导数各类题型方法总结(绝对经典)

导数各类题型方法总结(绝对经典)
导数各类题型方法总结(绝对经典)

第一章 导数及其应用

一, 导数的概念 1..已知x

f x f x

x f x ?-?+=→?)

2()2(lim

,1

)(0

则的值是( )

A. 4

1- B. 2 C. 41

D. -2

变式1:()()()为则设h

f h f f h 233lim ,430--='→( )

A .-1

B.-2 C .-3

D .1 变式2:()()()00003,lim x f x x f x x f x x x ?→+?--??设在可导则等于

( )

A .()02x f '

B .()0x f '

C .()03x f '

D .()04x f '

导数各种题型方法总结

请同学们高度重视:

首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法

5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在

其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。

最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础

一、基础题型:函数的单调区间、极值、最值;不等式恒成立;

1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)('

=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知;

其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)

第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元);

(请同学们参看2010省统测2)

例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,

()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432

3()1262

x mx x f x =--

(1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围;

(2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值.

解:由函数4323()1262x mx x f x =-- 得32

()332

x mx f x x '=-- 2()3g x x mx ∴=--

(1)

()y f x =在区间[]0,3上为“凸函数”,

则 2

()30g x x mx ∴=--< 在区间[0,3]上恒成立

解法一:从二次函数的区间最值入手:等价于max ()0g x <

(0)030

2(3)09330g m g m <-??<--

解法二:分离变量法:

∵ 当0x =时, 2

()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2

()30g x x mx =--<恒成立

等价于233

x m x x x ->=-的最大值(03x <≤)恒成立, 而3

()h x x x

=-(03x <≤)是增函数,则max ()(3)2h x h ==

2m ∴>

(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2

()30g x x mx =--< 恒成立

变更主元法

再等价于2

()30F m mx x =-+>在2m ≤恒成立(视为关于

m 的一次函数最值问题)

2

2

(2)0230

11(2)0230

F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

例2:设函数),10(323

1

)(223R b a b x a ax x x f ∈<<+-+-=

(Ⅰ)求函数f (x )的单调区间和极值;

(Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围.

(二次函数区间最值的例子)

解:(Ⅰ)()()2

2

()433f x x ax a x a x a '=-+-=---

01a <<

-2 2 3a

a

()f x '

a

3a

令,0)(>'x f 得)(x f 的单调递增区间为(a ,3a )

令,0)(<'x f 得)(x f 的单调递减区间为(-∞,a )和(3a ,+∞)

∴当x=a 时,)(x f 极小值=;4

33

b a +-

当x=3a 时,)(x f 极大值=b.

(Ⅱ)由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2

2

43a x ax a a -≤-+≤恒成立①

则等价于()g x 这个二次函数max min ()()g x a g x a

≤??≥-? 22

()43g x x ax a =-+的对称轴2x a =

01,a <<

12a a a a +>+=(放缩法)

即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

22()43[1,2]g x x ax a a a =-+++在上是增函数.

max min ()(2)2 1.

()(1)4 4.

g x g a a g x g a a =+=-+=+=-+

于是,对任意]2,1[++∈a a x ,不等式①恒成立,等价于

(2)44,4

1.(1)215g a a a a g a a a

+=-+≤?≤≤?

+=-+≥-?解得 又,10<

.15

4

<≤a 点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系

第三种:构造函数求最值

题型特征:)()(x g x f >恒成立0)()()(>-=?x g x f x h 恒成立;从而转化为第一、二种题型

例3;已知函数32

()f x x ax =+图象上一点(1,)P b 处的切线斜率为3-,

32

6()(1)3(0)2

t g x x x t x t -=+

-++> (Ⅰ)求,a b 的值;

(Ⅱ)当[1,4]x ∈-时,求()f x 的值域;

(Ⅲ)当[1,4]x ∈时,不等式()()f x g x ≤恒成立,求实数t 的取值范围。 解:(Ⅰ)/

2

()32f x x ax =+∴/(1)31f b a ?=-?=+?

, 解得3

2a b =-??=-?

(Ⅱ)由(Ⅰ)知,()f x 在[1,0]-上单调递增,在[0,2]上单调递减,在[2,4]上单调递减 又(1)4,(0)0,(2)4,(4)16f f f f -=-==-= ∴()f x 的值域是[4,16]-

2x a =

[]1,

2a a ++

(Ⅲ)令2

()()()(1)3[1,4]2

t h x f x g x x t x x =-=-++-∈ 思路1:要使()()f x g x ≤恒成立,只需()0h x ≤,即2

(2)26t x x x -≥-分离变量

思路2:二次函数区间最值

二、题型一:已知函数在某个区间上的单调性求参数的范围

解法1:转化为0)(0)(''≤≥x f x f 或在给定区间上恒成立, 回归基础题型

解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;

做题时一定要看清楚“在(m,n )上是减函数”与“函数的单调减区间是(a,b )”,要弄清楚两句话的区别:前者是后者的子集

例4:已知R a ∈,函数x a x a x x f )14(2

1121)(2

3++++=

. (Ⅰ)如果函数)()(x f x g '=是偶函数,求)(x f 的极大值和极小值; (Ⅱ)如果函数)(x f 是),

(∞+-∞上的单调函数,求a 的取值范围.

解:

)14()1(4

1)(2

++++=

'a x a x x f . (Ⅰ)∵

()f x '是偶函数,∴ 1-=a . 此时x x x f 312

1)(3-=,341

)(2-='x x f ,

0)(='x f ,解得:32±=x .

列表如下:

x

(-∞,-2

3)

-23

(-2

3,23)

2

3

(2

3,+∞)

)(x f '

+ 0

- 0

+ )(x f

递增

极大值 递减

极小值

递增

可知:

()f x 的极大值为34)32(=-f , ()f x 的极小值为34)32(-=f .

(Ⅱ)∵函数

)(x f 是),(∞+-∞上的单调函数,

2

1()(1)(41)04

f x x a x a '=

++++≥,在给定区间R 上恒成立判别式法

则221

(1)4(41)204

a a a a ?

=+-??+=-≤,

解得:02a ≤≤. 综上,a 的取值范围是}20{≤≤a a .

例5、已知函数3211

()(2)(1)(0).32

f x x a x a x a =

+-+-≥ (I )求()f x 的单调区间;

(II )若()f x 在[0,1]上单调递增,求a 的取值范围。子集思想 (I )2

()(2)1(1)(1).f x x a x a x x a '=+-+-=++-

1、2

0,()(1)0,a f x x '==+≥当时恒成立

当且仅当1x =-时取“=”号,()(,)f x -∞+∞在单调递增。 2、12120,()0,1,1,,a f x x x a x x '>==-=-<当时由得且

单调增区间:(,1),(1,)a -∞--+∞ 单调增区间:(1,1)a -- (II )当

()[0,1],f x 在上单调递增 则[]0,1是上述增区间的子集:

1、0a =时,()(,)f x -∞+∞在单调递增 符合题意

2、[]()0,11,a ?-+∞,10a ∴-≤ 1a ∴≤ 综上,a 的取值范围是[0,1]。

三、题型二:根的个数问题

题1函数f(x)与g(x)(或与x 轴)的交点======即方程根的个数问题 解题步骤

第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;

第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;

第三步:解不等式(组)即可; 例6、已知函数232)1(31)(x k x x f +-=

,kx x g -=3

1)(,且)(x f 在区间),2(+∞上为增函数. (1) 求实数k 的取值范围;

(2) 若函数)(x f 与)(x g 的图象有三个不同的交点,求实数k 的取值范围. 解:(1)由题意x k x x f )1()(2

+-=' ∵)(x f 在区间),2(+∞上为增函数,

∴0)1()(2

>+-='x k x x f 在区间),2(+∞上恒成立(分离变量法)

a-1

-1

()f x '

即x k <+1恒成立,又2>x ,∴21≤+k ,故1≤k ∴k 的取值范围为1≤k

(2)设3

12)1(3)()()(23-++-=-=kx x k x x g x f x h , )1)(()1()(2--=++-='x k x k x k x x h 令0)(='x h 得k x =或1=x 由(1)知1≤k ,

①当1=k 时,0)1()(2

≥-='x x h ,)(x h 在R 上递增,显然不合题意… ②当1

x ),(k -∞ k

)1,(k 1 ),1(+∞ )(x h ' + 0 — 0 + )(x h

↗ 极大值3

12623-+-k k

↘ 极小值 21-k ↗ 由于02

1<-k ,欲使)(x f 与)(x g 的图象有三个不同的交点,即方程0)(=x h 有三个不同的实根,故需

031

2623>-+-k k ,即0)22)(1(2<---k k k ∴???>--<0

2212k k k ,解得31-

根的个数知道,部分根可求或已知。 例7、已知函数3

2

1()22

f x ax x x c =+

-+ (1)若1x =-是()f x 的极值点且()f x 的图像过原点,求()f x 的极值;

(2)若2

1()2

g x bx x d =

-+,在(1)的条件下,是否存在实数b ,使得函数()g x 的图像与函数()f x 的图像恒有含1x =-的三个不同交点?若存在,求出实数b 的取值范围;否则说明理由。

解:(1)∵()f x 的图像过原点,则(0)00f c =?= 2()32f x ax x '=+-,

又∵1x =-是()f x 的极值点,则(1)31201f a a '-=--=?=-

2()32(32)(1)0f x x x x x '∴=+-=-+=

3()(1)2f x f =-=

极大值 222()()37

f x f ==-极小值 (2)设函数()

g x 的图像与函数()f x 的图像恒存在含1x =-的三个不同交点,

()()

f x

g x =有含

1

x =-的三个根,即:

1

(1)(1)(1)2

f g d b -=-?=--

322111

2(1)222x x x bx x b ∴+-=---整理得:

即:32

11(1)(1)022

x b x x b ---+-=恒有含1x =-的三个不等实根

2

3

-1

()f x '

(计算难点来了:)3211

()(1)(1)022

h x x b x x b =---+-=有含1x =-的根,

则()h x 必可分解为(1)()0x +=二次式,故用添项配凑法因式分解,

3x 22x x +-211

(1)(1)022

b x x b ---+-=

2211(1)(1)(1)022x x b x x b ??

+-++--=????

22

1(1)(1)2(1)02x x b x x b ??+-++--=?? 十字相乘法分解:[]()21

(1)(1)(1)102

x x b x b x +-+--+=

211(1)(1)(1)022x x b x b ??

+-++-=????

3211

(1)(1)022

x b x x b ∴---+-=恒有含1x =-的三个不等实根

等价于2

11(1)(1)022

x b x b -++-=有两个不等于-1的不等实根。

2

211(1)4(1)04211(1)(1)(1)0

22

b b b b ??=+-?->????

?-+++-≠??(,1)(1,3)(3,)b ?∈-∞-?-?+∞

题2:切线的条数问题====以切点0x 为未知数的方程的根的个数

例7、已知函数3

2

()f x ax bx cx =++在点0x 处取得极小值-4,使其导数'()0f x >的x 的取值范围为

(1,3),求:(1)()f x 的解析式;(2)若过点(1,)P m -可作曲线()y f x =的三条切线,求实数m 的取值范

围.

(1)由题意得:2

'()323(1)(3),(0)f x ax bx c a x x a =++=--<

∴在(,1)-∞上'()0f x <;在(1,3)上'()0f x >;在(3,)+∞上'()0f x < 因此()f x 在01x =处取得极小值4-

∴4a b c ++=-①,'(1)320f a b c =++=②,'(3)2760f a b c =++=③

由①②③联立得:169a b c =-??=??=-?

,∴32

()69f x x x x =-+-

(2)设切点Q (,())t f t ,,

()()()y f t f t x t -=-

232(3129)()(69)y t t x t t t t =-+--+-+-

222(3129)(3129)(69)t t x t t t t t t =-+-+-+--+

22(3129)(26)t t x t t t =-+-+-过(1,)m - 232(3129)(1)26m t t t t =-+--+- 32()221290g t t t t m =--+-=

令2

2

'()66126(2)0g t t t t t =--=--=, 求得:1,2t t =-=,方程()0g t =有三个根。 需:(1)0(2)0g g ->??

???--+-

11m m

>-?

故:1116m -<<;因此所求实数m 的范围为:(11,16)-

题3:已知()f x 在给定区间上的极值点个数则有导函数=0的根的个数

解法:根分布或判别式法

例8、

解:函数的定义域为R (Ⅰ)当m =4时,f (x )= 13x 3-7

2

x 2+10x ,

()f x '=x 2-7x +10,令()0f x '> , 解得5,x >或2x <.

令()0f x '< , 解得25x <<

可知函数f (x )的单调递增区间为(,2)-∞和(5,+∞),单调递减区间为()2,5. (Ⅱ)()f x '=x 2-(m +3)x +m +6,

要使函数y =f (x )在(1,+∞)有两个极值点,()f x '?=x 2-(m +3)x +m +6=0的根在(1,+∞)

根分布问题:

则2(3)4(6)0;(1)1(3)60;3 1.2

m m f m m m ?

??=+-+>?

'=-+++>??+?>?, 解得m >3

例9、已知函数232

13)(x x a x f +=

,)0,(≠∈a R a (1)求)(x f 的单调区间;(2)令()g x =1

4x 4+f (x )

(x ∈R )有且仅有3个极值点,求a 的取值范围.

1

解:(1))1()(2

'+=+=ax x x ax x f

当0>a 时,令0)('

>x f 解得01>-

<<-x a

, 所以)(x f 的递增区间为),0()1,(+∞--∞ a ,递减区间为)0,1

(a

-.

当0

()0,(+∞--∞a

.

(2)432

113)42

(g a x x x x =++有且仅有3个极值点

?223(1())ax x x x x x a g x +=+'+=+=0有3个根,则0x =或210x ax ++=,2a <-

方程2

10x ax ++=有两个非零实根,所以2

40,a ?=->

2a ∴<-或2a >

而当2a <-或2a >时可证函数()y g x =有且仅有3个极值点

其它例题:

1、(最值问题与主元变更法的例子).已知定义在R 上的函数32

()2f x ax ax b =-+)

(0>a 在区间[]2,1-上的最大值是5,最小值是-11.

(Ⅰ)求函数()f x 的解析式;

(Ⅱ)若]1,1[-∈t 时,0(≤+'tx x f )恒成立,求实数x 的取值范围.

解:(Ⅰ)

32'2()2,()34(34)f x ax ax b f x ax ax ax x =-+∴=-=-

令'

()f x =0,得[]1240,2,13

x x ==?-

因为0>a ,所以可得下表:

x

[)2,0-

0 (]0,1

'()f x

+ 0 - ()f x

极大

因此)0(f 必为最大值,∴50=)(f 因此5=b , (2)165,(1)5,(1)(2)f a f a f f -=-+=-+∴>-,

即11516)2(-=+-=-a f ,∴1=a ,∴ .52(2

3+-=x x x f )

(Ⅱ)∵x x x f 43)(2

-=',∴0(≤+'tx x f )

等价于0432≤+-tx x x , 令x x xt t g 43)(2

-+=,则问题就是0)(g ≤t 在]1,1[-∈t 上恒成立时,求实数x 的取值范围,

为此只需???≤≤-0)10

)1((g g ,即???≤-≤-0

05322x x x x ,

解得10≤≤x ,所以所求实数x 的取值范围是[0,1].

2、(根分布与线性规划例子)

(1)已知函数322()3

f x x ax bx c =+++

(Ⅰ) 若函数()f x 在1=x 时有极值且在函数图象上的点(0,1)处的切线与直线30x y +=平行, 求)(x f 的解析式;

(Ⅱ) 当()f x 在(0,1)x ∈取得极大值且在(1,

2)x ∈取得极小值时, 设点(2,1)M b a -+所在平面区域为S,

经过原点的直线L 将S 分为面积比为1:3的两部分, 求直线L 的方程. 解: (Ⅰ). 由2

()22f x x ax b '=++, 函数()f x 在1=x 时有极值 ,

∴ 220a b ++= ∵ (0)1f = ∴ 1c =

又∵ ()f x 在(0,1)处的切线与直线30x y +=平行, ∴ (0)3f b '==- 故 1

2

a = ∴ 32

21()3132

f x x x x =

+-+ ……………………. 7分 (Ⅱ) 解法一: 由2

()22f x x ax b '=++ 及()f x 在(0,1)x ∈取得极大值且在(1,2)x ∈取得极小值,

∴ (0)0(1)0(2)0f f f '>??'? 即 0

220480b a b a b >??

++?

令(,)M x y , 则 2

1

x b y a =-??

=+? ∴ 12a y b x =-??=+? ∴ 20

220460

x y x y x +>??++?

故点M 所在平面区域S 为如图△ABC, 易得(2,

0)A -, (2,1)B --, (2,2)C -, (0,1)D -, 3

(0,)2

E -, 2ABC S ?=

同时DE 为△ABC 的中位线, 1

3

DEC

ABED S S ?=四边形 ∴ 所求一条直线L 的方程为: 0x =

另一种情况设不垂直于x 轴的直线L 也将S 分为面积比为1:3的两部分, 设直线L 方程为y kx =,它与AC,BC 分别交于F 、G , 则 0k >, 1S =四边形DEGF

由 220y kx y x =??

++=?

得点F 的横坐标为: 2

21F x k =-+

由 460y kx y x =??

++=?

得点G 的横坐标为: 6

41G x k =-+

∴OGE OFD S S S ??=-四边形DEGF 61311222214121

k k =??

-?+?=+即 216250k k +-=

解得: 12k =

或 58k =- (舍去) 故这时直线方程为: 1

2

y x = 综上,所求直线方程为: 0x =或1

2

y x = .…………….………….12分

(Ⅱ) 解法二: 由2

()22f x x ax b '=++ 及()f x 在(0,1)x ∈取得极大值且在(1,

2)x ∈取得极小值,

∴ (0)0(1)0(2)0f f f '>??'? 即 0220480b a b a b >??

++?

令(,)M x y , 则 2

1

x b y a =-??

=+? ∴ 12a y b x =-??=+? ∴ 20

220460

x y x y x +>??++?

故点M 所在平面区域S 为如图△ABC, 易得(2,

0)A -, (2,1)B --, (2,2)C -, (0,1)D -, 3

(0,)2

E -, 2ABC S ?=

同时DE 为△ABC 的中位线, 1

3

DEC ABED S S ?=

四边形 ∴所求一条直线L 的方程为: 0x = 另一种情况由于直线BO 方程为: 1

2

y x =

, 设直线BO 与AC 交于H , 由 12

220y x

y x ?

=???++=?

得直线L 与AC 交点为: 1(1,)2H -- ∵ 2ABC S ?=, 111

2222

DEC S ?=

??=, 11222211122H ABO AOH S S S ???=-=??-??=AB

∴ 所求直线方程为: 0x = 或1

2

y x =

3、(根的个数问题)已知函数3

2

f(x)ax bx (c 3a 2b)x d (a 0)=++--+>的图象如图所示。

(Ⅰ)求c d 、的值;

(Ⅱ)若函数f(x)的图象在点(2,f(2))处的切线方程为3x y 110+-=,求函数f ( x )的解析式;

(Ⅲ)若0x 5,=方程f(x)8a =有三个不同的根,求实数a 的取值范围。

解:由题知:2

f (x)3ax 2bx+c-3a-2b '=+ (Ⅰ)由图可知

函数f ( x )的图像过点( 0 , 3 ),且()1f '= 0

得332c 320d a b a b =??

++--=????

?==0

3

c d (Ⅱ)依题意 ()2f '= – 3 且f ( 2 ) = 5

124323

846435a b a b a b a b +--=-??

+--+=?

解得a = 1 , b = – 6

所以f ( x ) = x 3 – 6x 2 + 9x + 3

(Ⅲ)依题意 f ( x ) = ax 3 + bx 2 – ( 3a + 2b )x + 3 ( a >0 )

()x f '= 3ax 2 + 2bx – 3a – 2b 由()5f '= 0?b = – 9a

若方程f ( x ) = 8a 有三个不同的根,当且仅当 满足f ( 5 )<8a <f ( 1 ) ②

由① ② 得 – 25a + 3<8a <7a + 3?11

1

<a <3

所以 当

11

1

<a <3时,方程f ( x ) = 8a 有三个不同的根。………… 12分 4、(根的个数问题)已知函数32

1()1()3

f x x ax x a R =--+∈

(1)若函数()f x 在12,x x x x ==处取得极值,且122x x -=,求a 的值及()f x 的单调区间; (2)若12a <

,讨论曲线()f x 与215

()(21)(21)26

g x x a x x =-++-≤≤的交点个数. 解:(1)2

()21f'x x ax =--

12122,1x x a x x ∴+=?=-

22121212()4442x x x x x x a ∴-=+-=+=

0a ∴=………………………………………………………………………2分

22()211f x x ax x '=--=-

令()0f x '>得1,1x x <->或

x 2-

(2,1)-

1

()x ?'

()x ?

982

a --

a

令()0f x '<得11x -<<

∴()f x 的单调递增区间为(,1)-∞-,(1,)+∞,单调递减区间为(1,1)-…………5分 (2)由题()()f x g x =得

3221151(21)326

x ax x x a x --+=-++ 即32111

()20326

x a x ax -+++= 令32111

()()2(21)326

x x a x ax x ?=-+++-≤≤……………………6分

2()(21)2(2)(1)x x a x a x a x ?'∴=-++=--

令()0x ?'=得2x a =或1x =……………………………………………7分

12

a <

当22a ≤-即1a ≤-时

此时,9

802

a --

>,0a <,有一个交点;…………………………9分 当22a ≥-即1

12

a -<<时,

x

2-

(2,2)a - 2a

(2,1)a 1

()x ?'

0 —

()x ? 982a -- 221

(32)36

a a -+

a 221

(32)036

a a -+>, ∴当9802a -->即9

116a -<<-时,有一个交点;

当98002a a --≤≤,且即9

016a -

≤≤时,有两个交点; 当102a <<时,9

802a --<,有一个交点.………………………13分

综上可知,当916

a <-或1

02a <<时,有一个交点;

当9

016

a -≤≤时,有两个交点.…………………………………14分 5、(简单切线问题)已知函数23

)(a

x x f =图象上斜率为3的两条切线间的距离为5102,函数

23()()3bx

g x f x a

=-

+. (Ⅰ) 若函数)(x g 在1=x 处有极值,求)(x g 的解析式;

(Ⅱ) 若函数)(x g 在区间]1,1[-上为增函数,且)(42

x g mb b ≥+-在区间]1,1[-上都成立,求实数m 的取值范围.

函数中任意性和存在性问题探究

高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究

一、相关结论:

结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图一】 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图二】 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图三】 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ?∈?∈>?>;【如图四】

结论5:1212[,],[,],()()()x a b x c d f x g x f x ?∈?∈=?的值域和()g x 的值域交集不为空;【如图五】

【例题1】:已知两个函数2

3

2

()816,()254,[3,3],f x x x k g x x x x x k R =+-=++∈-∈;

(1) 若对[3,3]x ?∈-,都有()()f x g x ≤成立,求实数k 的取值范围; (2) 若[3,3]x ?∈-,使得()()f x g x ≤成立,求实数k 的取值范围; (3) 若对

12,[3,3]

x x ?∈-,都有

12()()

f x

g x ≤成立,求实数k 的取值范围;

解:(1)设

32

()()()2312h x g x f x x x x k =-=--+,(1)中的问题可转化为:[3,3]x ∈-时,()0h x ≥恒成立,即

min [()]0

h x ≥。

'2()66126(2)(1)h x x x x x =--=-+;

当x 变化时,'

(),()h x h x 的变化情况列表如下:

x

-3

(-3,-1) -1 (-1,2)

2

(2,3) 3 h '(x

)

+ 0 - 0

+

h(x)

k-45

增函数

极大值 减函数

极小值 增函数

k-9

因为(1)7,(2)20h k h k -=+=-,所以,由上表可知min [()]45

h x k =-,故k-45≥0,得k ≥45,即k ∈[45,+

∞).

小结:①对于闭区间I ,不等式f(x)k 对x ∈I 时恒成立?[f(x)]min>k, x ∈I.

②此题常见的错误解法:由[f(x)]max ≤[g(x)]min 解出k 的取值范围.这种解法的错误在于条件“[f(x)]max ≤[g(x)]min ”只是原题的充分不必要条件,不是充要条件,即不等价.

(2)根据题意可知,(2)中的问题等价于h(x)= g(x)-f(x) ≥0在x ∈[-3,3]时有解,故[h(x)]max ≥0. 由(1)可知[h(x)]max= k+7,因此k+7≥0,即k ∈[7,+∞).

(3)根据题意可知,(3)中的问题等价于[f(x)]max ≤[g(x)]min ,x ∈[-3,3]. 由二次函数的图像和性质可得, x ∈[-3,3]时, [f(x)]max=120-k. 仿照(1),利用导数的方法可求得x ∈[-3,3]时, [g(x)]min=-21. 由120-k ≥-21得k ≥141,即k ∈[141,+∞). 说明:这里的x1,x2是两个互不影响的独立变量.

从上面三个问题的解答过程可以看出,对于一个不等式一定要看清是对“?x ”恒成立,还是“?x ”使之成立,同时还要看清不等式两边是同一个变量,还是两个独立的变量,然后再根据不同的情况采取不同的等价条件,千万不要稀里糊涂的去猜.. 二、相关类型题:

〈一〉、"()"a f x ≥型;

形如"()","()"a f x a f x ≥≤型不等式,是恒成立问题中最基本的类型,它的理论基础是“()a f x ≥在

x D ?∈上恒成立,则max ()();a f x x D ≥∈()a f x ≤在x ∈D 上恒成立,则min ()();a f x x D ≤∈”.许多复杂的恒

成立问题最终都可归结到这一类型.

例1 :已知二次函数2

()f x ax x =+,若?[0,1]x ∈时,恒有|()|1f x ≤,求实数a 的取值范围. 解:

|()|1f x ≤,∴211ax x -≤+≤;即211x ax x --≤≤-;

当0x =时,不等式显然成立, ∴a ∈R. 当01x <≤时,由2

11x ax x --≤≤-得:221111a x x x x --≤≤-,而min 211()0x x

-= . ∴0a ≤. 又∵max 211

()2x x

-

-=-,∴2,20a a ≥-∴-≤≤,综上得a 的范围是[2,0]a ∈-。 〈二〉、12"()()()"f x f x f x ≤≤型

例 2 已知函数()2sin()25

x f x ππ

=+,若对?x R ∈,都有12"()()()"f x f x f x ≤≤成立,则12||x x -的最小值为____.

解 ∵对任意x ∈R ,不等式12()()()f x f x f x ≤≤恒成立, ∴12(),()f x f x 分别是()f x 的最小值和最大值.

对于函数sin y x =,取得最大值和最小值的两点之间最小距离是π,即半个周期.

又函数()2sin(

)2

5

x f x ππ

=+的周期为4,∴12||x x -的最小值为2. 〈三〉、.1212()()

"()"22

x x f x f x f ++>型

例3: (2005湖北)在2

22,log 2,,cos y x y x y x y x ====这四个函数中,当1201x x <<<时,使

1212()()

"(

)"22

x x f x f x f ++>恒成立的函数的个数是( ) A.0 B.1 C.2 D.3 解:本题实质就是考察函数的凸凹性,即满足条件1212()()

"()"22

x x f x f x f ++>的函数,应是凸函数的性质,画草图即知2log 2y x =符合题意; 〈四〉、.1212

()()

"

0"f x f x x x ->-型

例4 已知函数()f x 定义域为[1,1]-,(1)1f =,若,[1,1]m n ∈-,0m n +≠时,都有()()

"0"f m f n m n

->-,

若2

()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数t 取值范围. 解:任取1211x x -≤<≤,则12121212()()()()()f x f x f x f x x x x x --=

--,由已知1212

()()

0f x f x x x ->-,又

120x x -<,∴12()()0f x f x -

∵(1)1f =,∴[1,1]x ∈-,恒有()1f x ≤;

∴要使2

()21f x t at ≤-+对所有[1,1]x ∈-,[1,1]a ∈-恒成立,即要2

211t at -+≥恒成立,

故2

20t at -≥恒成立,令2

()2g a at t =-+,只须(1)0g -≥且(1)0g ≥, 解得2t ≤-或0t =或2t ≥。 评注: 形如不等式1212()()"

0"f x f x x x ->-或1212

()()

"0"f x f x x x -<-恒成立,实际上是函数的单调性的另一种表

现形式,在解题时要注意此种类型不等式所蕴涵的重要信息.

〈五〉、."()()"f x g x <型: 例5: 已知1

()lg(1)2

f x x =+,()lg(2)

g x x t =+,若当[0,1]x ∈时,()()f x g x ≤)恒成立,求实数t 的取值范围.

解:()()f x g x ≤在[0,1]x ∈恒成立,即120x x t +--≤在[0,1]x ∈恒成立12x x t ?+--在[0,1]上

的最大值小于或等于零. 令()12F x x x t =

+--,'141

()21

x F x x -+=

+,∵[0,1]x ∈

∴'

()0F x <,即()F x 在[0,1]上单调递减,F(0)是最大值. ∴()(0)10f x F t ≤=-≤,即1t ≥。 〈六〉、12"()()"f x g x <型 例6:已知函数32149()3,()332

x c

f x x x x

g x +=

--+=-

,若对任意12,[2,2]x x ∈-,都有12()()f x g x <,求c 的范围.

解:因为对任意的12,[2,2]x x ∈-,都有12()()f x g x <成立,

∴max min [()][()]f x g x <,∵'

2

()23f x x x =--,令'

()0f x >得3,1x x ><-x >3或x <-1;'

()0f x <得

13x -<<;∴()f x 在[2,1]--为增函数,在[1,2]-为减函数.

∵(1)3,(2)6f f -==-,∴max [()]3,f x =.∴1832

c

+<-,∴24c <-。 〈七〉、12"|()()|"f x f x t <<(t 为常数)型;

例7 :已知函数4

3

()2f x x x =-+,则对任意121,[,2]2

t t ∈-(12t t <)都有

12|()()|____f x f x -≤恒成立,当且仅当1t =____,2t =____时取等号.

解:因为12max min |()()||[()][()]|f x f x f x f x -≤-恒成立, 由4

3

1()2,[,2]2f x x x x =-+∈-,易求得max 327[()]()216f x f ==

,min 15

[()]()216

f x f =-=-,∴12|()()|2f x f x -≤。

例8 :已知函数()y f x =满足:(1)定义域为[1,1]-;(2)方程()0f x =至少有两个实根1-和1;(3)过()f x 图像上任意两点的直线的斜率绝对值不大于1.

(1)证明|(0)|1f ≤|;

(2)证明:对任意12,[1,1]x x ∈-,都有12|()()|1f x f x -≤. 证明 (1)略;

(2)由条件(2)知(1)(1)0f f -==,

不妨设1211x x -≤≤≤,由(3)知121221|()()|||f x f x x x x x -≤-=-,

又∵121212|()()||()||()||()(1)||()(1)|f x f x f x f x f x f f x f -≤+=--+-

122112112()2|()()|x x x x f x f x ≤++-=--≤--;∴12|()()|1f x f x -≤

〈八〉、1212"|()()|||"f x f x x x -≤-型

例9: 已知函数3

()f x x ax b =++,对于12123

,(0,)()3

x x x x ∈≠时总有1212|()()|||f x f x x x -<-成立,求实数a 的范围.

解 由3

()f x x ax b =++,得'

2

()3f x x a =+,

当3

(0,

)3

x ∈时,'()1a f x a <<+,∵1212|()()|||f x f x x x -<-, ∴1212()()

|

|1f x f x x x -<-, ∴11011

a a a ≥-??-≤≤?+≤?

评注 由导数的几何意义知道,函数()y f x =图像上任意两点1122(,),(,)P x y Q x y 连线的斜率

21

1221

()y y k x x x x -=

≠-的取值范围,就是曲线上任一点切线的斜率(如果有的话)的范围,利用这个结论,可以解决

形如1212|()()|||f x f x m x x -≤-|或1212|()()|||f x f x m x x -≥-(m >0)型的不等式恒成立问题.

考前寄语:①先易后难,先熟后生;②一慢一快:审题要慢,做题要快;③不能小题难做,小题大做,而要小题小做,小题巧做;④我易人易我不大意,我难人难我不畏难;⑤考试不怕题不会,就怕会题做不对;⑥基础题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分;⑦对数学解题有困难的考生的建议:立足中下题目,力争高上水平,有时“放弃”是一种策略.

最全导数解答题方法归纳总结

导数解答题归纳总结 19.(2009浙江文)(本题满分15分)已知函数3 2 ()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R . (I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值; (II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围. 解析 (Ⅰ)由题意得)2()1(23)(2 +--+='a a x a x x f 又?? ?-=+-='==3 )2()0(0 )0(a a f b f ,解得0=b ,3-=a 或1=a (Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于 导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数 即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有 0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a 整理得:0)1)(1)(5(2 <-++a a a ,解得15-<<-a 20.(2009北京文)(本小题共14分) 设函数3 ()3(0)f x x ax b a =-+≠. (Ⅰ)若曲线()y f x =在点(2,())f x 处与直线8y =相切,求,a b 的值; (Ⅱ)求函数()f x 的单调区间与极值点. 解析 本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能 力. (Ⅰ)()' 233f x x a =-, ∵曲线()y f x =在点(2,())f x 处与直线8y =相切, ∴()()()'20340 4,24.86828 f a a b a b f ?=-=?=????????=-+==????? (Ⅱ)∵()()()' 230f x x a a =-≠, 当0a <时,()' 0f x >,函数()f x 在(),-∞+∞上单调递增, 此时函数()f x 没有极值点. 当0a >时,由()' 0f x x a =?=± , 当() ,x a ∈-∞-时,()' 0f x >,函数()f x 单调递增, 当(),x a a ∈-时,()'0f x <,函数()f x 单调递减, 当(),x a ∈+∞时,()' 0f x >,函数()f x 单调递增,

导数各类题型方法总结(含答案)

导数各种题型方法总结 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数” , 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0) 0302(3) 09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)023011(2)0230F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-=

高考压轴题:导数题型及解题方法总结很全.

高考压轴题:导数题型及解题方法 (自己总结供参考) 一.切线问题 题型1 求曲线)(x f y 在0x x 处的切线方程。方法: )(0x f 为在0x x 处的切线的斜率。 题型2 过点),(b a 的直线与曲线 )(x f y 的相切问题。 方法:设曲线 )(x f y 的切点))(,(00x f x ,由b x f x f a x )()()(000 求出0x ,进而解决相关问题。 注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。例 已知函数f (x )=x 3 ﹣3x . (1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169y x ) (2)若过点A )2)(,1(m m A 可作曲线)(x f y 的三条切线,求实数 m 的取值范围、 (提示:设曲线 )(x f y 上的切点()(,00x f x );建立)(,00x f x 的等式关系。将问题转化为关于 m x ,0的方 程有三个不同实数根问题。(答案: m 的范围是2,3) 题型3 求两个曲线)(x f y 、)(x g y 的公切线。方法:设曲线)(x f y 、)(x g y 的切点分别为( )(,11x f x )。()(,22x f x ); 建立 21,x x 的等式关系,12112)()(y y x f x x ,12 212 )()(y y x f x x ;求出21,x x ,进而求出 切线方程。解决问题的方法是设切点,用导数求斜率,建立等式关系。 例 求曲线 2 x y 与曲线x e y ln 2的公切线方程。(答案02e y x e ) 二.单调性问题 题型1 求函数的单调区间。 求含参函数的单调区间的关键是确定分类标准。分类的方法有:(1)在求极值点的过程中,未知数的系数与 0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与 0的 关系不定);(3) 在求极值点的过程中,极值点的大小关系不定而引起的分类;(4) 在求极值点的过程中,极值点与区间的关系不定而引起分类等。注意分类时必须从同一标准出发,做到不重复,不遗漏。例 已知函数x a x x a x f )1(2 1ln ) (2 (1)求函数)(x f 的单调区间。(利用极值点的大小关系分类)(2)若 e x ,2,求函数)(x f 的单调区间。(利用极值点与区间的关系分类) 题型2 已知函数在某区间是单调,求参数的范围问题。 方法1:研究导函数讨论。 方法2:转化为 0) (0) (' ' x f x f 或在给定区间上恒成立问题, 方法3:利用子区间(即子集思想) ;首先求出函数的单调增区间或减区间,然后让所给区间是求的增或减区间的子 集。 注意:“函数)(x f 在 n m,上是减函数”与“函数)(x f 的单调减区间是b a,”的区别是前者是后者的子集。 例已知函数2 () ln f x x a x + x 2在 , 1上是单调函数,求实数 a 的取值范围. (答案 , 0) 题型 3 已知函数在某区间的不单调,求参数的范围问题。 方法1:正难则反,研究在某区间的不单调方法2:研究导函数是零点问题,再检验。方法3:直接研究不单调,分情况讨论。 例 设函数 1) (2 3 x ax x x f ,R a 在区间 1,2 1内不单调,求实数 a 的取值范围。 (答案: 3, 2a ) )三.极值、最值问题。 题型1 求函数极值、最值。基本思路:定义域 → 疑似极值点 → 单调区间 → 极值→ 最值。 例 已知函数12 1)1() (2 kx x e k x e x f x x ,求在2,1x 的极小值。 (利用极值点的大小关系、及极值点与区间的关系分类) 题型 2 已知函数极值,求系数值或范围。 方法:1.利用导函数零点问题转化为方程解问题,求出参数,再检验。方法2.转化为函数单调性问题。 例 函数1)1(2 1)1(3 14 1) (2 3 4 x p p px x p x x f 。0是函数)(x f 的极值点。求实数 p 值。(答案:1)

高考导数压轴题型归类总结

导数压轴题型归类总结 目 录 一、导数单调性、极值、最值的直接应用 (1) 二、交点与根的分布 (23) 三、不等式证明 (31) (一)作差证明不等式 (二)变形构造函数证明不等式 (三)替换构造不等式证明不等式 四、不等式恒成立求字母范围 (51) (一)恒成立之最值的直接应用 (二)恒成立之分离常数 (三)恒成立之讨论字母范围 五、函数与导数性质的综合运用 (70) 六、导数应用题 (84) 七、导数结合三角函数 (85) 书中常用结论 ⑴sin ,(0,)x x x π<∈,变形即为sin 1x x <,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1. ⑵1x e x >+ ⑶ln(1)x x >+ ⑷ln ,0x x x e x <<>.

一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(. (1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值; (2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21. 解:(1)1=a 时,x x x g -=3)(,由013)(2=-='x x g ,解得3 3 ±=x . 所以当33= x 时,)(x g 有最小值9 32)33(-=g . (2)证明:曲线)(x f y =在点)2,(211a x x P -处的切线斜率112)(x x f k ='= 曲线)(x f y =在点P 处的切线方程为)(2)2(1121x x x a x y -=--. 令0=y ,得12 122x a x x +=,∴12 1 112 11222x x a x x a x x x -=-+=- ∵a x >1,∴ 021 21 <-x x a ,即12x x <. 又∵1122x a x ≠,∴a x a x x a x x a x x =?>+=+= 1 1111212222222 所以a x x >>21. 2. (2009天津理20,极值比较讨论) 已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R ⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当2 3 a ≠ 时,求函数()f x 的单调区间与极值. 解:本小题主要考查导数的几何意义、导数的运算、利用导数研究函数的单调性与极值等基础知识,考查运算能力及分类讨论的思想方法。 ⑴.3)1(')2()(')(022e f e x x x f e x x f a x x =+===,故,时,当 .3))1(,1()(e f x f y 处的切线的斜率为在点所以曲线= ⑵[] .42)2()('22x e a a x a x x f +-++= .223 2 .220)('-≠-≠-=-==a a a a x a x x f 知,由,或,解得令

导数题型方法总结绝对经典

第一章 导数及其应用 一.导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()()00003,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

导数常见题型与解题方法总结

导数题型总结 1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 2、变更主元-----已知谁的范围就把谁作为主元 3、根分布 4、判别式法-----结合图像分析 5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系 (2)端点处和顶点是最值所在 一、基础题型:函数的单调区间、极值、最值;不等式恒成立 此类问题提倡按以下三个步骤进行解决: 第一步:令0)('=x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数, 4323()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=- - 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x <

导数含参数取值范围分类讨论题型总结与方法归纳

导数习题题型十七:含参数导数问题的分类讨论问题 含参数导数问题的分类讨论问题 1.求导后,导函数的解析式含有参数,导函数为零有实根(或导函数的分子能分解因式), 导函数为零的实根中有参数也落在定义域内,但不知这些实根的大小关系,从而引起讨论。 ★已知函数ax x a x x f 2)2(2 131)(23++-=(a>0),求函数的单调区间 )2)((2)2()(--=++-='x a x a x a x x f ★★例1 已知函数x a x a x x f ln )2(2)(+-- =(a>0)求函数的单调区间 2 2 2) )(2(2)2()(x a x x x a x a x x f --=++-=' ★★★例3已知函数()()22 21 1 ax a f x x R x -+=∈+,其中a R ∈。 (Ⅰ)当1a =时,求曲线()y f x =在点()() 2,2f 处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值。 ! 解:(Ⅰ)当1a =时,曲线()y f x =在点()() 2,2f 处的切线方程为032256=-+y x 。 (Ⅱ)由于0a ≠,所以()() 1 2)1(222+-+='x x a x f ,由 ()'0f x =,得121 ,x x a a =-=。这两个实根都在定 ()()()()()() 2 2 ' 2222 122122111a x a x a x x ax a a f x x x ? ?--+ ?+--+??==++义域R 内,但不知它们之间 的大小。因此,需对参数a 的取值分0a >和0a <两种情况进行讨论。 (1)当0a >时,则12x x <。易得()f x 在区间1,a ? ? -∞- ??? ,(),a +∞内为减函数, 在区间1,a a ?? - ??? 为增函数。故函数()f x 在11x a =-处取得极小值 21f a a ?? -=- ??? ; 函数()f x 在2x a =处取得极大值()1f a =。 (1) 当0a <时,则12x x >。易得()f x 在区间),(a -∞,),1 (+∞-a 内为增函数,在区间 )1,(a a -为减函数。故函数()f x 在11 x a =-处取得极小值 21f a a ?? -=- ??? ;函数 ()f x 在 2x a =处取得极大值()1f a =。

导数题型方法总结(绝对经典)

第一章导数及其应用 一.导数的概念 1..已知的值是() A. B. 2 C. D. -2 变式1:() A.-1B.-2C.-3D.1 变式2:() A.B.C.D. 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数, (1)若在区间上为“凸函数”,求m的取值范围; (2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值. 解:由函数得 (1)在区间上为“凸函数”, 则在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于

导数各种题型方法总结

导数各种题型方法总结
请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2 变更主元;3 根分布;4 判别式法 5、二次函数区间最值求法: (1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次, 分析每种题型的本质, 你会发现大部分都在解决 “不等式恒成立问题” 以及“充分应用数形结合思想” ,创建不等关系求出取值范围。b5E2RGbCAP 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立;
1、此类问题提倡按以下三个步骤进行解决: 第一步:令 f ' ( x) ? 0 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:
第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元) ;
(请同学们参看 2012 省统测 2) 例 1: 设函数 y ? f ( x) 在区间 D 上的导数为 f ?( x ) , f ?( x ) 在区间 D 上的导数为 g ( x) , 若在区间 D 上,
g ( x) ? 0 恒 成 立 , 则 称 函 数 y ? f ( x ) 在 区 间 D 上 为 “ 凸 函 数 ” ,已知实数 m 是常数,
f ( x) ?
x 4 mx3 3x 2 ? ? p1EanqFDPw 12 6 2 (1)若 y ? f ( x) 在区间 ? 0,3? 上为“凸函数” ,求 m 的取值范围;
(2)若对满足 m ? 2 的任何一个实数 m ,函数 f ( x ) 在区间 ? a, b ? 上都为“凸函数” ,求 b ? a 的最大
值.
x 4 mx3 3x 2 x3 mx 2 ? ? ? ? 3x 解:由函数 f ( x) ? 得 f ?( x) ? 12 6 2 3 2 ? g ( x) ? x2 ? mx ? 3
(1)
y ? f ( x) 在区间 ?0,3? 上为“凸函数” ,
2
则 ? g ( x) ? x ? mx ? 3 ? 0 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 gmax ( x) ? 0
1 / 19

导数各类题型方法总结(绝对经典)

第一章 导数及其应用 一, 导数的概念 1..已知x f x f x x f x ?-?+=→?) 2()2(lim ,1 )(0 则的值是( ) A. 4 1- B. 2 C. 41 D. -2 变式1:()()()为则设h f h f f h 233lim ,430--='→( ) A .-1 B.-2 C .-3 D .1 变式2:()()() 0000 3,lim x f x x f x x f x x x ?→+?--??设在可导则等于 ( ) A .()02x f ' B .()0x f ' C .()03x f ' D .()04x f ' 导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系 (2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题,

2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上,()0 g x <恒成立,则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-? ?<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =- (03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立

导数各类题型方法总结

导数题型总结(解析版) 题型一: 关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令0)(' =x f 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种: 第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数” ,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =--得32 ()332x mx f x x '=-- 2()3g x x mx ∴=--(1) ()y f x =在区间[]0,3上为“凸函数”,

帮你总结导数题型(共12类)

导数题型目录 1.导数的几何意义 2.导数四则运算构造新函数 3.利用导数研究函数单调性 4.利用导数研究函数极值和最值 5.①知零点个数求参数范围②含参数讨论零点个数 6.函数极值点偏移问题 7.导函数零点不可求问题 8.双变量的处理策略 9.不等式恒成立求参数范围 10.不等式证明策略 11.双量词的处理策略 12.绝对值与导数结合问题 导数专题一导数几何意义 一.知识点睛 导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。 二.方法点拨: 1.求切线 ①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y=f(x)在点x=x0处的导数f′(x0)(3)根据直线点斜式方程,得切线方程:y-y0=f′(x0)(x-x0). ②点(x0,y0)不是切点求切线:(1)设曲线上的切点为(x1,y1);(2)根据切点写出切线方程y-y1=f′(x1)(x-x1) (3)利用点(x0,y0)在切线上求出(x1,y1);(4)把(x1,y1)代入切线方程求得切线。 2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f′(x0) ②切点在曲线上③切点在切线上 三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习 1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=f(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是 2.(2014新课标全国Ⅱ)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=

《导数及其应用》经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考点一 导数的概念,物理意义的应用 例1.(1)设函数()f x 在2x =处可导,且(2)1f '=,求0 (2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2)(2008)f x x x x x =+++L ,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.

题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f +=)(的单调区间。 例3 若函数f(x)=x 3-ax 2+1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。

2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 3. 已知函数f (x )=ax 3+3x 2-x+1在R 上为减函数,求实数a 的取值范围。 总结:已知函数)(x f y =在),(b a 上的单调性,求参数的取值范围方法: 1、利用集合间的包含关系 2、转化为恒成立问题(即0)(0)(/ / ≤≥x f x f 或)(分离参数) 3、利用二次方程根的分布(数形结合) 例4 求证x x 1,证明x>ln(1+x). 题型三 函数的极值与最值 考点一 利用导数求函数的极值。 例1 求下列函数的极值:(1)f(x)=x +14x ;(2)f(x)=ln x +1 x .(不含参函数求极值) 例2 设a>0,求函数f(x)=x 2+ a x (x>1)的单调区间,并且如果有极值时,求出极值.(含参函数求极值)

导数各类题型方法总结(绝对经典)

第一章导数及其应用一,导数的概念 1..已知 的值是() A. B. 2 C. D. -2 变式1: () A.-1B.-2 C.-3 D.1 变式2: () A. B. C. D.

导数各种题型方法总结 请同学们高度重视: 首先,关于二次函数的不等式恒成立的主要解法: 1、分离变量;2变更主元;3根分布;4判别式法 5、二次函数区间最值求法:(1)对称轴(重视单调区间) 与定义域的关系(2)端点处和顶点是最值所在 其次,分析每种题型的本质,你会发现大部分都在解决“不等式恒成立问题”以及“充分应用数形结合思想”,创建不等关系求出取值范围。 最后,同学们在看例题时,请注意寻找关键的等价变形和回归的基础 一、基础题型:函数的单调区间、极值、最值;不等式恒成立; 1、此类问题提倡按以下三个步骤进行解决: 第一步:令 得到两个根; 第二步:画两图或列表; 第三步:由图表可知; 其中不等式恒成立问题的实质是函数的最值问题, 2、常见处理方法有三种:

第一种:分离变量求最值-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0) 第二种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元); (请同学们参看2010省统测2) 例1:设函数 在区间D上的导数为 , 在区间D上的导数为 ,若在区间D上, 恒成立,则称函数 在区间D上为“凸函数”,已知实数m是常数, (1)若 在区间 上为“凸函数”,求m的取值范围; (2)若对满足 的任何一个实数 ,函数 在区间

上都为“凸函数”,求 的最大值. 解:由函数 得 (1) 在区间 上为“凸函数”, 则 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于 解法二:分离变量法: ∵ 当

导数常见题型方法总结

导数题型总结 例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,若在区间D 上, ()0g x <恒成立, 则称函数()y f x =在区间D 上为“凸函数”,已知实数m 是常数,432 3()1262 x mx x f x =-- (1)若()y f x =在区间[]0,3上为“凸函数”,求m 的取值范围; (2)若对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数”,求b a -的最大值. 解:由函数4323()1262x mx x f x =-- 得32 ()332 x mx f x x '=-- 2()3g x x mx ∴=-- (1) ()y f x =Q 在区间[]0,3上为“凸函数”, 则 2 ()30g x x mx ∴=--< 在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < (0)030 2(3)09330g m g m <-??<--=-的最大值(03x <≤)恒成立, 而3 ()h x x x =-(03x <≤)是增函数,则max ()(3)2h x h == 2m ∴> (2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数” 则等价于当2m ≤时2 ()30g x x mx =--< 恒成立 变更主元法 再等价于2 ()30F m mx x =-+>在2m ≤恒成立(视为关于m 的一次函数最值问题) 2 2 (2)0230 11(2)0230 F x x x F x x ?->--+>?????-<-+>??? 2b a ∴-= 例2:设函数),10(323 1)(223 R b a b x a ax x x f ∈<<+-+- = (Ⅰ)求函数f (x )的单调区间和极值; (Ⅱ)若对任意的],2,1[++∈a a x 不等式()f x a '≤恒成立,求a 的取值范围. 解:(Ⅰ)()()2 2 ()433f x x ax a x a x a '=-+-=--- 01a <

导数知识点各种题型归纳方法总结

Word 资料

【导数基础知识及各种题型归纳方法总结】第3页共22页◎【导数基础知识及各种题型归纳方法总结】第4页共22页

值和f(a) 、f(b)中最大的一个。最小值为极小值和f(a) 、f(b)中最小的一个。 2.函数在定义域上只有一个极值,则它对应一个最值(极大值对应最大值;极小值对应最小值) 3、注意:极大值不一定比极小值大。如 1 () f x x x =+的极大值为2-,极小值为2。 注意:当x=x0时,函数有极值?f/(x0)=0。但是,f/(x0)=0不能得到当x=x0时,函数有极值; 判断极值,还需结合函数的单调性说明。 题型一、求极值与最值 题型二、导数的极值与最值的应用(不等式恒成立问题,讨论方程的根的个数问题) 题型四、导数图象与原函数图象关系 导函数(看正负)原函数(看升降增减) '() f x的符号() f x单调性 '() f x与x轴的交点且交点两侧异号() f x极值 '() f x的增减性() f x的每一点的切线斜率的变化趋势(() f x的图象的增减幅度) '() f x增() f x的每一点的切线斜率增大(() f x的图象的变化幅度快) '() f x减() f x的每一点的切线斜率减小(() f x的图象的变化幅度慢) 【题型针对训练】 1. 已知f(x)=e x-ax-1. (1)求f(x)的单调增区间; (2)若f(x)在定义域R单调递增,求a的取值围; (3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增? 若存在,求出a的值;若不存在,说明理由. 2.已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线为l:3x-y+1=0, 若x= 3 2时,y=f(x)有极值. (1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值. (请你欣赏)3.当0 > x,证明不等式x x x x < + < + ) 1 ln( 1 . 证明: x x x x f + - + = 1 )1 ln( ) (,x x x g- + =)1 ln( ) (,则 2 ) 1( ) ( x x x f + = ', 当0 > x时。)(x f ∴在() +∞ ,0是增函数,)0( ) (f x f> ∴,即0 1 ) 1 ln(> + - + x x x, 又 x x x g + - = ' 1 ) (,当0 > x时,0 ) (< 'x g,)(x g ∴在() +∞ ,0是减函数,)0( ) (g x g< ∴,即0 ) 1 ln(< - +x x,因此,当0 > x时,不等式x x x x < + < + ) 1 ln( 1 成立. 点评:由题意构造出两个函数 x x x x f + - + = 1 )1 ln( ) (,x x x g- + =)1 ln( ) (. 利用导数求函数的单调区间或求最值,从而导出是解决本题的关键. (请你欣赏)4、已知函数32 f(x)ax bx(c3a2b)x d (a0) =++--+>的图象如图所示。(Ⅰ)求c d 、的值; (Ⅱ)若函数f(x)的图象在点(2,f(2))处的切线方程为3x y110 +-=, 求函数f ( x )的解析式; (Ⅲ)若 x5, =方程f(x)8a =有三个不同的根,数a的取值围。 解:由题知:2 f(x)3ax2bx+c-3a-2b '=+ (Ⅰ)由图可知函数f ( x )的图像过点( 0 , 3 ),且()1 f'= 0 得 3 32c320 d a b a b = ? ? ++--= ? ? ? ? ? = = 3 c d (Ⅱ)依题意()2 f'= – 3 且f ( 2 ) = 5 124323 846435 a b a b a b a b +--=- ? ? +--+= ? 解得a = 1 , b = – 6 所以f ( x ) = x3– 6x2 + 9x + 3 (Ⅲ)依题意f ( x ) = ax3 + bx2– ( 3a + 2b )x + 3 ( a>0 ) ()x f'= 3ax2 + 2bx– 3a– 2b Word 资料

最精最全的《函数与导数解题方法知识点技巧总结》

最精最全的《函数与导数解题方法知识点技巧总结》 1.高考试题中,关于函数与导数的解答题(从宏观上)有以下题型: (1)求曲线()y f x =在某点出的切线的方程 (2)求函数的解析式 (3)讨论函数的单调性,求单调区间 (4)求函数的极值点和极值 (5)求函数的最值或值域 (6)求参数的取值范围 (7)证明不等式 (8)函数应用问题 2.在解题中常用的有关结论(需要熟记): 曲线()y f x =在0x x =处的切线的斜率等于0()f x ',且切线方程为000()()()y f x x x f x '=-+。 若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之不成立。 对于可导函数()f x ,不等式()f x ' 0>0<()的解是函数()f x 的递增(减)区间。 函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立(()f x ' 不恒为0). 若函数()f x 在区间I 上有极值,则方程()0f x '=在区间I 上有实根且非二重根。 (若()f x ' 为二次函数且I=R , 则有0?>)。 若函数f(x)在区间I 上不单调且不为常量函数,则()f x 在I 上有极值。 若x I " ()f x 0>恒成立,则m in ()f x 0>; 若x I ?∈()f x 0<恒成立,则m ax ()f x 0< 若 0x I ?∈使得 0()f x 0>,则m ax ()f x 0>.;若0x I ?∈使得 0()f x 0<,则m in ()f x 0 <. 设()f x 与()g x 的定义域的交集为D ,若x ?∈D ()f x >()g x 恒成立,则有 []min ()()0f x g x ->. (10)若对11 x I ?∈、 22 x I ∈ , 12()()f x g x >恒成立,则min max ()()f x g x >. 若对 11 x I ?∈, 22 x I ?∈ , 使得 12()() f x g x >, 则 min min ()()f x g x >. 若对 11 x I ?∈, 22 x I ?∈,使得 12()() f x g x <,则 m ax m ax ()()f x g x <. (11) 已知()f x 在区间1I 上的值域为A,()g x 在区间2I 上值域为B ,若对11x I ?∈,22 x I ?∈使得1()f x =2()g x 成 立,则A B ?。 (12) 若三次函数f(x)有三个零点,则方程()0f x ' =有两个不等实根12,x x 且12()()0f x f x < (13) 证题中常用的不等式:

相关文档
最新文档