导数大题练习题答案

导数大题练习题答案
导数大题练习题答案

导数练习题(B )答案

1.(本题满分12分)

已知函数

d

x b a c bx ax x f +--++=)23()(23的图象如图所示.

(I )求d c ,的值;

(II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数

)(x f 的解析式;

(III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3

1的图象有三个不同的交点,求m 的取值范围.

解:函数)(x f 的导函数为 b a c bx ax x f 2323)(2'--++= …………(2分) (I )由图可知 函数)(x f 的图象过点(0,3),且0)1('=f 得 ?

??==???

?=--++=030

23233

c d b a c b a d …………(4分)

(II )依题意 3)2('-=f 且5)2(=f

?

?

?=+--+-=--+5346483

23412b a b a b a b a

解得 6,1-==b a 所以396)(23++-=x x x x f …………(8分)

(III )9123)(2+-='x x x f .可转化为:()m x x x x x x +++-=++-534396223有三个不等实根,即:()m x x x x g -+-=8723与x 轴有三个交点;

()()()42381432--=+-='x x x x x g ,

x

??? ??

∞-32,

32

??

?

??432, 4

()∞+,4

()x g '

+ 0 - 0 + ()x g

极大值

极小值

()m g m g --=-=??

? ??164,2768

32. …………(10分)

当且仅当()0164027

68

32<--=>-=

??

? ??m g m g 且时,有三个交点, 故而,27

6816<<-m 为所求. …………(12分)

2.(本小题满分12分)

已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间;

(II )函数)(x f 的图象的在4=x 处切线的斜率为,2

3

若函数]2

)('[3

1)(23m x f x x x g ++=在区

间(1,3)上不是单调函数,求m 的取值范围. 解:(I ))0()

1()('>-=

x x

x a x f (2分)

当(][)+∞>,1,1,0)(,0减区间为的单调增区间为时x f a 当[)(];1,0,,1)(,0减区间为的单调增区间为时+∞

(II )32ln 2)(,22

3

43)4('-+-=-==-

=x x x f a a f 得 2)4()(',2)22

(31)(223-++=∴-++=

∴x m x x g x x m

x x g (6分) 2)0(',)3,1()(-=g x g 且上不是单调函数在区间

??

?><∴.

0)3(',0)1('g g (8分)??

??

?>-<∴,319,

3m m (10分))3,319

(--∈m (12分)

3.(本小题满分14分)

已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程

9

)32()(2

+-

=a x f 恰好有两个不同的根,求)(x f 的解析式;

(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 解:(I ),

23)(,00)0(2b ax x x f c f ++='=?=320)1(--=?='a b f

),323)(1()32(23)(2++-=+-+='∴a x x a ax x x f

由3

3210)(+-==?='a x x x f 或,因为当1=x 时取得极大值,

所以313

32-+-a a ,所以)3,(:--∞的取值范围是a ;

…………(4分)

(II )由下表:

依题意得:9

)32()32(27622

+-

=++a a a ,解得:9-=a

所以函数)(x f 的解析式是:x x x x f 159)(23+-=

…………(10分)

(III )对任意的实数βα,都有,2sin 22,2sin 22≤≤-≤≤-βα

在区间[-2,2]有: 230368)2(,7)1(,7430368)2(=+-==-=---=-f f f

,7)1()(=f x f 的最大值是7430368)2()(-=---=-f x f 的最小值是

函数]2,2[)(-在区间x f 上的最大值与最小值的差等于81, 所以81|)sin 2()sin 2(|≤-βαf f .

…………(14分)

4.(本小题满分12分)

已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >;

(II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

解:(I )01)(≥-='x e x f ,得)(x f 的单调递增区间是),0(+∞, …………(2分) ∵0>a ,∴1)0()(=>f a f ,∴a a e a >+>1,即a e a >. …………(4分) (II )x

a

x a x x

a x x g )22)(22(22)(-+

=

-=',由0)(='x g ,得2

2a x =,列表

x

)22,

0(a 2

2a

),2

2(

+∞a

)(x g '

- 0 + )(x g

单调递减 极小值

单调递增

当2

2a

x =

时,函数)(x g y =取极小值)2

ln 1(2)22(

a

a a g -=,无极大值. …………(6分)

由(I )a e a >,∵??

???>

>22a a e e a

a ,∴22a e a

>

,∴2

2a

e a >

01)1(>=g ,0))(()(22>-+=-=a e a e a e e g a a a a …………(8

分)

(i )当12

2≤a

,即20≤

12

2>a

,即2>a 时 若0)2

ln 1(2

>-a a ,即e a 22<<时,函数)(x g y =在区间),1(a e 不存在零点

若0)2

ln 1(2

=-a a ,即e a 2=时,函数)(x g y =在区间),1(a e 存在一个零点e x =;

若0)2

ln 1(2

<-a a ,即e a 2>时,函数)(x g y =在区间),1(a e 存在两个零点;

综上所述,)(x g y =在(1,)a e 上,我们有结论: 当02a e <<时,函数()f x 无零点;

当2a e = 时,函数()f x 有一个零点; 当2a e >时,函数()f x 有两个零点.

…………(12分) 5.(本小题满分14分)

已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值;

(II )若函数()f x 没有零点,求实数k 的取值范围; 解:(I )当1k =时,2()1

x f x x -'=-

)(x f 定义域为(1,+∞),令()0,2f x x '==得, ………………(2分) ∵当(1,2),

x ∈时()0f x '>,当(2,),x ∈+∞时()0f x '<,

∴()(1,2)f x 在内是增函数,(2,)+∞在上是减函数

∴当2x =时,()f x 取最大值(2)0f = ………………(4分) (II )①当0k ≤时,函数ln(1)y x =-图象与函数(1)1y k x =--图象有公共点,

∴函数()f x 有零点,不合要求; ………………(8分)

②当0k >时,1()

11()11

1

k

k x k kx

k f x k x x x +-

+-'=-==---- ………………(6分)

令1()0,k f x x k

+'==得,∵1(1,),()0,

k x f x k +'∈>时1

(1,),()0x f x k

'∈++∞<时,

∴1()(1,1)f x k

+在内是增函数,1[1,)k

++∞在上是减函数,

∴()f x 的最大值是1(1)ln f k k

+=-,

∵函数()f x 没有零点,∴ln 0k -<,1k >,

因此,若函数()f x 没有零点,则实数k 的取值范围(1,)k ∈+∞.………………(10分) 6.(本小题满分12分)

已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ).

(I )求实数a 的值;

(II )求函数()f x 在]3,2

3[∈x 的最大值和最小值.

解:(I )由2()(23)x f x x ax a e =+--可得

22()(2)(23)[(2)3]x x x f x x a e x ax a e x a x a e '=+++--=++--……(4分)

∵2x =是函数()f x 的一个极值点,∴(2)0f '=

∴2(5)0a e +=,解得5a =- ……………(6分) (II )由0)1)(2()(>--='x e x x x f ,得)(x f 在)1,(-∞递增,在),2(+∞递增,

由0)(<'x f ,得)(x f 在在)2,1(递减

∴2)2(e f =是()f x 在]3,2

3[∈x 的最小值; ……………(8分)

2347)23(e f =,3)3(e f = ∵)2

3()3(,0)74(4147)23()3(23

233

f f e e e e e f f >>-=-=- ∴()f x 在]3,2

3[∈x 的最大值是3)3(e f =. ……………(12分)

7.(本小题满分14分)

已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 解:(Ⅰ)x x x x f ln 164)(2--=,

x

x x x x x f )

4)(2(21642)('-+=

-

-= 2分

由0)('>x f 得0)4)(2(>-+x x ,解得4>x 或2-

注意到0>x ,所以函数)(x f 的单调递增区间是(4,+∞) 由0)('x ,所以函数)(x f 的单调递减区间是]4,0(.

综上所述,函数)(x f 的单调增区间是(4,+∞),单调减区间是]4,0( 6分

(Ⅱ)在],[2e e x ∈时,x a x x x f ln )2(4)(2-+-=

所以x

a

x x x a x x f -+-=-+-=242242)('2, 设a x x x g -+-=242)(2

当0

此时0)(>x g ,所以0)('>x f ,)(x f 在],[2e e 上单调递增, 所以a e e e f x f -+-==24)()(2min 8分

当0>a 时,△=08)2(2416>=-?-a a , 令0)('>x f ,即02422>-+-a x x ,解得221a x +>或2

21a x -<; 令0)('

2

21a

x +<<. ①若2

21a

+≥2e ,即a ≥22)1(2-e 时,

)(x f 在区间],[2e e 单调递减,所以a e e e f x f 244)()(242min -+-==.

②若22

21e a

e <+<,即222)1(2)1(2-<<-e a e 时间,

)(x f 在区间]221,[a e +

上单调递减,在区间],221[2

e a +上单调递增, 所以min )(x

f )221(a f +=)2

21ln()2(322a

a a a +-+--=. ③若2

21a

+

≤e ,即a <0≤22)1(-e 时,)(x f 在区间],[2e e 单调递增, 所以a e e e f x f -+-==24)()(2min

综上所述,当a ≥222)1(-e 时,a e a x f 244)(24min -+-=; 当222)1(2)1(2-<<-e a e 时,)2

21ln()2(322

)(min a

a a a

x f +-+--=; 当a ≤2)1(2-e 时,a e e x f -+-=24)(2min

14分

8.(本小题满分12分)

已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围;

(II )若()f x '是()f x 的导函数,设2

2

()()6g x f x x '=+-

,试证明:对任意两个不相等正数

12x x 、,不等式121238

|()()|||27

g x g x x x ->

-恒成立. 解:(I )

226()26a x x a

f x x x x

-+'=-+=

, ………………(2分)

∵()f x 在(2,)x ∈+∞上不具有...单调性,∴在(2,)x ∈+∞上()f x '有正也有负也有0, 即二次函数226y x x a =-+在(2,)x ∈+∞上有零点 ………………(4分) ∵226y x x a =-+是对称轴是32

x =,开口向上的抛物线,∴222620y a =?-?+<

的实数a 的取值范围(,4)-∞ ………………(6分) (II )由(I )2

2

()2a g x x x

x =+-

方法1:22

22()()62(0)a g x f x x x x x x '=-

+=+->, ∵4a <,∴323233

444244

()22a x x g x x x x x x

-+'=-+>-+=,…………(8分)

设2344()2h x x x =-

+,344

8124(23)()x h x x x x -'=-=

()h x 在3(0,)2是减函数,在3(,)2+∞增函数,当32x =时,()h x 取最小值

38

27

∴从而()

g x '38

27

>

,∴38(())027g x x '->,函数38()27y g x x =-是增函数,

12x x 、是两个不相等正数,不妨设12x x <,则22113838

()()2727

g x x g x x -

>- ∴212138()()()27

g x g x x x ->-,∵210x x ->,∴

1212()()3827

g x g x x x ->-

1212()()g x g x x x --38

27

>

,即121238|()()|||27g x g x x x ->- ………………(12分)

方法2: 11(,())M x g x 、22(,())N x g x 是曲线()y g x =上任意两相异点,

121222

121212

()()2()2g x g x x x a

x x x x x x -+=+--

12x x +>4a <

1222

1212122()22x x a a x x x x x x +∴+

->

-12

4

2x x >- ………(8分)

设0t t =

>,令32()244MN k u t t t ==+-,()4(32)u t t t '=-, 由()0u t '>,得2,3

t >由()0u t '<得20,3

t <<

()u t ∴在)32,0(上是减函数,在),3

2(+∞上是增函数,

)(t u ∴在32=

t 处取极小值2738,38()27u t ∴≥,∴所以1212

()()g x g x x x --3827>

即121238|()()|||27

g x g x x x ->- ………………(12分)

9.(本小题满分12分)

已知函数.1,ln )1(2

1)(2>-+-=a x a ax x x f (I )讨论函数)(x f 的单调性;

(II )证明:若.1)

()(,),,0(,,52

1212121->--≠+∞∈

(1))(x f 的定义域为),0(+∞,

x

a x x x a ax x x a a x x f )

1)(1(11)('2-+-=

-+-=-+-= 2分

(i )若2,11==-a a 即,则 .)1()('2

x

x x f -=

故)(x f 在),0(+∞单调增加. (ii )若.0)(',)1,1(,21,1,11<-∈<<><-x f a x a a a 时则当故而

)1,1()(,0)(',),1()1,0(->+∞∈-∈a x f x f x a x 在故时及当单调减少,在(0,a-1), ),1(+∞单调增加.

(iii )若),1(),1,0(,)1,1()(,2,11+∞-->>-a a x f a a 在单调减少在同理可得即 单调增加.

(II )考虑函数x x f x g +=)()( .ln )1(2

1

2x x a ax x +-+-= 由 .)11(1)1(1

21)1()('2---=---?≥-+

--=a a x

a x x a a x x g 由于单调增加在即故),0()(,0)(',5+∞>>x x 时有 ,0)()(,0)()(212121>-+->-x x x f x f x g x g 即 故

1)()(2121->--x x x f x f ,当210x x <<时,有1)

()()()(1

2122121->--=--x x x f x f x x x f x f

10.(本小题满分14分)

已知函数21()ln ,()(1),12

f x x a x

g x a x a =+=+≠-.

(I )若函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,求实数a 的取

值范围;

(II )若(1,]( 2.71828)a e e ∈=,设()()()F x f x g x =-,求证:当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立.

解:(I )(),()1a f x x g x a x

''=+=+, ……………(2分) ∵函数(),()f x g x 在区间[1,3]上都是单调函数且它们的单调性相同,

∴当[1,3]x ∈时,2(1)()

()()0a x a f x g x x

++''?=

≥恒成立, ……………(4分) 即2(1)()0a x a ++≥恒成立, ∴2

1a a x

>-??

≥-?在[1,3]x ∈时恒成立,或2

1a a x

<-??≤-?在[1,3]x ∈时恒成立,

∵91x -≤≤-,∴1a >-或9a ≤- ………………(6分) (II )21()ln ,(1)2

F x x a x a x =+-+,()(1)()(1)a x a x F x x a x

x

--'=+-+=

∵()F x 定义域是(0,)+∞,(1,]a e ∈,即1a >

∴()F x 在(0,1)是增函数,在(1,)a 实际减函数,在(,)a +∞是增函数 ∴当1x =时,()F x 取极大值1(1)2

M F a ==--,

当x a =时,()F x 取极小值21()ln 2

m F a a a a a ==--, ………………(8分)

∵12,[1,]x x a ∈,∴12|()()|||F x F x M m M m -≤-=- ………………(10分) 设21

1()ln 22

G a M m a a a =-=--,则()ln 1G a a a '=--, ∴1[()]1G a a

''=-,∵(1,]a e ∈,∴[()]0G a ''>

∴()ln 1G a a a '=--在(1,]a e ∈是增函数,∴()(1)0G a G ''>=

∴211()ln 22

G a a a a =--在(1,]a e ∈也是增函数 ………………(12分)

∴()()G a G e ≤,即2

211(1)()1222

e G a e e -≤--=

-, 而22

211(1)(31)1112222

e e e ----=

-<-=,∴()1G a M m =-< ∴当12,[1,]x x a ∈时,不等式12|()()|1F x F x -<成立. ………………(14分) 11.(本小题满分12分)

设曲线C :()ln f x x ex =-( 2.71828e =???),()f x '表示()f x 导函数. (I )求函数()f x 的极值;

(II )对于曲线C 上的不同两点11(,)A x y ,22(,)B x y ,12x x <,求证:存在唯一的0x 12(,)x x ∈,使直线AB 的斜率等于0()f x '. 解:(I )1

1()0ex f x e x

x -'=-=

=,得1

x e

= 当x 变化时,()f x '与()f x 变化情况如下表:

∴当1x e

=时,()f x 取得极大值1()2f e

=-,没有极小值; …………(4分)

(II )(方法1)∵0()AB f x k '=,∴2121021ln ln ()1x x e x x e x x x ----=-,∴21201

ln 0x x x

x x --= 即20211ln

()0x x x x x --=,设2211

()ln ()x

g x x x x x =-- 211211()ln

()x g x x x x x =--,1/

211

()ln 10x x g x x =->,1()g x 是1x 的增函数, ∵12x x <,∴2

122222

()()ln

()0x g x g x x x x x <=--=; 222211()ln

()x g x x x x x =--,2/

221

()ln 10x x g x x =->,2()g x 是2x 的增函数, ∵12x x <,∴1

211111

()()ln ()0x g x g x x x x x >=--=, ∴函数2

211

()ln ()x g x x x x x =--在12(,)x x 内有零点0x , …………(10分) 又∵

22111,ln 0x x x x >∴>,函数2211

()ln ()x

g x x x x x =--在12(,)x x 是增函数, ∴函数2121

()ln x x x

g x x x -=

-在12(,)x x 内有唯一零点0x ,命题成立…………(12分) (方法2)∵0()AB f x k '=,∴

2121021

ln ln ()1

x x e x x e x x x ----=-, 即020112ln ln 0x x x x x x -+-=,012(,)x x x ∈,且0x 唯一

设2112()ln ln g x x x x x x x =-+-,则1121112()ln ln g x x x x x x x =-+-, 再设22()ln ln h x x x x x x x =-+-,20x x <<,∴2()ln ln 0h x x x '=-> ∴22()ln ln h x x x x x x x =-+-在20x x <<是增函数 ∴112()()()0g x h x h x =<=,同理2()0g x >

∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有解 …………(10分) ∵一次函数在12(,)x x 2112()(ln ln )g x x x x x x =-+-是增函数

∴方程2112ln ln 0x x x x x x -+-=在012(,)x x x ∈有唯一解,命题成立………(12分)

注:仅用函数单调性说明,没有去证明曲线C 不存在拐点,不给分. 12.(本小题满分14分)

定义),0(,,)1(),(+∞∈+=y x x y x F y ,

(I )令函数22()(3,log (24))f x F x x =-+,写出函数()f x 的定义域;

(II )令函数322()(1,log (1))g x F x ax bx =+++的图象为曲线C ,若存在实数b 使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线,求实数a 的取值范围;

(III )当,*x y ∈N 且x y <时,求证(,)(,)F x y F y x >.

解:(I )22log (24)0x x -+>,即2241x x -+> ……………………(2分) 得函数()f x 的定义域是(1,3)-, ……………………(4分) (II )22322()(1,log (1))1,g x F x ax bx x ax bx =+++=+++ 设曲线00(41)C x x -<<-在处有斜率为-8的切线, 又由题设,23)(,0)1(log 2232b ax x x g bx ax x ++='>+++

∴存在实数b 使得???

??>+++-<<--=++1

11482302

030002

0bx ax x x b ax x 有解, ……………………(6分)

由①得,238020ax x b ---=代入③得082020<---ax x ,

2000280

41

x ax x ?++>?∴?

-<<-??由有解, ……………………(8分)

方法1:008

2()()a x x <-+

-,因为041x -<<-,所以0082()[8,10)()

x x -+∈-, 当10a <时,存在实数b ,使得曲线C 在)14(00-<<-x x 处有斜率为-8的切线 ………………(10分)

方法2:得08)1()1(208)4()4(222>+-?+-?>+-?+-?a a 或,

1010,10.a a a ∴<<∴<或 ………………(10

分)

方法

3:是22

2(4)(4)802(1)(1)80a a ??-+?-+≤???-+?-+≤??

的补集,即10a < ………………(10分)

①②

(III )令2

)

1ln(1)(,1,)

1ln()(x

x x x

x h x x x x h +-+='≥+=由 又令,0),1ln(1)(>+-+=

x x x

x

x p 0)1(11)1(1)(22<+-=+-+=

'∴x x x x x p , ),0[)(+∞∴在x p 单调递减. ……………………(12)分

0()(0)0,1()0,x p x p x h x '∴><=∴≥<当时有当时有

),1[)(+∞∴在x h 单调递减, x y y x y x x y y

y x x y x )1()1(),1ln()1ln(,)

1ln()1ln(,1+>+∴+>+∴+>+<≤∴有

时, ).,(),(,x y F y x F y x N y x ><∈∴*时且当 ………………(14分)

导数大题第一、二问解题方法

导数大题一、二问专练 一、求单调性解题步骤: (1)求函数()f x 的定义域 (2)求函数的导函数()f x ',并化简; (3)令()0f x '=,求出所有的根,并检查根是否在定义域内。(注意此处是否引出讨论)............ (讨论:1)讨论的对象,即讨论哪个字母参数 2)讨论的引发,即为何讨论 3)讨论的范围,即讨论中要做到“不重不漏”) (4)列表:注意定义域的划分、()f x '正负号的确定 (5)根据列表情况作出答案 二、导数难点: 难点一:如何讨论: (1)判断()0f x '=是否有根(可通过判别式的正负来确定),如果无法确定,引发讨论; (2) 求完根后,比较()0f x '=两根的大小,如果无法确定,引发讨论。 (3在填表时确定()f x '的正负或解不等式()0f x '>过程中,引发讨论。 难点二、()f x '正负的确定 (1) 当()f x '或()f x '式中未确定部分是一次或二次函数时,画函数图象草图来确定正负号; (2)()f x '为其他函数时,由()0f x '>的解集来确定()f x '的正负。 (3)若()0f x '=无根或重根,不必列表,直接判断导函数的正负即可。 题型一:讨论()0f x '=是否有根型

(1)若导数是二次函数,需判断判别式?的正负 (2)若导数是一次函数y kx b =+,需判断k 的正负 1、设函数3 ()3(0)f x x ax b a =-+≠. (Ⅰ)若曲线()y f x =在点(2,(2))f 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点 2.(08文)已知函数32 ()3(0)f x x ax bx c b =+++≠,且()()2g x f x =-是奇函数. (Ⅰ)求a ,c 的值; (Ⅱ)求函数()f x 的单调区间 (18) (本小题共13分)已知函数x a x x f ln )(2 -=(R a ∈).(练习) (Ⅰ)若2=a ,求证:)(x f 在(1,)+∞上是增函数; (2)求()f x 的单调区间; 18.设函数()0)(2>+=a b x ax x f 。 (1)若函数)(x f 在1-=x 处取得极值2-,求b a ,的值; (2)求函数()f x 的单调区间 (3)若函数)(x f 在区间()1,1-内单调递增,求b 的取值范围 3(2010东城一摸试卷)已知函数1()ln f x a x x =-,a ∈R

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

最全导数解答题方法归纳总结

导数解答题归纳总结 19.(2009浙江文)(本题满分15分)已知函数3 2 ()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2 +--+='a a x a x x f 又?? ?-=+-='==3 )2()0(0 )0(a a f b f ,解得0=b ,3-=a 或1=a (Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于 导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有 0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2 <-++a a a ,解得15-<<-a 20.(2009北京文)(本小题共14分) 设函数3 ()3(0)f x x ax b a =-+≠. (Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点. 解析 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能 力. (Ⅰ)()' 233f x x a =-, ∵曲线()y f x =在点(2,())f x 处与直线8y =相切, ∴()()()'20340 4,24.86828 f a a b a b f ?=-=?=????????=-+==????? (Ⅱ)∵()()()' 230f x x a a =-≠, 当0a <时,()' 0f x >,函数()f x 在(),-∞+∞上单调递增, 此时函数()f x 没有极值点. 当0a >时,由()' 0f x x a =?=± , 当() ,x a ∈-∞-时,()' 0f x >,函数()f x 单调递增, 当(),x a a ∈-时,()'0f x <,函数()f x 单调递减, 当(),x a ∈+∞时,()' 0f x >,函数()f x 单调递增,

函数与导数大题部分-高考数学解题方法归纳总结专题训练

专题03 函数与导数大题部分 【训练目标】 1、 理解函数的概念,会求函数的定义域,值域和解析式,特别是定义域的求法; 2、 掌握函数单调性,奇偶性,周期性的判断方法及相互之间的关系,会解决它们之间的综合问题; 3、 掌握指数和对数的运算性质,对数的换底公式; 4、 掌握指数函数和对数函数的图像与性质; 5、 掌握函数的零点存在定理,函数与方程的关系; 6、 熟练数形结合的数学思想在解决函数问题的运用; 7、 熟练掌握导数的计算,导数的几何意义求切线问题; 8、 理解并掌握导数与函数单调性之间的关系,会利用导数分析函数的单调性,会根据单调性确定参数的取 值范围; 9、 会利用导数求函数的极值和最值,掌握构造函数的方法解决问题。 【温馨小提示】 本章内容既是高考的重点,又是难点,再备考过程中应该大量解出各种题型,总结其解题方法,积累一些常用的小结论,会给解题带来极大的方便。 【名校试题荟萃】 1、(2019届新余四中、上高二中高三第一次联考)已知函数 .,R n m ∈ (1)若函数()x f 在()()2,2f 处的切线与直线0=-y x 平行,求实数n 的值; (2)试讨论函数()x f 在区间[)+∞,1上最大值; (3)若1=n 时,函数()x f 恰有两个零点,求证:221>+x x 【答案】(1)6n =(2)1ln m n --(3)见解析 【解析】(1)由, ,由于函数()f x 在(2,(2))f 处的切线与直线0x y -=平行, 故 2 14 n -=,解得6n =。 (2) ,由()0f x '<时,x n >;()0f x '>时,x n <,所以 ①当1n ≤时,()f x 在[)1,+∞上单调递减,故()f x 在[)1,+∞上的最大值为 ;

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

导数大题方法总结[1]

导数大题方法总结 一总论 一般来说,导数的大题有两到三问。每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。 二主流题型及其方法 *(1)求函数中某参数的值或给定参数的值求导数或切线 一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是: 先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。 注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。所以做两个字来概括这一类型题的方法就是:淡定。别人送分,就不要客气。③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。切线要写成一般式。 *(2)求函数的单调性或单调区间以及极值点和最值 一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。这类问题的方法是: 首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。 极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。 最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。 注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。没有注意定义域问题很严重。②分类要准,不要慌张。③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下

近五年高考试题分类汇编-导数部分(附答案解析)

2018年全国高考试题分类汇编-导数部分(含解析) 1.(2018·全国卷I 高考理科·T5)同(2018·全国卷I 高考文科·T6)设函数f (x )=x3+(a -1)x2+ax.若f (x )为奇函数,则曲线y=f (x )在点(0,0)处的切线方程为( ) A.y=-2x B.y=-x C.y=2x D.y=x 2.(2018·全国卷II 高考理科·T13)曲线y=2ln(x+1)在点(0,0)处的切线方程为 3.(2018·全国卷II 高考文科·T13)曲线y=2lnx 在点(1,0)处的切线方程为 4.(2018·全国Ⅲ高考理科·T14)曲线y=(ax +1)ex 在点(0,1)处的切线的斜率为-2,则a= . 5.(2018·天津高考文科·T10)已知函数f(x)=exlnx,f ′(x)为f(x)的导函数,则f ′(1)的值为 . 6.(2018·全国卷I 高考理科·T16)已知函数f (x )=2sinx+sin2x,则f (x )的最小值是 . 7.(2017·全国乙卷文科·T14)曲线y=x 2 + 1 x 在点(1,2)处的切线方程为 . 8.(2017·全国甲卷理科·T11)若x=-2是函数f (x )=(2x +ax-1)1x e -的极值点,则f (x )的极小值为 ( ) A.-1 B.-23e - C.53e - D.1 9.(2017 10.(2017递增,则称f (x )A.f (x )=2-x 11.(2017数a 12.(2017则称f (x )具有M ①f (x )=2-x ;②f (x

13.(2017·全国乙卷理科·T16)如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O.D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3 )的最大值为 . 14.(2017·天津高考文科·T10)已知a ∈R ,设函数f (x )=ax-lnx 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为 . 15.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3 sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是( ) A.[-1,1] B.11,3 ? ? -?? ?? C.11,33??- ???? D.11,3? ? --???? 16.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的 切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 17.(2016·四川高考文科·T6)已知a 为函数f (x )=x 3 -12x 的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 18.(2016·四川高考文科·T10)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切线,l 1 与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2) C.(0,+∞) D.(1,+∞) 19.(2016·山东高考文科·T10)同(2016·山东高考理科·T10) 若函数y=f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f (x )具有T 性质.下列函数中具有T 性质的是 ( ) A.y=sinx B.y=lnx C.y=e x D.y=x 3 20.(2016·全国卷Ⅱ理科·T16)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b= .

高中导数大题专题复习

高中导数大题专题复习 一、导数的基本应用 (一)研究含参数的函数的单调性、极值和最值 基本思路:定义域 →→ 疑似极值点 →→ 单调区间 →→ 极值 →→ 最值 基本方法: 一般通法:利用导函数研究法 特殊方法:(1)二次函数分析法;(2)单调性定义法 【例题】(2008北京理18/22)已知函数2 2()(1)x b f x x -=-,求导函数()f x ',并确定()f x 的 单调区间.

本组题旨在强化对导函数零点进行分类讨论的意识、能力和技巧 【例题】(2009北京文18/22)设函数3 ()3(0)f x x ax b a =-+≠. (Ⅱ)求函数()f x 的单调区间与极值点. 【例题】(2009天津理20/22)已知函数2 2 ()(23)(),x f x x ax a a e x R =+-+∈其中a R ∈. (II )当2 3 a ≠时,求函数()f x 的单调区间与极值. 【例题】(2008福建文21/22)已知函数3 2 ()2f x x mx nx =++-的图象过点(1,6)--,且函数()()6g x f x x '=+的图象关于y 轴对称.(Ⅰ)求m n 、的值及函数()y f x =的单调区间;(Ⅱ)若0a >,求函数()y f x =在区间(1,1)a a -+内的极值.

【例题】(2009安徽文21/21)已知函数2 ()1ln f x x a x x =-+-,a >0, (I)讨论()f x 的单调性; (II)设a=3,求()f x 在区间[1,2 e ]上值域.其中e=2.71828…是自然对数的底数. (二)利用函数的单调性、极值、最值,求参数取值范围 基本思路:定义域 →→ 单调区间、极值、最值 →→ 不等关系式 →→ 参数取值范围 基本工具:导数、含参不等式解法、均值定理等 【例题】(2008湖北文17/21)已知函数3 2 2 ()1f x x mx m x =+-+(m 为常数,且m >0)有极大值....9. . (Ⅰ)求m 的值; (Ⅱ)若斜率为5-的直线是曲线()y f x =的切线,求此直线方程. 【例题】(2009四川文20/22)已知函数3 2()22f x x bx cx =++-的图象在与x 轴交点处的切线方程是510y x =-. (I )求函数()f x 的解析式; (II )设函数1 ()()3 g x f x mx =+ ,若.()g x 的极值存在.....,求实数m 的取值范围以及函数()g x 取得极值时对应的自变量x 的值.

2017年高考真题分类汇编(理数)专题2导数(解析版)

2017年高考真题分类汇编(理数):专题2 导数 一、单选题(共3题;共6分) 1、(2017?浙江)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是() A、 B、 C、 D、 2、(2017?新课标Ⅱ)若x=﹣2是函数f(x)=(x2+ax﹣1)e x﹣1的极值点,则f(x)的极小值为() A、﹣1 B、﹣2e﹣3 C、5e﹣3 D、1 3、(2017?新课标Ⅲ)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=() A、﹣ B、 C、 D、1 二、解答题(共8题;共50分)

4、(2017?浙江)已知函数f(x)=(x﹣)e﹣x(x≥ ). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间[ ,+∞)上的取值范围. 5、(2017?山东)已知函数f(x)=x2+2cosx,g(x)=e x(cosx﹣sinx+2x﹣2),其中e≈2.17828…是自然对数的底数.(13分) (Ⅰ)求曲线y=f(x)在点(π,f(π))处的切线方程; (Ⅱ)令h(x)=g (x)﹣a f(x)(a∈R),讨论h(x)的单调性并判断有无极值,有极值时求出极值.6、(2017?北京卷)已知函数f(x)=e x cosx﹣x.(13分) (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求函数f(x)在区间[0,]上的最大值和最小值. 7、(2017·天津)设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个 零点x0, g(x)为f(x)的导函数. (Ⅰ)求g(x)的单调区间; (Ⅱ)设m∈[1,x0)∪(x0,2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0, 2],满足| ﹣x0|≥ . 8、(2017?江苏)已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值) (Ⅰ)求b关于a的函数关系式,并写出定义域; (Ⅱ)证明:b2>3a; (Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣,求a的取值范围. 9、(2017?新课标Ⅰ卷)已知函数f(x)=ae2x+(a﹣2)e x﹣x.(12分) (1)讨论f(x)的单调性; (2)若f(x)有两个零点,求a的取值范围. 10、(2017?新课标Ⅱ)已知函数f(x)=ax2﹣ax﹣xlnx,且f(x)≥0. (Ⅰ)求a; (Ⅱ)证明:f(x)存在唯一的极大值点x0,且e﹣2<f(x0)<2﹣2. 11、(2017?新课标Ⅲ)已知函数f(x)=x﹣1﹣alnx. (Ⅰ)若 f(x)≥0,求a的值; (Ⅱ)设m为整数,且对于任意正整数n,(1+ )(1+ )…(1+ )<m,求m的最小值.

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

(完整版)导数的综合大题及其分类.(可编辑修改word版)

a - a 2-4 2 a + a 2-4 2 导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1) 单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点 的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2) 极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3) 最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极 值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数 f (x )=x 1 g (x )=a ln x (a ∈R ). - , x (1) 当 a ≥-2 时,求 F (x )=f (x )-g (x )的单调区间; (2) 设 h (x )=f (x )+g (x ),且 h (x )有两个极值点为 x ,x ,其中 x ∈ 1 ,求 h (x )-h (x )的最 1 2 1 (0, ] 1 2 2 小值. [审题程序] 第一步:在定义域内,依据 F ′(x )=0 根的情况对 F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立 x 1、x 2 及 a 间的关系及取值范围; 第四步:通过代换转化为关于 x 1(或 x 2)的函数,求出最小值. [规范解答] (1)由题意得 F (x )=x 1 a ln x , - - x x 2-ax +1 其定义域为(0,+∞),则 F ′(x )= , x 2 令 m (x )=x 2-ax +1,则 Δ=a 2-4. ①当-2≤a ≤2 时,Δ≤0,从而 F ′(x )≥0,∴F (x )的单调递增区间为(0,+∞); ②当 a >2 时,Δ>0,设 F ′(x )=0 的两根为 x 1= ,x 2= ,

导数大题解题步骤

导数大题 一、知识准备 1、导数定义:x x f x x f x f x ?-?+=→?)()(lim )(0' 2、导数的计算: (1)基本初等函数的导数公式: ①若C x f =)((C 为常数),则0)('=x f ②若a x x f =)(,则1')(-?=a x a x f ③若x x f sin )(=,则x x f cos )('= ④若x x f cos )(=,则x x f sin )('-= ⑤若x e x f =)(,则x e x f =)(' ⑥若x a x f =)(,则a a x f x ln )('= ⑦若x x f ln )(=,则x x f 1)('= . ⑧若x x f a log )(=,则a x x f ln 1)('= (2)导数的运算法则: ①[])()()()('''x g x f x g x f ±=± ②[])()()()()()(''' x g x f x g x f x g x f ?+?=? ③)()()()()()()(2''' x g x g x f x g x f x g x f ?-?=?? ???? (3)复合函数求导:[])())(())(('''x g x g f x g f ?= 3、导数在研究函数中的应用 (1)函数单调性与导数的关系: 一般的,函数的单调性与其导数的正负有如下关系 在某个区间[]b a ,内:①若0)('>x f ,那么函数)(x f y =在[]b a ,上单调递增 ②若0)('<x f ,那么函数)(x f y =在[]b a ,上单调递减 (2)函数极值(局部比较大小)与导数的关系: 求函数)(x f y =极值的方法:首先求出当0)(=x f 时的解0x ,若无解则无极值,若有解也不一定有极值,所以要进行以下判断 ①若在0x 左侧0)('<x f ,右侧0)(' >x f ,那么)(0x f 是极小值 ②若在0x 左侧0)('>x f ,右侧0)('<x f ,那么)(0x f 是极大值 ②若在0x 左侧和右侧的)('x f 同号,那么)(0x f 不是)(x f 的极值 (3)函数最值(整体比较大小)与导数的关系: 求)(x f y =在区间[]b a ,上的最大值与最小值的步骤:

导数复习经典例题分类(含答案)

导数解答题题型分类之拓展篇(一) 编 制:王 平 审 阅:朱 成 2014-05-31 题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一 种:变更主元(即关于某字母的一次函数);题型特征(已知谁的范围就把谁作为主元); 第二种:分离变量求最值(请同学们参考例5); 第三种:关于二次函数的不等式恒成立; 第四种:构造函数求最值;题型特征()()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立) ;参考例4; 例1.已知函数321()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,22()3 f x a ->恒成立,求a 的取值范围. 例2.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域;

(2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例3.已知函数32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+ -++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例4.已知定义在R 上的函数32()2f x ax ax b =-+)(0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.

(word完整版)高考导数解答题中常见的放缩大法

(高手必备)高考导数大题中最常用的放缩大法 相信不少读者在做高考导数解答题时都有这样的感悟,将复杂的函数求导,再对导函数求导,再求导,然后就没有然后了......如果懂得了最常见的放缩,如:人教版课本中常用的结论 ⑴sin ,(0,)x x x π<∈,变形即为 sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>. 将这些不等式简单变形如下: ex x ex e x e x x x x x 1ln ,,1,1ln 11-≥≥+≥-≤≤-那么很多问题将迎刃而解。 例析:(2018年广州一模)x e x x f x x ax x f 2)(,0,1ln )(?≤>++=若对任意的设恒成立,求a 的取值范围。 放缩法:由可得:1+≥x e x 2)1(ln 1ln 2)1(ln )1(ln 1ln ln 22=+-++≥+-=+-=+-+x x x x x x e x x xe x x e x x x x 高考中最常见的放缩法可总结如下,供大家参考。 第一组:对数放缩 (放缩成一次函数)ln 1x x ≤-,ln x x <,()ln 1x x +≤ (放缩成双撇函数)()11ln 12x x x x ??<-> ???,()11ln 012x x x x ??>-<< ??? , ) ln 1x x <>,)ln 01x x ><<, (放缩成二次函数)2ln x x x ≤-,()()21ln 1102 x x x x +≤--<<,()()21ln 102 x x x x +≥-> (放缩成类反比例函数)1ln 1x x ≥-,()()21ln 11x x x x ->>+,()()21ln 011x x x x -<<<+, ()ln 11x x x +≥+,()()2ln 101x x x x +>>+,()()2ln 101x x x x +<<+ 第二组:指数放缩

2020高考数学函数与导数综合题型分类总结

函数综合题分类复习 题型一:关于函数的单调区间(若单调区间有多个用“和”字连接或用“逗号”隔开),极值,最值;不等式恒成立;此类问题提倡按以下三个步骤进行解决: 第一步:令 0)('=x f 得到两个根;第二步:列表如下;第三步:由表可知; 不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种: 第一种:变更主元(即关于某字母的一次函数)-----题型特征(已知谁的范围就把谁作为主元);第二种:分离变量求最值(请同学们参考例5);第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值----题型特征 )()(x g x f >恒成立 0)()()(>-=?x g x f x h 恒成立;参考例4; 例1.已知函数32 1()23 f x x bx x a =-++,2x =是)(x f 的一个极值点. (Ⅰ)求()f x 的单调递增区间;(Ⅱ)若当[1, 3]x ∈时,2 2()3 f x a ->恒成立,求a 的取值范围. 例2.已知函数b ax ax x x f +++=2 3)(的图象过点)2,0(P . (1)若函数)(x f 在1-=x 处的切线斜率为6,求函数)(x f y =的解析式;(2)若3>a ,求函数)(x f y =的单调区间。 例3.设2 2(),1 x f x x = +()52(0)g x ax a a =+->。 (1)求()f x 在[0,1]x ∈上的值域; (2)若对于任意1[0,1]x ∈,总存在0[0,1]x ∈,使得01()()g x f x =成立,求a 的取值范围。 例4.已知函数 32()f x x ax =+图象上一点(1,)P b 的切线斜率为3-, 32 6()(1)3(0)2 t g x x x t x t -=+-++> (Ⅰ)求,a b 的值; (Ⅱ)当[1,4]x ∈-时,求()f x 的值域; (Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 例5.已知定义在R 上的函数 32()2f x ax ax b =-+) (0>a 在区间[]2,1-上的最大值是5,最小值是-11. (Ⅰ)求函数()f x 的解析式;(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围. 例6.已知函数 2233)(m nx mx x x f +++=,在1-=x 时有极值0,则=+n m 例7.已知函数23)(a x x f =图象上斜率为3的两条切线间的距离为 510 2,函数33)()(2 2 +-=a bx x f x g . (1) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式; (2) 若函数)(x g 在区间]1,1[-上为增函数,且)(42 x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围. 答案: 1、解:(Ⅰ) '2()22f x x bx =-+. ∵2x =是)(x f 的一个极值点, ∴2x =是方程2 220x bx -+=的一个根,解得32 b =. 令'()0f x >,则2 320x x -+>,解得1x <或2x >. ∴函数()y f x =的单调递增区间为(, 1)-∞,(2, +)∞. (Ⅱ)∵当(1,2)x ∈时 '()0f x <,(2,3)x ∈时'()0f x >, ∴ ()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2 (2)3 f a = +. 若当[1, 3]x ∈时,要使 22()3f x a -> 恒成立,只需22(2)3f a >+, 即2 2233 a a +>+,解得 01a <<. 2、解:(Ⅰ)a ax x x f ++='23)(2 . 由题意知? ??=+-=-'==623)1(2)0(a a f b f ,得 ???=-=23b a . ∴ 233)(23+--=x x x x f . (Ⅱ)023)(2=++='a ax x x f . ∵ 3>a ,∴ 01242>-=?a a .

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y 在0x x 处的切线方程。方法: )(0x f 为在0x x 处的切线的斜率。 题型2 过点),(b a 的直线与曲线 )(x f y 的相切问题。 方法:设曲线 )(x f y 的切点))(,(00x f x ,由b x f x f a x )()()(000 求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例 已知函数f (x )=x 3 ﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169y x ) (2)若过点A )2)(,1(m m A 可作曲线)(x f y 的三条切线,求实数 m 的取值范围、 (提示:设曲线 )(x f y 上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于 m x ,0的方 程有三个不同实数根问题。(答案: m 的范围是2,3) 题型3 求两个曲线)(x f y 、)(x g y 的公切线。方法:设曲线)(x f y 、)(x g y 的切点分别为( )(,11x f x )。()(,22x f x ); 建立 21,x x 的等式关系,12112)()(y y x f x x ,12 212 )()(y y x f x x ;求出21,x x ,进而求出 切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线 2 x y 与曲线x e y ln 2的公切线方程。(答案02e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与 0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与 0的 关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。例 已知函数x a x x a x f )1(2 1ln ) (2 (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)(2)若 e x ,2,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为 0) (0) (' ' x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。 注意:“函数)(x f 在 n m,上是减函数”与“函数)(x f 的单调减区间是b a,”的区别是前者是后者的子集。 例已知函数2 () ln f x x a x + x 2在 , 1上是单调函数,求实数 a 的取值范围. (答案 , 0) 题型 3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。 例 设函数 1) (2 3 x ax x x f ,R a 在区间 1,2 1内不单调,求实数 a 的取值范围。 (答案: 3, 2a ) )三.极值、最值问题。 题型1 求函数极值、最值。基本思路:定义域 → 疑似极值点 → 单调区间 → 极值→ 最值。 例 已知函数12 1)1() (2 kx x e k x e x f x x ,求在2,1x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型 2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。方法2.转化为函数单调性问题。 例 函数1)1(2 1)1(3 14 1) (2 3 4 x p p px x p x x f 。0是函数)(x f 的极值点。求实数 p 值。(答案:1)

相关文档
最新文档