热稳定性测量仪等设备,对光学薄膜的热稳定性进行评估和分析。

四、光学薄膜的应用光学薄膜由于其独特的光学性质和广泛的应用领域,得到了广泛的应用。

1. 光学器件光学薄膜在光学器件中广泛应用,如反射镜、透镜、滤光片等。

什么是光的光学薄膜和光学多层膜

什么是光的光学薄膜和光学多层膜

什么是光的光学薄膜和光学多层膜?光的光学薄膜和光学多层膜是一种特殊的光学器件,用于控制光的传播和反射特性。

光学薄膜是指由一层或多层具有特定光学性质的薄膜组成的器件。

光学多层膜是由多个光学薄膜层叠而成的器件。

下面将详细介绍光的光学薄膜和光学多层膜的原理、特点和应用。

一、光学薄膜1. 原理光学薄膜是一种由一层或多层具有特定光学性质的薄膜组成的器件。

光学薄膜的光学性质取决于薄膜的折射率、厚度和表面形态。

通过适当选择材料和控制薄膜的厚度,可以实现对光的传播、反射和吸收等特性的控制。

光学薄膜的制备通常使用物理蒸发、化学气相沉积和溅射等技术。

2. 特点光学薄膜具有以下特点:(1)波长选择性:光学薄膜可以选择性地传播、反射或吸收特定波长的光。

通过调节薄膜的厚度和折射率,可以实现对光的波长选择性。

(2)光学性能可调:光学薄膜的光学性能可以通过改变薄膜的组成、结构和厚度等参数进行调节。

这使得光学薄膜在光学器件中具有广泛的应用潜力。

(3)高光学透过率:光学薄膜通常具有高的光学透过率,可以实现对光的高效传输和收集。

3. 应用光学薄膜在光学器件、光学涂层、光学传感和光学显示等领域中有广泛应用。

其中一些重要的应用包括:(1)光学镀膜:光学薄膜可以用于光学镀膜,改变光的反射和透射特性。

例如,将透明薄膜镀在眼镜片上可以减少反射,提高透过率,增加光学舒适度。

光学镀膜还可以用于太阳能电池板、摄像头镜头和车窗等光学器件上,改善光学性能和耐久性。

(2)光学滤光片:光学薄膜可以制备滤光片,用于选择性地吸收或反射特定波长的光。

滤光片可以用于摄影、光学仪器和光学传感器等领域,实现对光谱的控制和调整。

(3)光学反射镜:光学薄膜可以制备反射镜,用于反射特定波长的光。

反射镜广泛应用于激光器、望远镜、显微镜和光学传感器等设备中,实现对光的精确控制和定向。

(4)光学薄膜传感器:光学薄膜可以用于制备光学传感器,用于检测和测量环境中的光学信号。

光学传感器具有高灵敏度、快速响应和广泛检测范围等特点,可应用于环境监测、生物医学和工业控制等领域。

什么是光的光学薄膜和多层膜

什么是光的光学薄膜和多层膜

什么是光的光学薄膜和多层膜?光的光学薄膜和多层膜是一种特殊的光学器件,用于控制光的传播和反射。

它们由透明材料制成,具有特定的厚度和折射率分布,可以实现光的干涉、衍射和透射等效应。

下面我将详细介绍光的光学薄膜和多层膜的原理和应用。

1. 光学薄膜的原理:光学薄膜是由透明材料制成的厚度较小的薄膜。

当光波射入光学薄膜时,部分光被反射,而部分光被透射。

反射和透射光之间的干涉效应决定了光学薄膜的光学性质。

光学薄膜的光学性质与薄膜的厚度和折射率有关。

通过控制薄膜的厚度和折射率,可以实现光的干涉和衍射效应,从而实现对光的传播和反射的控制。

2. 多层膜的原理:多层膜是由多个光学薄膜层叠加而成的光学器件。

每个薄膜层的厚度和折射率都可以不同,通过调整每个层的参数,可以实现对光的更精确的控制。

多层膜的工作原理基于光的多次反射和干涉效应。

当光波穿过多层膜时,它会在不同的薄膜层之间发生多次反射和透射。

这些反射和透射光之间的干涉效应决定了多层膜的光学性质。

3. 光学薄膜和多层膜的应用:-光学薄膜和多层膜广泛应用于光学涂层、反射镜和透镜等光学器件中。

通过控制薄膜的厚度和折射率,可以实现对光的反射和透射的控制,从而实现对光学器件的性能的优化。

-光学薄膜和多层膜在光学滤波器和光学镀膜中也具有重要应用。

例如,通过选择合适的薄膜层的参数,可以实现对特定波长区域的光的选择性透射或反射,从而实现光学滤波器的功能。

-光学薄膜和多层膜还被广泛应用于光学传感器和光学记录介质等领域。

通过调整膜层的参数,可以实现对光的敏感度、分辨率和信噪比等性能的优化。

总之,光的光学薄膜和多层膜是一种特殊的光学器件,用于控制光的传播和反射。

它们通过控制薄膜的厚度和折射率,实现光的干涉、衍射和透射等效应。

深入了解光的光学薄膜和多层膜的原理和应用,有助于优化光学器件的设计和性能,推动光学技术的研究和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

得到典型的三层减反射膜结构 例如,结构为
插入半波长层后成为:
反射率曲线变化为:
光谱反射曲线
光谱反射曲线
将W型膜 0
4 2 个四分之一波长层,可以降低W型膜低反射区中央的反射率
凸峰,又保持半波长层的光滑光谱特性作用。

0
中间半波长层分成折射率稍稍不同的两
曲线a
曲线b 三层增透膜改进
前后的光谱反射率曲线 曲线c
减反射膜应用于光学系统时的考虑 (1)玻璃表面镀膜后会出现光谱选择性,所以镀膜的玻璃 表面会显现鲜艳的颜色,众多的玻璃表面串在一起应用,统 一的颜色取向会使系统的色彩还原出现问题,所以应该对复 杂系统的减反射膜进行色彩平衡设计。 (2)光线在系统中对减反射膜面的入射角相差很大,多层 膜在较大入射角情况下,会使减反射性能劣化。
一、试探法:
初始结构 计算机数值计算 修改设计参数 计算机数值计算
二、光学自动设计方法
半自动设计
全自动设计(无需初始结构)
初始结构的光谱特性
通过某种数学方法 改进结构的光谱特性 修改膜层结构
—) 理想的光谱特性
—) 理想的光谱特性
评价函数
变小
评价函数
评价函数:
F ( x)
评价函数
* W R ( ) R ( )
在限定两层膜的光学厚度都是四分 之一的波长下,欲使中心波长的反 射率减至零,折射率应满足:
或:
图2 双层V型膜的反射率曲线
用矢量法求出双层增透膜的各层厚度
只有当矢量r1、r2和r3组成封闭三角形才能使合矢量为零。因此只 须以矢量r1的始点和终点为圆心,分别以r3和r2为半径作两个园, 两个园的交点就是满足合矢量为零条件的矢量r2和r3头尾相接的 点,然后从矢量图上即可量得2δ1、2δ2的值。显然,图示的两种 方式,都能使三角形封闭。解(b)的膜层总厚度比解(a)的小,它对 波长的敏感性也较小,所以通常取此解。
三层 λ0/4 λ0/2 λ0/4
λ0/4 λ0/4 λ0/4
y1 y2 y3
y1 y2 y3
零反射条件:y0 y3 用于ysub <1.65
2
2 y1 ysub
,宽带低反射,
,宽带低反射,
零反射条件:y3 y1
用于ysub >1.65
ysub y0
4、超宽带减反射膜的设计

只用高低两种材料 更多的膜层数:5、7、9、11……….
HL
H:ZrO2(2.07) L:SiO2(1.46) H:Y2O3(1.79) L:SiO2(1.46)
H 1L
麦克劳得导纳图解技术简介
非规整双层层增透膜
膜系:
Air 2L/.38H/ Sub
H:ZrO2(2.07) L:SiO2(1.46)
二. 双层增透膜
1. V型膜(
0
4

0
4 ) :在中心波长的反射率为零
第三章 光学薄膜系统设计
----根据技术指标要求找出合 适的光学薄膜结构
1、试探法 2、矢量作图法 3、解析合成法 4、级数展开法 5、电器滤波设计法 6、导纳圆图法 7、计算机自动设计法 光学薄膜设计 没有系统的方法 具有非常丰富的膜系设计结果
光学薄膜设计结果受制备工艺的制约
(材料种类、物理特性、化学特性、工艺特性)
如果在金属上镀以折射率为n1、n2的两层 0 4 厚度的介质膜, 并且n2紧贴金属,那么在垂直入射时,波长 0 的导纳为
n1 Y (n ik ) n2
n1 1 ( n ik ) 其反射率为: n2 R 2 n1 1 (n ik ) n2
单层增透膜的缺点:
1. 对大多数应用来说,剩余反射率还太高。
2. 从未镀膜表面反射的光线,在色彩上仍保持中性, 而从镀膜表面反射的光线破坏了色的平衡。
采用变折射率的所谓非均匀膜,它的折射率随着厚度的增 加呈连续的变化;
采用几层折射率不同的均匀薄膜构成多层增透膜;
麦克劳得导纳图解技术简介
双层增透膜的导纳轨迹
一、金属反射膜
新镀的金属反射膜的反射率曲线
下图为1、2、4、8、16、32、64、128nm铝膜反射率的理论曲 线
不同厚度Al膜的反射对比
100 90 80 70 60
% Reflectance
50 40 30 20 10 0
-0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
2
n n 0 n2 2 n1 n 0 n 2
2 1
2
欲使中心波长处反射率等于零,
理想的单层增透膜条件是,膜层的光学厚度为四分之一波 长,其折射率为入射介质和基片折射率乘积的平方根。
当选定基片ng时, 单层增透膜Rmin随n1降低而降低。 当选定膜层的折射率时, 单层增透膜Rmin随ng提高而降低。
Au P P 接近于Ag P P B
一般要求
紫外区 反射率 可见区 红外区 硬度 附着力 稳定性
制备工艺
银膜用作玻璃的前表面镀层:
当银膜作为玻璃后表面的内反射镀层时,通常是在银膜 的外面镀一层铜,再镀一层铬,然后刷上保护漆,以防 止反射镜的“银变”。
增强金属反射镜 金属的复折射率可写为 n ik ,光在空气中垂直入射时,其 反射率为 2 1 (n ik ) (1 n 2 ) k 2 R 1 (n ik ) (1 n 2 ) k 2
矢量法用来分析单层薄膜情况:
可见当厚度为某一波长1/4,并且r1=r2时剩余反射为零:
n0 n1 n1 n2 r 则n1 1 r 2即 n0 n1 n1 n2
n0n2
运用矩阵法分析1/4波长厚度时的情况:
i sin 1 cos 1 C 1 1 B 2 i sin cos 1 1 1 2n1d1 其 中 : 1 2 2 C n1 Y n2 B n0 Y R n Y 0
n0 sin 0 2 n sin 0 2 n0 sin 0 2 ) 1 (k 2 n 2 )( 02 ) i 2 nk ( ) 2 2 2 n ik n k n k
2 2 i 2
2 2 a ib 2
rp rs
n0 / cos 0 ( n ik ) / ( a ib) r1 p ir2 p n0 / cos 0 (n ik ) / (a ib) n0 cos 0 (n ik )(a ib) r1s ir2 s n0 cos 0 ( n ik )(a ib)
高折射率基底材料的的减反射膜
在可见区应用的大多数光学玻璃,通常在波长大于3微米 以后就不再透明.因此,在红外区经常采用某些特种玻璃和 晶体材料特别是半导体材料。半导体有很高的折射率,例如 硅约为3.4而锗大约是4。 这些半导体基片若不镀增透膜,就 不可能广泛地使用.这个问题不同于可见区,在可见区,其 目的是将大约4%的反射损失减小到千分之几,而在红外区, 则是将30%左右的反射损失减小为百分之几。一般说在红外 区百分之几的损失是允许的,因而低折射率基片通常很少镀 减反膜。红外材料镀膜从原理上讲同可见是一致的,只不过 材料的选择余地较小。
5、此种方法有一定局限性:①最佳结果遗漏
②膜系特别复杂或投点数太多时,优化效应不高。
§3.1 增 透 膜
单层增透膜
单层增透膜是减少界面反射的最 简单途径,如右图用矢量法分析:
n0 n1 n1 n2 r1 , r2 n0 n1 n1 n2
从矢量图上可以看到,合振幅矢量r随着r1和2之间的 夹角2δ而变化合矢量端点的轨迹为一园周。 当膜层 的光学厚度为某一波长的四分之一时,则两个矢量的 方向完全相反。
n越小越好,k越大越好
倾斜入射:
N n ik r
0 0
p
here, 0

n0 s , 0 n0 cos 0 cos 0
p
N , s N cos 1 cos 1
麻烦: cosθ1是虚数。
cos1 1 sin 2 1 1 ( i
(3)有些高折射率玻璃在短波有吸收,所以高效增透部分应 放于短波,如果整个系统彩色平衡达不到要求,还应在减反 射膜设计中有意消减某些波段的光谱。
(4)对于大入射角界面和高折射玻璃在系统中可考虑 用单层膜。
减反射膜的工艺要点:
(1)尽量采用机械、物理、化学等性能好的少数几种材料 设计非λ0/4膜厚的减反射膜。
权重
膜系的光谱特性
理想光谱特性
求导法 (瞎子下山法)
数学方法:
直接算法 (试验法) 光学薄膜优化设计的特殊性: F(x) 多维 F(x)=F(λ,θ,n0,ng,Ni,di…….) F(x)是一个多峰函数,容易使F(x)陷入局部极值
全搜描法(工作量太大) 试验法 统计试验法
例:单层膜
F*(x)
1、确定极值范围:A~B; 2、随机投点,只得留下F( x )最小的10个点及对应的结构; 3、找出最佳10点的对应的区间A’ B’; 4、继续投点试验直到最佳10点评价函数统计结果,均方根达到某一精度,终止 试验,此时评价最小,F*( x )对应的膜系结构即为最优结构。
R p | rp |2 Rs | rs |2
p arctg (r2 p / r1 p ) s arctg (r2 s / r1s )
三种金属膜的特性和工艺
特 性 Al B M 接近于Ag B B M
相关文档
最新文档