高温蠕变行为

高温蠕变行为
高温蠕变行为

一种镍基单晶高温合金的蠕变各向异性

1366金属学报第45卷 图2【ool】及【011】取向合金拉伸蠕变曲线 Fig?2Tensilecreepcurvesof【001】and[011jorientedalloysat750℃/750MPa(a)and982"C/248MPa(b) 囝3合金在750℃/750MPa条件下蠕变断裂后的SEM像 Fig?3SEMimagesof【001】(a)and【011】(b)orientedsamplesaftercreepingat750℃/750MPa,77phaseinFig.3astillhavingcubic shape,thewhitelinesinFig.3bindicatingtheboundariesofatwinfS.D.—_stressaxisdirection) 图4合金在982℃/248MPa条件下蠕变断裂后的SEM像 Fig?4SEMimagesofNtyperaRin[O(H】orientedalloy(a)andinclinedraftandafcwtwinsin【011】orientedalloy(b)aftercreepingat982℃/248MPa 单品试样在982℃/248MPa条件下的7基体及77相的SEM像.可见,[001]及[011】取向试样中77相均已形筏,[001】取向试样的筏形比较规则,筏化方向垂育丁应力轴;【011]取向试样的筏化方向与应力轴的夹角约为450,而且在试样中出现了贯通,y基体及77相的孪晶组织(图4b中划线处),这表明温度和取向对77相形貌均有重要影响.fcc晶体巾独市的滑移系较多,通常不产生孪品,但[011】取向处于有利方向的滑移系较少,【大『此孪晶成为一种必要的辅助变形机制【6,71.孪晶带和基体的基轴与应力所成的夹角不I—J,孪晶与基体难以协调变形,由此产生的应力集中易促使裂纹在孪晶内或沿孪品界荫生,图5所示即为裂纹萌生于孪品界. 2.3位错组态 图6为合金在750℃/750MPa条件下蠕变断裂后的位错组态.可见,在f001】取向合金中,在基体通道及 7/77相界而上存在大量的位错,至少有2种不|可方向的

材料的高温蠕变

材料的高温蠕变相关的理论解释和材料蠕变的因摘要:从蠕变的定义,金属材料在高温下蠕变的形成机理,陶瓷以及镁质耐火材料提高A1素等几个方面阐述了材料的 高温蠕变现象。其中也对多晶O3 2 抗蠕变性能给予介绍,解释。陶瓷;抗蠕变性能A1O关键词:高温蠕变;蠕变机理;多晶 32 1引言 材料具有许多的性能,有的性能在材料的使用时是有利的,但有的性能在材料的使用时是不利的。由于蠕变的产生我们就不能笼统的说材料在高温下的性质是如何的,材料在高温条件下的性能与在常温下的性能不同,在高温下材料发生蠕变,因此,材料的高温蠕变使得材料在高温条件下使用时性能变差,影响了材料在高温条件下的使用。如果能提高材料在高温条件下的抗蠕变性能,能够改善材料在高温条件下使用的品质,使得材料的使用寿命延长,可以节省材料,避免浪费。高温蠕变理论是在对多种金属所做的完整的蠕变实验的基础上建立起来的,因此介绍材料的蠕变机理也是根据金属的蠕变机理来进行解释的。 我们是这样定义材料蠕变这个现象的,材料在高温下长时间承受恒温、恒载荷作用,缓慢产生塑性变形的现象。所以,蠕变是在恒定压力作用下,随着时间的延长而材料持续形变的过程。在高温条件下,材料都有着与常温下不同的蠕变行为。借助于高温作用和外力作用,材料的形变障碍得到克服,内部质点发生迁移,晶界相对移动,于是蠕变现象产生了。 2.1 蠕变阶段 材料的高温蠕变分为几个阶段,几个区域有着不同的变化。 图1 图1表示在三个不同的恒定应力作用下,材料的应变ε随时间t变化的典型蠕变曲线。曲线的终端表示材料发生断裂。t=0时的应变表示加载结束时的即时应变,它包括弹性应变和塑性应变。蠕变曲线可分为三个阶段, 为定常蠕变所示:III为非定常蠕变阶段,应变率随时间的增加而减小;如图2t 阶段,应变率保持常值;在最末阶段Ⅲ,应变率随时间而增大,最后材料在r升高温度或增加应力会使蠕变加快并缩短达到断裂的时间。通常,时刻发生断裂。甚至不出现第三阶段则蠕变的第二阶段(Ⅱ)持续较久,若应力较小或温度较低,对应的蠕变曲线;相反,若应力较大或温度较高,则中1 (Ⅲ),如图 中对应的蠕变曲线。蠕变的第二阶段(Ⅱ)较短,甚至不出现,如图1

高温合金ASUG应用解析

高温合金A S U G应用解 析 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

SUH660 镍基合金 (UNS S66286/A286/SUH660/GH2132/)简介 SUH660(UNS S66286/A286/SUH660/GH2132/)是Fe-25Ni-15Cr基高温合金,加入钼、钛、铝、钒及微量硼综合强化。有可时效硬化高的机械性能。该合金在温度高达约1300°F(700℃)保持良好的强度和抗氧化性能。在700℃以下具有优于奥氏体不锈钢的高温强度,属于沉淀析出硬化耐热不锈钢。与SUS 304相比Ni含量多,且添加有Ti、Al 等硬化元素。因此,通过时效硬化处理,会有γ’相(fcc_Ni3(Al,Ti))析出,高温强度将得到显着提高。在650℃以下具有高的屈服强度和持久、蠕变强度,并且具有较好的加工塑性和满意的焊接性能。 SUH660高强度和优异的加工特性使该合金用于飞机的各种部件和有用工业燃气涡轮机。它也用于汽车发动机紧固件和应用多方面受到高层次的热量和压力的元器件,和近海石油和天然气行业。适合制造在650℃以下长期工作的航空发动机高温承力部件,如涡轮盘、压气机盘、转子叶片、紧固件、承力环、机匣、轴类、紧固件、和板材焊接承力件等。 SUH660/A286相近牌号 GH2132(中国),UNS S66286(美国),A286(美国),SUH660(日本),(德国) 技术文件 SUH660/A286材料特性 ·铁基高温 ·高强度合金 SUH660/A286主要应用 ·燃气涡轮机锻件 ·适用于使用高达约1300°F的腐蚀环境,如燃气涡轮机 ·于1500°F的温度连续服务于氧化环境 ·飞机部件 ·汽车发动机紧固件 ·元器件 ·石油和天然气行业 SUH660/A286溶炼与铸造工艺 SUH660/A286合金可采用非真空感应+电渣,电弧炉+电渣和电弧炉+真空电弧以及真空感应+真空电弧等工艺溶炼。SUH660/A286生产执行标准 中国国家标准

SMT焊点质量检测方法

SMT焊点质量检测方法 热循环为确保电子产品德量稳固性和可靠性,或对失效产品进行剖析诊断,一般需进行必要的焊点质量检测。SM T中焊点质量检测办法很多,应当依据不同元器件、不同检测项目等选择不同的检测方法。 1 焊点质量检测方式 焊点质量常用检测方法有非破坏性、破坏性和环境检测3种,见表1所示。 1.1 目视检测 目视检测是最常用的一种非破坏检测方法,可用万能投影仪或10倍放大镜进行检测。检测速度和精度与检测职员才能有关,评价可依照以下基准进行: ⑴润湿状况钎料完整笼罩焊盘及引线的钎焊部位,接触角最好小于20°,通常以小于3 0°为标准,最大不超过60°。 ⑵焊点外观钎料流动性好,表面完全且平滑光明,无针孔、砂粒、裂纹、桥连和拉尖等渺小缺点。 ⑶钎料量钎焊引线时,钎料轮廓薄且引线轮廓显明可见。 1.2 电气检测 电气检测是产品在加载条件下通电,以检测是否满足所请求的规范。它能有效地查出目视检测所不能发明的微小裂纹和桥连等。检测时可应用各种电气丈量仪,检测导通不良及在钎焊进程中引起的元器件热破坏。前者是由渺小裂纹、极细丝的锡蚀和松香粘附等引起,后者是由于过热使元器件失效或助焊剂分解气体引起元器件的腐化和变质等。 1.3 X-ray 检测 X-ray检测是应用X射线可穿透物资并在物质中有衰减的特征来发明缺陷,主要检测焊点内部缺陷,如BGA、CSP和FC焊点等。目前X射线装备的X光束斑一般在1-5μm范畴内,不能用来检测亚微米规模内的焊点微小开裂。 1.4 超声波检测 超声波检测利用超声波束能透进金属材料的深处,由一截面进入另一截面时,在界面边沿发生反射的特色来检测焊点的缺陷。来自焊点表面的超声波进入金属内部,碰到缺陷及焊点底部时就会发生反射现象,将反射波束收集到荧光屏上形成脉冲波形,根据波形的特色来断定缺陷的位置、大小和性质。超声波检验具有敏锐度高、操作便利、检验速度快、本钱低、对人体无害等长处,但是对缺陷进行定性和定量判定尚存在艰苦。 扫描超声波显微镜( C-SAM)重要应用高频超声(一般为100MHz以上)在材料不持续的处所界面上反射产生的位相及振幅变更来成像,是用来检测元器件内部的分层、空泛和裂纹等一种有效办法。采用微声像技巧,通过超声换能器把超声脉冲发射到元件封装中,在表面和底板这一深度范畴内,超声反馈回波信号以稍微不同的时光间隔达到转化器,经过处置就得到可视的内部图像,再通过选通回波信号,将成像限制在检测区域,得到缺点图。一般采取频率从100MHz到230MHz,最高可达300MHz,检测辨别率也相应进步。 1.5 机械性损坏检测 机械性破坏检测是将焊点进行机械性破坏,从它的强度和断裂面来检讨缺陷的。常用的评价指标有拉伸强度、剥离强度和剪切强度。因为对所有的产品进行检测是不可能的,所以只能进行适量的抽检。 1.6 显微组织检测 显微组织检测是将焊点切片、研磨、抛光后用显微镜来察看其界面,是一种发明钎料杂质、熔蚀、组织结构、合金层及渺小裂纹的有效办法。焊点裂纹一般呈中心对称散布,因而应尽量可能沿对角线方向制样。显微组织检测和机械性损坏检测一样,不可能对所有的成品

强度定义

强度定义 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0.2%的塑性变形相对应的应力为名义屈服极限,用σ0.2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。

镍基高温合金材料研究进展汇总-共7页

镍基高温合金材料研究进展 姓名:李义锋1 镍基高温合金材料概述 高温合金是指以铁、镍、钴为基,在高温环境下服役,并能承受严酷的机械应力及具有良好表面稳定性的一类合金[1]。高温合金一般具有高的室温和高温强度、良好的抗氧化性和抗热腐蚀性、优异的蠕变与疲劳抗力、良好的组织稳定性和使用的可靠性[2]。因此,高温合金既是航空、航天发动机高温部件的关键材料,又是舰船、能源、石油化工等工业领域不可缺少的重要材料,已成为衡量一个国家材料发展水平的重要标志之一。 在整个高温合金领域中,镍基高温合金占有特殊重要的地位。与铁基和钴基高温合金相比,镍基高温合金具有更高的高温强度和组织稳定性,广泛应用于制作航空喷气发动机和工业燃气轮机的热端部件。现代燃气涡轮发动机有50%以上质量的材料采用高温合金,其中镍基高温合金的用量在发动机材料中约占40%。镍基合金在中、高温度下具有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,是最复杂的、在高温零部件中应用最广泛的、在所有超合金中许多冶金工作者最感兴趣的合金。镍基高温合金主要用于航空航天领域950-1050℃下工作的结构部件,如航空发动机的工作叶片、涡轮盘、燃烧室等。因此,研究镍基高温合金对于我国航天航空事业的发展具有重要意义。 镍基高温合金是以镍为基体(含量一般大于50 )、在650~1000℃范围内具有较高的强度和良好的抗氧化、抗燃气腐蚀能力的高温合金[2]。它是在Cr20Ni80合金基础上发展起来的,为了满足1000℃左右高温热强性(高温强度、蠕变抗力、高温疲劳强度)和气体介质中的抗氧化、抗腐蚀的要求,加入了大量的强化元素,如W、Mo、Ti、Al、Nb、Co等,以保证其优越的高温性能。除具有固溶强化作用,高温合金更依靠Al、Ti等与Ni形成金属问化合物γ′相(Ni3A1或Ni3Ti等)的析出强化和部分细小稳定MC、M23C6碳化物的晶内弥散强化以及B、Zr、Re等对晶界起净化、强化作用。添加Cr的目的是进一步提高高温合金抗氧化、抗高温腐蚀性能。镍基高温合金具有良好的综合性能,目前已被广泛地用于航空航天、汽车、通讯和电子工业部门。随着对镍基合金潜在性能的发掘,研究人员对其使用性能提出了更高的要求,国内外学者已开拓了针对镍基合金的新加工工艺如等温锻造、挤压变形、包套变形等。

焊点疲劳强度研讨

焊点疲劳强度研讨 一.疲劳强度 电子元器件的焊点必须能经受长时间的微小振动和电路发散的热量。随着电子产品元器件安装密度的增加,电路的发热量增加,经常会发生焊接处的电气特性劣化,机械强度下降或出现断裂等现象。材料在变动载荷和应变长期作用下,因累积损伤而引起的断裂现象,称为疲劳。疲劳是一种低应力破坏。 二.提高疲劳强度性能的方法 2.1提高焊点的可靠性 提高焊点可靠性的最好方法有三个:提高焊点合金的耐用性;减少元件与PCB之间热膨胀系数(CTE)的失配;尽可能按照实际的柔软性来生产元件,向焊点提供更大的应变; 2.1.1提高焊点合金的耐用性 2.1.1.1选择合适的焊膏 2.1.1 润湿性能 对于焊料来说,能否与基板形成较好的浸润,是能否顺利地完成焊接的关键。如果一种 合金不能浸润基板材料,则会因浸润不良而在界面上产生空隙,易使应力集中而在焊接 处发生开裂。 焊料的润湿性主要的指标浸润角和铺展率。从现象上看,任何物体都有减少其自身表面 能的倾向。因此液体尽量收缩成圆球状,固体则把其接触的液体铺展开来覆盖其表面。 如果液体滴在固体表面,则会形成图一所示的情况。 图二和图三分别表示浸润不良和良好的现象。 θ为浸润角,显然浸润角越小,液态焊料越容易铺展,表示焊料对基板的润湿性能越好。 a. 当θ<900,称为润湿,B角越小,润湿性越好,液体越容易在固体表面展开; b. 当θ>90时称为不润湿,B角越大,润湿性越不好,液体越不容易在固体表面上铺展开, 越容易收缩成接近圆球的形状;

c. 当θ=00或180“时,则分别称为完全润湿和完全不润湿。 通常电子工业焊接时要求焊料的润湿角θ<200。 影响焊料润湿性能主要有:焊料和基板的材料组分、焊接温度、金属表面氧化物、环境介质、基板表面状况等。 IPC-SPVC用润湿力天平来测量并用润湿时间以及最大润湿力来表示的方法评估了不同组成的 SAC 合金的润湿性,结果发现其中(零交时间与最大润湿力)并无差异,见图4。各候选合金与锡铅共晶合金的润湿性比较见图5。 图 4 不同组成的SAC的润湿性评估结果

蠕变机理

镁质耐火材料高温蠕变特性的研究现状 张国栋1)游杰刚1)刘海啸1)罗旭东1)袁政禾2) 1)辽宁科技大学鞍山114044 2)鞍钢集团耐火材料公司鞍山114001 摘要:本文介绍了镁质材料高温蠕变特性的研究现状,并对镁质耐火材料的高温蠕变特性的理论进行了阐述,同时指出了将镁质蓄热材料用在高炉热风炉上的可行性。 关键词:镁质材料蠕变特性研究现状 1、引言 高炉生产的大型化发展,要求热风炉向着高风温和长寿命的方向发展,为了实现这一目标,除了热风炉本体的大型化与更合理的结构以外,作为热风炉中的关键材料之一——蓄热材料的发展将直接影响到热风炉的使用温度和使用寿命。而高炉热风炉对耐火材料的要求是:蓄热体各层材料的选择必须要在相应的使用温度下有很好的抗压,蠕变性能,抗碱金属蒸气与烟尘侵蚀性能,抗温度急变而不破坏的性能;蓄热体砖要有足够高的换热表面积以及有利于热交换的几何形状;蓄热体材质要尽可能高的导热系数以及材料体积比热容。 目前,我国采用以Al2O3-SiO2系材料的系列低蠕变砖,在热风炉的顶部和隔墙及蓄热室的上部采用优质硅砖,中部应用不同牌号的低蠕变高铝砖,下部采用低蠕变粘土砖。镁质材料与高铝质和硅质材料相比具有良好的蓄热性能和热导率以及很强的抗渣侵蚀性能;这些特点有利于热风炉的高炉的大风量高风温的操作和降低高炉焦比,提高高炉利用系数,增加生铁产量。但是,镁质材料的热震性能差、抗压蠕变性能不好,因此限制了这类材料在热风炉上的使用。所以,提高和改善镁质材料的这两方面性能是将镁质材料应用到热风炉上的关键。因此研究镁质材料的高温蠕变性能对扩大我国镁资源综合利用和炼铁产业有着重大的意义。 2、蠕变理论 高温蠕变理论是在对多种金属所作的完整的蠕变试验的基础上建立起来的。材料的高温蠕变是指材料在恒定的高温和一定的荷重作用下,产生的变形和时间的关系[1]。由于施加的载荷不同,耐火材料的高温蠕变可以分为高温压缩蠕变、高温拉伸蠕变、高温抗折蠕变、高温扭转蠕变等。其中压缩蠕变和抗折蠕变

金属材料蠕变

金属材料蠕变 早期,人们对金属材料强度的认识不足,设计金属构件时仅以短时强度作为设计依据。不少构件,即使使用应力低于弹性极限,使用一段时间后仍然会发生因塑性受形而失效或因破断而失效的现象。随着科学技术的发展,金属材料的使用温度逐步提高,这种矛盾越来越突出。这就使人们进一步认识到材料强度与使用期限之问尚有密切的联系,从而相继开拓了蠕变、蠕变断裂、松弛、疲劳、断裂力学等长时强度研究领域。蠕变则是其中研究最早、内容较丰富而成果较显着的一个领域,成为其他几个研究领域的基础。 金属在持续应力作用下(即使在远低于弹性极限的情况下)会发生缓慢的塑性变形。熔点较低的金属容易产生这种现象;金属所处的温度越高,这种现象越明显。在一定温度下,金属受持续应力的作用而产生缓慢的塑性变形的现象称为金属的蠕变。引起蠕变的这一应力称蠕变应力。在这种持续应力作用下,蠕变变形逐渐增加,最终可以导致断裂,这种断裂称蠕变断裂。导致断裂的这一初始应力称蜕变断裂应力。在有些情况下(特别是在工程上),把蠕变应力及蠕变断裂应力作为材料在特定条件下的一种强度指标来讨论时,往往又把它们称为蠕变强度及蠕变断裂强度,后者又称为持久强度。蠕变现象的发生是温度和应力共同作用的结果。温度和应力的作用方式可以是恒定的,也可以是变动的。常规的蠕变试验则是专门研究在恒定载荷及恒定温度下的蠕变规律。为了与变动情况相区别,把这种试验称为静态蠕变试验。 蠕变现象很早就被人们发现,远在1905年F. Philips等就开始进行专门研究。最初研究的是铅、锌等低熔点纯金属,因为这些金属在室温下就已表现出明显的蠕变现象。以后逐步研究了较高熔点的铝、镁等纯金属的蠕变现象,进而又研究了铁、镍以至难熔金属钨、铂等的蠕变规律。对纯金属的研究后来又发展到对铁、钴、镍基合金及其他各种高温合金的研究。对这些合金,要求它们在几百度的高温下才能表现出明显的蠕变现象(例如碳钢>0.35Tm,不锈钢>0.4Tm)。 蠕变现象的研究是与工业技术的发展密切相关的。随着工作温度的提高,材料蠕变现象越来越明显,对材料蠕变强度的要求越来越高。不同的工作温度需选用具有不同蠕变性能的材料,因此蠕变强度就成为决定高温金属材料使用价值的重要因素。 蠕变曲线 在恒定温度下,一个受单向恒定载荷(拉或压)作用的试样,其变形e与时间t的关系可用如图9.76所示的典型的蠕变曲线表示。曲线可分下列几个阶段: 图9.76 典型的蠕变曲线 第I阶段:减速蠕变阶段(图中AB段),在加载的瞬间产生了的弹性变形e0,以后随加载时间的延续变形连续进行,但变形速率不断降低; 第II阶段:恒定蠕变阶段,如图中曲线BC段,此阶段蠕变变形速率随加载时间的延续而保持恒定,且为最小蠕变速率; 第III阶段:曲线上从C点到D点断裂为止,也称加速蠕变阶段,随蠕变过程的进行,蠕变速率显着增加,直至最终产生蠕变断裂。D点对应的tr就是蠕变断裂时间,er是总的蠕变应变量。 温度和应力也影响蠕变曲线的形状。在低温(<0.3Tm)、低应力下(曲线1)实际上不存在蠕变第III阶段,而且第II阶段的蠕变速率接近于零;在高温(>0.8Tm)、高应力下(曲线3)主要是蠕变第III阶段,而第II阶段几乎不存在。

焊点高温蠕变性能测试

焊接点高温蠕变性能测试 (1)焊接接头短时高温拉仲强度试验:焊接接头在高温下工作时,其强度、塑性与在常温下工作时有所不同。高温短时拉伸试验按GB 2652-89《焊缝及熔敷金属拉伸试验法》及GB 4338-84《金属高温拉伸试验方法》的规定进行,以求得不同温度下的抗拉强度、屈服点、伸长率及断面收缩率。 (2)焊接接头的高温持久强度试验:在高温下,载荷持续时间对材料力学性能有很大影响,例如高压燕汽锅炉管道,虽然所承受的应力小于工作温度下的屈服点,但在长期的使用过程中,可能导致管道破裂。对于高温材料,必须测定其在高温长期载荷作用下抵抗断裂的能力,即高温持久强度(在给定的温度下,恰好使材料经过规定时间发生断裂的应力值)。 材料的高温持久试验按GB 6395-86(金属高温持久强度试验方法》的规定进行.在试验中测定试样在给定温度和一定应力作用下的断裂时间,用外推法求出数万小时甚至数十万小时。同时还可测出反映高温时持久塑性-伸长率及断面收缩率。 (3)焊接接头的蠕变断裂试验 金属在长时间恒温、恒应力作用下,发生缓慢的塑性变形的现象称为蠕变。蜗变可以在单一应力(拉力、压力或扭力)下产生,也可在复合应力下产生。典型的蠕变曲线如图3-14所示。Oa为开始加载后所引起的瞬时变形;ab为蠕变第l阶段,在这个阶段中蠕变的速度随时间的增加而逐渐减小;bc为蠕变第Ⅱ阶段,蠕变速度基本不变;ed为蠕变第Ⅲ阶段,在这个阶段中,蠕变加速进行,直到d点断裂。 蠕变极限是试样在一定温度下和在规定的持续时间内,产生的蠕变形量或蠕变速度等于某规定值时的最大应力,可通过蠕变断裂试验来测定。例如汽轮机叶片在长期运行中,只允许产生一定的变形量,在设计时必须考虑到蟠变极限。 焊接接头的蠕变断裂试验可按GB 2039-80《金属拉伸蠕变试验方法》的规定进行。

加载速率对SAC系列焊点蠕变性能影响的研究

加载速率对SAC系列焊点蠕变性能影响的研究 【摘要】随着微电子封装技术的不断发展,焊点的 形式以及焊点所用无铅钎料的种类愈发繁多,从而使得对焊点力学性能的考察尤为重要。在所有对焊点性能的考察中抗蠕变性能是一项重要的考察项目,本篇文章通过实验和有限元数值模拟两种方法加载速率对焊点抗蠕变性能的影响。对 SAC系列钎料焊点进行纳米压痕实验及模拟,获得载荷-深度曲线、时间-深 度曲线,以及时间-蠕变速率曲线。结果表明:蠕变的速率并不是恒定 的,随着加载速率的增大,钎料的蠕变程度以及蠕变速率依次增大,并逐渐减小,最终趋近于零。 关键词】蠕变;纳米压痕;有限元模拟;焊点;加载 速率 0 序言电子器件服役时,相对于服役的环境温度,焊料自身熔 点较低,随着时间的延续,产生明显的焊点蠕变损伤。由于蠕变性能对于高温材料的使用至关重要,是影响焊点失效行 为及焊点可靠性的重要因素。因此,研究材料的蠕变性能是 微电子封装焊接研究中个重要的部分[1-3]。 但在实际测量中,对于微电子封装焊点这类本身体积很 小的测量件,由于钎料属于软金属,并且在加工钎焊后会产 生明显的尺寸效应,各种性能受尺寸的影响明显不同于传统焊接。所以对于微电子封装焊点只能通过纳米压痕蠕变来获得其蠕变性能参数。 在过往研究中,已有过研究剪切力大小、饱载时间、加 载方式对焊点蠕变性能的影响;而本文借助纳米压痕仪及先

进的有限元计算机模拟软件对SAC系列钎料(Sn-3Ag-0.5Cu Sn-0.3Ag-0.7Cu Sn-0.3Ag-0.7Cu-0.07La)焊点进行一次加载 卸载纳米压痕实验、模拟,得到载荷-深度曲线(load-depth 曲线),通过对实验数据的分析获得焊点蠕变程度及蠕变速率在加载速率影 响下的变化规律。 1纳米压痕及有限元分析理论 1.1纳米压痕法纳米压痕法主要通过测量加载、卸载过程中压头作用 力 与载荷深度得到的加卸载曲线来获得样品的硬度与弹性模量等力学性能参 数。进行纳米压痕测试时压头需垂直于样品被压面,等压头接触试样表面后 开始加载,直至加载到最大值后再缓慢卸载,实时检测压头压入位移随载荷的变化。测试的结果是一组载荷-位移曲线,通过对load-depth 曲线进行物理反解析计算能获得材料的弹性模量、硬度及蠕变应变速率敏感指数等力学性能参数。 般来说,纳米压痕仪用于测量硬度H和弹性模量E是两个钎料的基本力学参数,它们对于研究一种钎料的力学性

高温合金循环蠕变实验

No3.2008工程与试验September 2008 [收稿日期] 2008-06-26 [作者简介] 关逊(1969-),女,助理工程师,从事蠕变实验工作。刘庆(1961-),男,工程师,从事蠕变实验工作。郭建亭(1938-), 男,研究员。博士生导师,从事高温合金与金属间化合物的研究。 高温合金循环蠕变实验 关 逊,刘 庆,郭建亭 (中国科学院金属研究所,辽宁沈阳110016) 摘 要:本文利用装配有EDC 数字控制器的高温电子蠕变试验机开展了一种镍基高温合金的循环蠕变实验。结果表明与恒载荷静态蠕变相比,两种方式(矩形波和锯齿波)载荷循环降低了合金蠕变寿命,但对蠕变塑性并没有影响。 关键词:高温合金;循环蠕变实验;循环载荷中图分类号:T G 132.3 文献标识码:A Cyclic Creep Experimentation of Superalloy Guan Xun ,Liu Qing ,Guo Jianting (I nstit ute of M et al Research ,Chi nese A cadem y of S ciences ,L i aoni ng S heny ang 110016)Abstract :The cyclic creep test s of a Nickel 2base superalloy has been conducted on a High Temper 2at ure Elect rical Creep Machine equipped wit h an External Digital Controler (EDC ).Compared wit h t he constant load creep ,t he cyclic load in t he square and sawtoot h waveforms reduces t he creep life ,but has no effect on t he creep ductility of t he testing alloy.K eyw ords :superalloy ;cyclic creep test ;cyclic load 1 引言 高温合金部件在高温服役期间,往往遭受静态 应力和循环应力的联合作用,实际变形过程既不同于静态载荷作用下的纯蠕变变形,也不同于完全循环载荷作用下的纯疲劳变形,而是蠕变与疲劳交互作用的复杂变形过程[1~2]。对这种循环应力作用下复杂变形行为的研究方法有两种。第一种方法是完全模拟部件实际工作条件下的受力情况进行实验,实验结果可直接应用于指导设计。第二种方法是进行特定循环载荷作用下的蠕变实验(称之为循环蠕变实验),并与恒载荷作用下的蠕变行为(称之为静态蠕变)进行比较,以了解循环载荷对蠕变变形影响的基本规律。高温循环蠕变性能是高温合金设计与安全应用的重要指标之一。 中国科学院金属研究所蠕变实验室引进装备有德国Doli 公司EDC (External Digital Cont roler )数 字控制器的高温电子蠕变试验机,能够实现载荷控 制、位移控制和变形控制。利用此试验机,本文开展了一种镍基高温合金的循环蠕变实验,进而评价循环载荷对合金蠕变行为的影响。 2 实验方法 211 实验合金 实验合金DZ417G 是一种具有中国特色的先进定向凝固高温合金,用作某先进航空发动机的涡轮叶片材料。有关该合金的成分、制备工艺、性能特点等见文献[3]。实验用母合金经真空感应炉熔炼后,在定向凝固真空炉内以快速凝固法(温度梯度是850 C/cm ,凝固速度是7mm/min )制备直径16mm ,长130mm 的定向凝固园棒试样。随后对园棒试样进行两级热处理,即1220℃/4h ,AC.的固溶处理和980℃/16h ,AC.的时效处理。热处理试样机加工 成标距100mm 的标准螺纹蠕变试样。 ? 42?

高分子材料的蠕变和松弛行为

高分子材料的蠕变和松弛行为 高分子材料具有大分子链结构和特有的热运动,决定了它具有与低分子材料不同的物理性态。高分子材料的力学行为最大特点是它具有高弹性和粘弹性。在外力和能量作用下,比金属材料更为强烈地受到温度和时间等因素的影响,其力学性能变化幅度较大。 高聚物受力产生的变形是通过调整内部分子构象实现的。由于分子链构象的改变需要时间,因而受力后除普弹性变形外,高聚物的变形强烈地与时间相关,表现为应变落后于应力。除瞬间的普弹性变形外,高聚物还有慢性的粘性流变,通常称之为粘弹性。高聚物的粘弹性又可分为静态粘弹性和动态粘弹性两类。 静态粘弹性指蠕变和松弛现象。与大多数金属材料不同,高聚物在室温下已有明显的蠕变和松弛现象。本文章主要介绍高聚物的蠕变和应力松弛现象产生的原因、过程,应用以及如何避免其带来的损害。 1 高分子材料蠕变 高分子材料的蠕变即在一定温度和较小的恒定外力(拉力、压力或扭力等)作用下、高分子材料的形变随时间的增加而逐渐增大的现象。 1.1 蠕变过程及原理 图1-1就是描写这一过程的蠕变曲线,t 1是加荷时间,t 2是释荷时间。从分子运动和变化的角度来看,蠕变过程包括下面三种形变:当高分子材料受到外力(σ)作用时,分子链内部键长和键角立刻发生变化,这种形变量是很小的,称为普弹形变(1ε)。当分子链通过链段运动逐渐伸展发生的形变,称为高弹形变(2ε)。如果分子间没有化学交联,线形高分子间会发生相对滑移,称为粘性流动(3ε)。这种流动与材料的本体粘度(3η)有关。在玻璃化温度以下链段运动的松弛时间很长,分子之间的内摩擦阻力很大,主要发生普弹形变。在玻璃化温度以上,主要发生普弹形变和高弹形变。当温度升高到材料的粘流温度以上,这三种形变都比较显著。由于粘性流动是不能回复的,因此对于线形高聚物来说,当外力除去后会留下一部分不能回复的形变,称为永久形变。

岩土体的蠕变特性研究

岩土体的蠕变特性研究 通常滑坡的发展过程是一个蠕变的过程,变形随时间而不断增加;软弱夹层控制的滑坡变形则主要是随着软弱夹层的蠕变过程,强度随时间不断降低,最终软弱夹层蠕滑导致上部岩层发生滑动从而形成滑坡,所以对软弱夹层蠕变特性的研究非常重要。 标签滑坡;边坡;蠕变特性 1 概述 在实际工程中,岩土的蠕变特性是最受关注的。岩土体及软弱夹层的蠕变特性往往是引起边坡工程及滑坡工程破坏与失稳的主要原因。边坡及滑坡的蠕变是指组成边坡及滑坡的岩体和土体在自重应力以及水平应力为主的作用下,变形随时间而持续增加的性质。产生变形的原因是多方面的,地质作用、地下水流、温度变化、植被作用等都可以产生变形。但就岩土体本身而言导致边坡及滑坡变形与时间有关的变形主要是岩土体蠕变引起的,因此研究岩土体材料的蠕变特性尤其是软弱夹层的蠕变特性极其重要。 2 土体的蠕变特性 岩土体材料的蠕变包括岩石和土的蠕变,由于岩石材料和土体材料在结构特性、材料组成上有较大的差异,所以,岩石的蠕变特性和土体材料相比较,也有较大的区别。人们在实验室内对各种岩体进行了单轴压缩、弯曲、剪切及常规三轴等试验,也对岩体软弱面进行了剪切试验,通过对试验结果进行分析得出不同的受力条件,各类岩土体的蠕变特性不尽相同。 从图1以看出,蠕变过程分为两种情况,第一种情况在应力较低时蠕变过程可能以减速进行,称为衰减蠕变过程见图1(a);第二种情况在应力较高时,蠕变过程可能加速进行,称为非衰减蠕变过程见图1(b)。在这两种情况下,变形等于受荷载后立即发生的瞬时变形ε0与随时间发展的变形ε(t)之和: 衰减蠕变的过程如图1(a)所示,变形ε(t)以减速发展,速度最后趋向于零,相应地,变形ε(t)趋向于与荷载值相关的某个极限值。 非衰减蠕变过程如图1(b)所示,蠕变曲线包括四个阶段:瞬时变形阶段;初始蠕变阶段;稳定蠕变阶段;加速蠕变阶段。非稳定蠕变阶段的蠕变变形量可以表示为: 其中(1)瞬时蠕变阶段如图1(b)OA段,该段是施加恒定荷载后短时间内产生的瞬时变形,即式(2.2)中的,其值为,为施加的恒定应力,G为岩土体的弹性模量。

强度-刚度--弹性模量区别

强度-刚度--弹性模量区别强度定义: 1、材料、机械零件和构件抵抗外力而不失效的能力。强度包括材料强度和结构强度两方面。强度问题有狭义和广义两种涵义。狭义的强度问题指各种断裂和塑性变形过大的问题。广义的强度问题包括强度、刚度和稳定性问题,有时还包括机械振动问题。强度要求是机械设计的一个基本要求。 材料强度指材料在不同影响因素下的各种力学性能指标。影响因素包括材料的化学成分、加工工艺、热处理制度、应力状态,载荷性质、加载速率、温度和介质等。 按照材料的性质,材料强度分为脆性材料强度、塑性材料强度和带裂纹材料的强度。①脆性材料强度:铸铁等脆性材料受载后断裂比较突然,几乎没有塑性变形。脆性材料以其强度极限为计算强度的标准。强度极限有两种:拉伸试件断裂前承受过的最大名义应力称为材料的抗拉强度极限,压缩试件的最大名义应力称为抗压强度极限。②塑性材料强度:钦钢等塑性材料断裂前有较大的塑性变形,它在卸载后不能消失,也称残余变形。塑性材料以其屈服极限为计算强度的标准。材料的屈服极限是拉伸试件发生屈服现象(应力不变的情况下应变不断增大的现象)时的应力。对于没有屈服现象的塑性材料,取与0。2%的塑性变形相对应的应力为名义屈服极限,用σ0。2表示。③带裂纹材料的强度:常低于材料的强度极限,计算强度时要考虑材料的断裂韧性(见断裂力学分析)。对于同一种材料,采用不同的热处理制度,则强度越高的断裂韧性越低。 按照载荷的性质,材料强度有静强度、冲击强度和疲劳强度。材料在静载荷下的强度,根据材料的性质,分别用屈服极限或强度极限作为计算强度的标准。材料受冲击载荷时,屈服极限和强度极限都有所提高(见冲击强度)。材料受循环应力作用时的强度,通常以材料的疲劳极限为计算强度的标准(见疲劳强度设计)。此外还有接触强度(见接触应力)。 按照环境条件,材料强度有高温强度和腐蚀强度等。高温强度包括蠕变强度和持久强度。当金属承受外载荷时的温度高于再结晶温度(已滑移晶体能够回复到未变形晶体所需要的最低温度)时,塑性变形后的应变硬化由于高温退火而迅速消除,因此在载荷不变的情况下,变形不断增长,称为蠕变现象,以材料的蠕变极限为其计算强度的标准。高温持续载荷下的断裂强度可能低于同一温度下的材料拉伸强度,以材料的持久极限为其计算强度的标准(见持久强度)。此外,还有受环境介质影响的应力腐蚀断裂和腐蚀疲劳等材料强度问题。 结构强度指机械零件和构件的强度。它涉及力学模型简化、应力分析方法、材料强度、强度准则和安全系数。 按照结构的形状,机械零件和构件的强度问题可简化为杆、杆系、板、壳、块和无限大体等力学模型来研究。不同力学模型的强度问题有不同的力学计算方法。材料力学一般研究杆的强度计算。结构力学分

焊点可靠性研究详解

SMT焊点可靠性研究 前言 近几年﹐随着支配电子产品飞速发展的高新型微电子组装技术--表面组装技术(SMT)的飞速发展﹐SMT焊点可靠性问题成为普遍关注的焦点问题。 与通孔组装技术THT(Through Hole Technology)相比﹐SMT在焊点结构特征上存在着很大的差异。THT焊点因为镀通孔内引线和导体铅焊后﹐填缝铅料为焊点提供了主要的机械强度和可靠性﹐镀通孔外缘的铅焊圆角形态不是影响焊点可靠性的主要因素﹐一般只需具有润湿良好的特征就可以被接受。但在表面组装技术中﹐铅料的填缝尺寸相对较小﹐铅料的圆角(或称边堡)部分在焊点的电气和机械连接中起主要作用﹐焊点的可靠性与THT焊点相比要低得多﹐铅料圆角的凹凸形态将对焊点的可靠性产生重要影响。 另外﹐表面组装技术中大尺寸组件(如陶瓷芯片载体)与印制线路板的热膨胀系数相差较大﹐当温度升高时﹐这种热膨胀差必须全部由焊点来吸收。如果温度超过铅料的使用温度范围﹐则在焊点处会产生很大的应力最终导致产品失效。对于小尺寸组件﹐虽然因材料的CTE 失配而引起的焊点应力水平较低﹐但由于SnPb铅料在热循环条件下的粘性行为(蠕变和应力松弛)存在着蠕变损伤失效。因此﹐焊点可靠性问题尤其是焊点的热循环失效问题是表面组装技术中丞待解决的重大课题。 80年代以来﹐随着电子产品集成水平的提高,各种形式﹑各种尺寸的电子封装器件不断推出﹐使得电子封装产品在设计﹑生产过程中,面临如何合理地选择焊盘图形﹑焊点铅料量以及如何保证焊点质量等问题。同时﹐迅速变化的市场需求要求封装工艺的设计者们能快速对新产品的性能做出判断﹑对工艺参数的设置做出决策。目前﹐在表面组装组件的封装和引线设计﹑焊盘图形设计﹑焊点铅料量的选择﹑焊点形态评定等方面尚未能形成合理统一的标准或规则﹐对工艺参数的选择﹑焊点性能的评价局限于通过大量的实验估测。因此﹐迫切需要寻找一条方便有效的分析焊点可靠性的途径﹐有效地提高表面组装技术的设计﹑工艺水平。 研究表明﹐改善焊点形态是提高SMT焊点可靠性的重要途径。90年代以来﹐关于焊点形成及焊点可靠性分析理论有大量文献报导。然而﹐这些研究工作都是专业学者们针对焊点

蠕变分析

4.4 蠕变分析 4.4.1 蠕变理论 4.4.1.1 定义 蠕变是率相关材料非线性,即在常荷载作用下,材料连续变形的特性。相反如果位移固定,反力或应力将随时间而变小,这种特性有时也称为应力松驰,见图4-18a。 图4-18 应力松弛和蠕变 蠕变的三个阶段如图4-18b所示。在初始蠕变阶段,应变率随时间而减小,这个阶段一般发生在一个相当短的时期。在第二期蠕变阶段,有一个常应变率,所以应变以常速率发展,在第三期蠕变阶段,应变率迅速增加直到材料失效。 由于第三期蠕变阶段所经历的时间很短,材料将失效,所以通常情况下,我们感兴趣的是初始蠕变和第二期蠕变。ANSYS程序中的蠕变行为用来模拟初始蠕变和第二期蠕变。蠕变系数可以是应力、应变、温度、时间或其它变量的函数。 在高温应力分析中(如核反应堆等),蠕变分析非常重要。例如,假设在核反应堆中施加了预荷载,以保证与相邻部件保持接触而不松开。在高温下过了一段时间后,预荷载将降低(应力松驰),可能使接触部件松开。对于一些材料如预应力砼,蠕变也可能十分重要。最重要的是要记住,蠕变是永久变形。 4.4.1.2 理论介绍 蠕变方程:我们通过一个方程来模拟蠕变行为,此方程描述了在实验中观测到的主要特征(特别是在一维的拉伸实验中)。这个方程以蠕应变率的方式表示出来,其形式如下: 上式中,A、B、C、D是从实验中得到的材料常数,常数本身也可能是应力,应变,时间或温度的函数,这种形式的方程被称为状态方程。 上式中,当常数D为负值时,蠕应变率随时间下降,材料处于初始蠕变阶段,当D为0时,蠕应变率为常值,材料处于第二期蠕变阶段。 对于2-D或3-D应力状态,使用VON Mises方程计算蠕应变率方程中所使用的标量等效应力和等效应变。 对蠕变方程积分时,我们使用经过修改的总应变,其表达式为:

对蠕变的初步认识

对蠕变的初步认识 温度对金属材料力学性能的影响很大,随着温度升高,材料的强度降低而塑性增加;而材料在高温下,载荷持续时间对力学性能也会产生影响。因此,在高温下工作的材料,其力学性能与温度和时间两个因素有关。所谓高温,是指金属 的服役温度超过了它的再结晶温度约0.4~0.5T m ,T m 是金属的熔点。在这样的高温 下长时服役的金属,其微观结构、形变和断裂机制都会发生变化,在宏观上则会出现高温蠕变、持久断裂、应力松弛、高温腐蚀等现象。 材料在恒定应力作用下,其应变随时间的延长而逐渐增加的现象称为蠕变。由于蠕变而导致的断裂称为蠕变断裂。金属在低温下也会产生蠕变,但通常只有当温度升高到0.3T m 以上时,蠕变现象才会比较显著。金属在高温下还会发生应力松弛现象,即在保持应变恒定的情况下,应力随着时间延长而减小的现象。由于蠕变和应力松弛的发生,应力和应变之间已不是单值的对应关系,而必须考虑温度和时间的影响。 温度对金属材料力学性能的影响很大,随着温度升高,材料的强度降低而塑性增加;而材料在高温下,载荷持续时间对力学性能也会产生影响。因此,在高温下工作的材料,其力学性能与温度和时间两个因素有关。所谓高温,是指金属 的服役温度超过了它的再结晶温度约0.4~0.5T m ,T m 是金属的熔点。在这样的高温 下长时服役的金属,其微观结构、形变和断裂机制都会发生变化,在宏观上则会出现高温蠕变、持久断裂、应力松弛、高温腐蚀等现象。 1. 蠕变曲线 蠕变:材料在恒定应力作用下,其应变随时间的延长而逐渐增加的现象称为蠕变。由于蠕变而导致的断裂称为蠕变断裂。金属在低温下也会产生蠕变,但通常只有当温度升高到0.3T m 以上时,蠕变现象才会比较显著。金属在高温下还会发生应力松弛现象,即在保持应变恒定的情况下,应力随着时间延长而减小的现象。由于蠕变和应力松弛的发生,应力和应变之间已不是单值的对应关系,而必须考虑温度和时间的影响。 蠕变曲线:常载荷条件下的典型单轴蠕变曲线见图1 , 从图中可以看出蠕变的3 个典型阶段: 第一蠕变阶段AB (减速蠕变阶段),第二蠕变阶段BC (稳定蠕变阶段),第三阶段蠕变CD(加速蠕变阶段) 。在第二蠕变阶段(稳定蠕变阶段) , 蠕变速率近似为常数; 而在第三蠕变阶段, 蠕变速率逐渐增加,直至试件完全破坏。图1 中εe 代表瞬时弹性(或弹塑性) 应变,εp表示塑性应变,εc代表蠕变应变。

铝基合金高温相变储热材料

铝基合金高温相变储热材料 一、研究背景 因使用化石能源造成的温室气体排放和环境污染对人类的生存和发展构成了严重威胁,并且化石能源资源有限,终将可能枯竭,因此开发清洁的可再生能源是全球各国面临的重大挑战.在水能、太阳能、风能、生物质能等可再生能源中,太阳能因其储量的无限性、存在的普遍性、利用的清洁性和开发的经济性[1]成为最重要的可再生能源。太阳能发电模式主要有光伏和光热两种模式,太阳能热发电技术因其供电连续稳定、成本低等优点,将成为未来太阳能发电的主要方式之一。太阳能热发电技术客观上要求发展高效率、低成本的高温潜热能存储技术。 在太阳能热发电技术中,储热技术可在太阳能流高峰时吸热、低谷时放热,能解决太阳能流的不连续性,使塔式、槽式或蝶式发电系统连续稳定的发电,成为太阳能热发电技术的关键。相变储热材料具有相变潜热大、储热密度高、吸放热过程近似等温等优点,是目前最有效的储热方式之一。在120~1 000℃温度区间内基于无机盐和金属合金的相变储热材料有几百种,其中铝合金相变储热材料具有储热密度大、抗高温氧化性强、热稳定性好、导热系数大、过冷度小、相偏析小及性价比高等优点,在太阳能高温热发电技术中有着较好的应用前景。热能存储研究。 二、储热材料概述 材料蓄热的本质在于它可将一定形式的热量在特定的条件下贮存起来,并能在特定的条件下加以释放和利用。因此可以实现能量供应与人们需求一致性的目的,并达到节能降耗的作用。这一本质,也决定了蓄热材料必须具有可逆性好、贮能密度高、可操作性强的特点。 蓄热方式 按蓄热方式划分,蓄热材料一般可分为:显热型、潜热型和化学反应型3大类。在这3大类蓄热材料中,潜热型最具有发展前途,也是目前应用最多和最重要的蓄热方式。 1)显热储热材料 显热储热材料主要有:土壤、地下蓄水层、砖石、水泥及Li20与A1203、Ti02、B203、Zr02等混合高温烧结成型的显热储热材料。它是利用物质本身温度的变化过程来进行热量的储存。由于可采用直接接触式换热,或者流体本身就是储热介质,因而蓄放热过程相对简单,是早期应用较多的储热材料。在所有的储热材料中显热储热技术是最为简单也比较成熟。 由于显热储热材料是依靠储热材料本身的温度变化来进行热量贮存的,放热过程不能恒温,储热密度小,造成储热设备的体积庞大,储热效率不高,而且与周围环境存在温差会造成热量损失,热量不能长期储存,不适合长时间、大容量储热,限制了显热储热材料的进一步发展。

相关文档
最新文档