复变函数与积分变换(刘建亚)作业答案

合集下载

复变函数与积分变量课后习题答4(全).doc

复变函数与积分变量课后习题答4(全).doc

(1)% =解 (1)当刀f 8⑵I …殍(3卜=M / _ J|2”=cos 2n0 + i sin 2月们贫-► 8时,cos 2sin 2H0的极限都不存在,故z n=$土发散.故急捉+)发散.习题四1.下列序列是否有极限?如果有极限,求出其极限.+ 土 (2)% =吗气(3)礼=(号). n n \z ) 时,衫不存在极限,故%的极限不存在.0 (n — 8),故[血z n — 0. ir —8 令m 二厂普r 2n.=信)"无极限.2. 下列级数是否收敛?是否绝对收敛?⑴§(螺+ :);⑵名首;(3疙(l+i )". 解(1)因无上A 】n⑵»1彳=史吉收敛:故(2)绝对收敛.91-1 M • I Al n•(3) lini (l + i )rt= lim (再)%孕,*0,故发散.庶—8 ”一>8 3. 试证级数£ (2之尸当J I <号时绝对收敛.当危\(2z)n\= 2” •\(2z)n\ = (2r)n < 1. S(2r)rt收敛,故S(2z)n绝对收敛.M a 1 It « 1解⑴击4. 试确定下列慕级数的收敛半径. ⑴、狎(2)£(1 +』)心气(3)S解 (1) lim 勺为 | — lim "-— 1,故 R 二 1, n —^8| >1—8 Tl(2) lim V \C n \ = lim J (1 + —) = lim(l + —)n= e,l|f 8A Y \Tl f ”—8 fl故R =』・ e(3) lim I 1 = lim y~~“ = lim —= 0,Wf 8 I C n I 闻f 8 ( Tl + I / ! JI —8 ?1 + 1故 R = 8.5. 将下列各函数展开为z 的幕级数,并指出其收敛区域.⑴ 7~~~~j ; (2) 7 ----- K ---- (a 工 0,& 会 0);1 + z \z - a)\z - b)fl N〈3) ~ ; (4)ch z; (5)sir?z ; (6)6*-1. (1 + z )]1- (- z') 8 8、(-/)”=云(-I)”』,原点到所有奇点的距离最小值为1 ,故I Z | < 1.(2)1 .(a = b )4- a -Z-an oc=z -=an 0原式收敛区域:2.(a h b )1 ( 1a -b z - a原式)2 尊一=、(- 1)1 次”-2,力=1(4)ch ze[+e" ―2—z2n一2(:〃!二 n!S(2”)!,1 一cos2z< 8.-[1 V (2z)H • (- 1)”2 一 2 2 乙_ JL 小(一1)2 •一2:(2Q!(5)sin2in =0(2n)!< 8.E)=广•六(。

07000048-05级复变函数与积分变换(工科A卷)参考答案

07000048-05级复变函数与积分变换(工科A卷)参考答案

课程编号:07000048北京理工大学2006—2007学年第二学期2005级复变函数与积分变换试题A 卷参考答案与评分标准一 (6) 求下列复数的值。

(1) ()i i - 解:原式(ln||2)2()22()i i ik i k iLn i e eek Z ππππ----===∈ …………3’(2) ()i Ln e解:原式ln ||arg()2(21) ()i i e i e k i k i k Z ππ=++=+∈ …………3’二 (10) (1) 求区域{:||1}z z i -<在映射2()w z i =-下的像,并作出其映射过程的图形。

解:该映射可分解为11, 2,w z i w w =-=而区域{:||1}z z i -<是以i 为心、1为半径的圆盘,经平移1w z i =-后得到在1w 平面的象为圆盘11{:||1}w w <,然后伸长2倍得到在w 平面的象为圆盘{:||2}w w <。

………2’(2) 判别函数222()()(2)f z x y x i xy y =--+-在复平面上哪些点处可导,哪些点处解析。

解:设222(,), (,)2u x y x y x v x y xy y =--=-,则21,2,2,22.u u v v x y y x y xyxy∂∂∂∂=-=-==-∂∂∂∂………1’若()f z 在z x iy =+处可导,则由Cauchy-Riemann 方程得1w 1=z -iw =2w 1,.u v u v xyyx∂∂∂∂==-∂∂∂∂ ………2’即2122, 22,x x y y y -=--=-得 1.2y =………3’故()f z 仅在直线12y =上可导,从而在复平面上处处不解析。

………5’三 (10) 设函数()(,)(,)f z u x y iv x y =+在区域D 内解析,其中(,), (,)u x y v x y 为二元实函数,并且2(,)(,)v x y u x y =,试证:()f z 在区域D 内是一个常数。

《复变函数与积分变换(刘建亚)》作业答案

《复变函数与积分变换(刘建亚)》作业答案

15、求解下列方程: (2)
ez 1 0
z
解: e
1 ,于是
z Ln(1) ln1 i arg(1) 2k i=(2k 1) i, k Z
18、求 Ln(i) , Ln( 3 4i) 的值及主值.
i i arg(i) 2k i i 2k i ,所以其主值为 i ; 2 2 4 所以其主值 Ln(3 4i) ln 3 4i i arg(3 4i) 2k i ln 5 i( arctan ) 2k i , 3 4 为 ln 5 i( arctan ) . 3
9 9 isin i ; 6 6
11 11 3 1 i sin i. 6 6 2 2
习题 2: 3、下列函数在何处可导?何处解析?在可导点求出其导数. (2) (6)
f ( z ) x 2 iy ;
(4)
f ( z ) sin xchy i cos xshy
(2)
2
e
2Ln( 2)
e
2 ln 2 (2 k 1) 2 i
2
2
cos (2k 1)
2 isin (2k 1) 2


1i eiLn1 ei(2 k i) e2 k ;
i e
iБайду номын сангаас
iLni
e
i i 2 k i 2
f ( z)
az b 。 cz d
x 2 , v( x, y) y ,
解:(2) 因为 u ( x, y )
u x 2 x , u y 0 , vx 0 , v y 1 .

复变函数与积分变换习题答案

复变函数与积分变换习题答案

第一章 复数与复变函数1.1计算下列各式: (1) (1)(32);i i +--解: (1)(32)(1)322 3.i i i i i +--=+-+=-+ (2);(1)(2)ii i --解:2(13)3.(1)(2)2213101010i i i i i ii i i i i i +-====+----+-(3)1(1);1z z x iy z -=+≠-+ 解: 2222222211(1)(1)12.11(1)(1)(1)z x iy x iy x iy x y yi z x iy x y x y x y-+--++-+-===++++++++++ 1.3 将圆周方程22()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中z x iy =+).解: 把22,,22z z z z x y x y z z i+-==+=⋅代入圆周方程得: ()()0,222()()20,0.b caz z z z z z d iaz z b ic z b ic z d Az z Bz Bz C ⋅+++-+=⋅+-+++=⋅+++=故其中2,,2.A a B b ic C d ==+= 1.5 将下列各复数写成三角形式.(1) sin cos ;i αα+ 解: sin cos 1,i αα+= 故sin cos cos()sin().22i i ππαααα+=-+- (2) sincos.66i ππ--解: 2arg(sincos )arctan(cot ),666263i ππππππππ--=-=--=-s i n c o s 66i ππ--=2222cos()sin()cos()sin.3333i i ππππ-+-=- 1.7 指出满足下列各式的点z 的轨迹是什么曲线?(1) 1;z i +=解: 以(0,1)-为圆心,1为半径的圆周.(2) 0,zz az az b +++=其中a 为复数,为b 实常数;解: 由题设可知 2()()||0,z a z a b a +++-=即22||||,z a a b +=- 若2||,a b =则z 的轨迹为一点;a -若2||,a b >则z 的轨迹为圆,圆心在a -,若2||,a b <无意义.第二章 解析函数1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z∆→+∆-∆0()Re()Re lim z z z z z z zz∆→+∆+∆-=∆ 0Re Re Re limz z z z z z z z∆→∆+∆+∆∆=∆0Re lim(Re Re )z zz z z z∆→∆=+∆+∆ 000Re lim(Re )lim(Re ),z x y z xz zz z z x i y ∆→∆→∆→∆∆=+=+∆∆+∆ 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0.3.确定下列函数的解析区域和奇点,并求出导数.(1)(,).az bc d cz d++至少有一不为零 解: 当0c ≠时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点,222()()()()()()()()().()()az bf z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +''=+''++-++=++-+-==++当0c =时,显然有0d ≠,故()az b f z d +=在复平面上处处解析,且()af z d'=. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z x y ∂∂'+=∂∂证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().u uu u f z i f z x y x y∂∂∂∂''=-=+∂∂∂∂ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v x y x y u u v v u u v v u v uv xx x x y y y y∂∂∂∂+=+++∂∂∂∂⎡⎤∂∂∂∂∂∂∂∂=+++++++⎢⎥∂∂∂∂∂∂∂∂⎣⎦又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v vu v x yx y∂∂∂∂=+==+=∂∂∂∂则22222222()|()|4(()())4|()|.u uf z f z x y x y∂∂∂∂'+=+=∂∂∂∂ 7.设sin ,px v e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+ 解: 要使(,)v x y 为调和函数,则有0.xx yy v v v ∆=+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.x y y x u v u v ==-1(,)cos cos (),1sin ()sin .px pxx pxpx y u x y u dx e ydx e y y pu e y y pe y pφφ===+'=-+=-⎰⎰所以11()()sin ,()()cos .px px y p e y y p e y C p pφφ'=-=-+即(,)cos ,px u x y pe y C =+故(cos sin ),1,()(cos sin ),1.x z xze y i y C e C pf z e y i y C e C p -⎧++=+=⎪⎨--+=-+=-⎪⎩9.求下列各式的值。

复变函数与积分变换习题解答

复变函数与积分变换习题解答

练 习 一1.求下列各复数的实部、虚部、模与幅角。

(1)i ii i 524321----; 解:i iii 524321---- =i 2582516+zk k Argz z z z ∈+====π221arctan 2558258Im 2516Re(2)3)231(i + 解: 3)231(i +zk k Argz z z z e i i∈+===-=-==+=πππππ210Im 1Re 1][)3sin3(cos3332.将下列复数写成三角表示式。

1)i 31- 解:i 31-)35sin 35(cos2ππi +=(2)i i +12 解:i i +12 )4sin4(cos21ππi i +=+=3.利用复数的三角表示计算下列各式。

(1)i i2332++- 解:i i 2332++- 2sin2cosππi i +==(2)422i +-解:422i +-41)]43sin 43(cos 22[ππi +=3,2,1,0]1683sin 1683[cos 2]424/3sin ]424/3[cos 28383=+++=+++=k k i k k i k ππππππ4..设321,,z z z 三点适合条件:321z z z ++=0,,1321===z z z 321,,z z z 是内接于单位圆z =1的一个正三角形的项点。

证:因,1321===z z z 所以321,,z z z 都在圆周32z z ++=0则,321z z z -=+1321=-=+z z z ,所以21z z +也在圆周1=z 上,又,12121==-+z z z z 所以以0,211,z z z +为顶点的三角形是正三角形,所以向量211z z z +与之间的张角是3π,同理212z z z +与之间的张角也是3π,于是21z z 与之间的张角是32π,同理1z 与3z ,2z 与3z 之间的张角都是32π,所以321,,z z z 是一个正三角形的三个顶点。

(完整版)复变函数与积分变换习题答案

(完整版)复变函数与积分变换习题答案
证明:(1)在负实轴上,任取一点z a,则分别由水平方向和垂直方向趋近z点有:
lim f (z) lim Arg( a i y)
y 0y 0
lim f (z) lim Arg( a i y)
y 0y 0
显然函数在负实轴上不连续。
lim f (z) lim Arg (rei)
2sin
cos( )
2 2 2
isin(
2
i
2sin e2 2
2
(5)
z3
解:
i3
3i
re
cos3
isin3
(6)
e1 i
解:
ee
cos1 i sin1
(7)
1i
解:
1i
1i
i ei3 /4cos3
/ 4 isin3 /4
1i
1i
、计算下列数值
(1)
a ib
解:
ib
i ar ctgb2k
2 2 abe
cos2
L
L
cosn
1i i(e e
2
L
L
in i i2e ) (e e
L
in
L ein)
1 ei
(1
ine
)e
i(1 ein)
1
ie
(1
in i ie ) 1 e e
(1
in ie ) 1 e
2
1
ie
1 ei
2
2(1cos
)
cos
i i i(n 1) i(n 1) in in
1 e e 2 e e e e
22(1cos )
2sin
2
(8)
sin

复变函数与积分变换课后答案

复变函数与积分变换课后答案

1 ∴ Res e z 1 ,1 1 .
2. 利用各种方法计算 f(z)在有限孤立奇点处的留数.
3z 2 (1) f z 2 z z 2 3z 2 解: f z 2 的有限孤立奇点处有 z=0,z=-2.其中 z=0 为二级极点 z=-2 为一级极 z z 2
1 1 2 解: z 1 sin z 2 2 z 1 sin z z 1 1 1 1 1 z 2 2 z 1 3 5 5! z z 3! z 1 ∴ Res f z , 0 1 3!
为在 c 内 tanπz 有 zk k
sin πz 由于 Res f z , zk cos πz
1 π
1 ∴ tan πzdz 2 πi Res f z , zk 2πi 2n 4ni c π k (2)
3 i 10
6. 计算下列积分.
(1)
π
0
cos m d 5 4 cos 1 π cos m d 2 π 5 4 cos
因被积函数为 θ 的偶函数,所以 I 令 I1
1 π sin m d 则有 2 π 5 4 cos
1 π eim d 2 π 5 4 cos
z 0
所以由留数定理.

AB
f z dz
BE
f z dz
EF
f z dz
C
FA
f z dz 2πi ln a


BE
f z dz

R
C
e x Ri ln a dx x Ri 2

复变函数与积分变换(刘建亚版)4-3

复变函数与积分变换(刘建亚版)4-3

练习 将函数
z f (z) = 在 z0 = 1 处展开 z +1
成Taylor级数,并指出该级数的收敛范围.

z 1 1 1 1 f (z) = = 1− = 1− , = 1− z+1 z +1 ( z − 1) + 2 2 1+ z −1 2 z−1 当 即 时, z−1 < 2 < 1, 2
展开式 .
解 Q (e z )( n )
z z=0
= ez
2
z=0
= 1 ( n = 0 ,1, 2, L)
3 n
z z z ∴e = 1+ z + + +L+ +L 2! 3! n! Q e z 在复平面上解析 ∴ 该级数的收敛半径 R = +∞ .
间接展开法
e −e Q sin z = 2i
zi
§4.3 泰勒(Taylor)级数
1. 解析函数的泰勒展开定理 2. 解析函数的幂级数展开法
1. 解析函数的泰勒(Taylor)展开定理
由§4.2幂级数的性质知:一个幂级数的和函数在 它的收敛圆内部是一个解析函数。 它的收敛圆内部是一个解析函数。 现在研究与此相反的问题: 现在研究与此相反的问题: 一个解析函数能否用幂级数表达? (或者说,一个解析函数能否展开成幂级数? 解析函 数在解析点能否用幂级数表示?) 数在解析点能否用幂级数表示?) 以下定理给出了肯定回答: 以下定理给出了肯定回答: 任何解析函数 任何解析函数都一定 解析函数都一定能用幂级数表示 都一定能用幂级数表示。 能用幂级数表示。
(1)另一方面, 另一方面,因ln(1+z)在从z=-1向左沿负 实轴剪开的平面内解析, 实轴剪开的平面内解析, ln(1+z)离原点最近的一 个奇点是-1,∴它的展开式的收敛范围为|z|<1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《复变函数与积分变换》作业参考答案
习题1:
4、计算下列各式
(1) ; (3)

(5) 12
z +=
,求2z ,3z ,4z ; (7)
解:(1) --;
(3)
3(23i 41288+====++;
(5) 2
13214422z --+=
==-+,
321113
1224
z z z -++--=⋅=
⋅==-,
4312z z z =⋅=-.
(7) 因为1cos isin ππ-=+,所以
22cos
isin
6
6
k k ππ
ππ
++=+,

0k =时,01cos
isin
i 6
6
22
w π
π
=+=
+; 1k =时,133cos
isin i 66
w ππ=+=;
2k =时,2551cos
isin i 6622w ππ=+=-+;
3k =时,3771cos
isin i 662
w ππ=+=; 4k =时,499cos isin i 66
w ππ=+=-;
5k =时,511111cos
isin i 662
w ππ=+=-.
习题2:
3、下列函数在何处可导?何处解析?在可导点求出其导数.
(2) 2
()i f z x y =-; (4) ()sin ch icos sh f z x y x y =+ (6) ()az b
f z cz d
+=
+。

解:(2) 因为2
(,)u x y x =,(,)v x y y =-,
2x u x '=,0y u '=,0x v '=,1y v '=-.
这四个一阶偏导数都连续,故(,)u x y 和(,)v x y 处处可微,但柯西-黎曼方程仅在1
2
x =-上成立,所以()f z 只在直线1
2x =-上可导,此时1122
()21x x f z x =-=-'==-,但复平面上处处不解析.
(4) 因为(,)sin ch u x y x y =,(,)cos sh v x y x y =,
cos ch x u x y '=,sin sh y u x y '=,sin sh x v x y '=-,cos ch y v x y '=.
这四个一阶偏导数都连续,故(,)u x y 和(,)v x y 处处可微,且满足柯西-黎曼方程,所以()f z 在复平面内解析,并且
()()i i i i iz iz ()i cos ch isin sh cos isin 22
cos isin cos isin 2222cos 22
y y y y
x x y y y y x x
y x y x e e e e f z u v x y x y x x e e e e x x x x e e
e e e e z
-------+-+-'''=+=-=⋅
-⋅=-++=⋅+⋅++===. (6)
02
0()()1()lim
lim ()lim
()()()z z z f z z f z a z z b az b z z c z z d cz d ad bc ad bc
cz c z d cz d cz d ∆→∆→∆→⎡⎤
+∆-+∆++=-⎢⎥∆∆+∆++⎣⎦
--==
+∆+++
所以,()f z 在除d
z c
=-
外处处解析,且2()()ad bc f z cz d -'=+.
4、指出下列函数的奇点. (1)
22
1(4)
z z z -+; (2) 222
(1)(1)z z z +++.
解:(1)
223432422
4223
2
322
(4)(1)(48)3448()(4)(4)3448
(4)z z z z z z z z z
f z z z z z z z z z z +--+-+-+'==++-+-+=
+
所以,()f z 的奇点为0,2i ±.
(2) 22232422
322
(1)(1)2(2)(1)(21)3953
()(1)(1)(1)(1)z z z z z z z z z f z z z z z ++-+++++++'==-++++ 所以,()f z 的奇点为1-,i ±.
10、如果()i f z u v =+在区域D 内解析,并且满足下列条件之一,试证()f z 在D 内是一常数.
(2) ()f z 在D 内解析;
证明:由()i f z u v =+在区域D 内解析,知(,)u x y 、(,)v x y 在区域D 内可微,且x y u v ''=,y x u v ''=-.同理,由()f z 在D 内解析,知x y u v ''=-,y x u v ''=.
从而我们得到0x y y x u v u v ''''====,
所以(,)u x y 、(,)v x y 皆为常数,故()f z 在D 内是一常数.
15、求解下列方程: (2) 10z
e += 解:1z e =-,于是
18、求Ln(i)-,Ln(34i)-+的值及主值. 解:Ln(i)ln i iarg(i)2i i 2i 2
k k π
ππ-=-+-+=-
+,所以其主值为i 2
π
-

4
Ln(34i)ln 34i i arg(34i)2i ln 5i(arctan )2i 3
k k πππ-+=-++-++=+-+,所以其主
值为4
ln 5i(arctan )3
π+-.
19、求1i
2
e π-,1i 4
e
π+,i 3,i
(1i)+的值.
解:1i
i()2
2
cos ()isin ()i 22e
e e
e e ππ
ππ--⎡
⎤=⋅=-+-=-⎢⎥⎣
⎦;。

相关文档
最新文档