材料力学第三章-剪切与扭转
材料力学第三章 扭转

n
250
横截面上的最大切应力为
max
T Wt
T (D4 d 4)
16D
16 0.55573000 Pa 19.2MPa [ ] 50MPa (0.554 0.34 )
满足强度要求。
跟踪训练 7.机车变速箱第II轴如图所示,轴所传递的功率为
p 5.5KW,转速n 200r / min,材料为45钢,
(3)主动轮放在两从动轮之间可使最大扭矩取最小值
B
A
C
Me2
Nm
M e1
Me3
4220
2810
本章小结
1.外力偶矩的计算 内力的计算——扭矩图
P M e 9549 n (N m)
2.圆轴扭转切应力公式的建立
τρ
Tρ Ip
强度条件的应用
max
Tmax Wt
[ ]
刚度条件的应用
' max
T
180 [']
(3)主动轮和从动轮应如何安排才比较合理。
再根据平衡条件,可得 Me1 Me2 Me3 (2810 4220)N m 7030N m
所作扭矩图如右图
(1)试确定AB段的直径d1和BC段的直径d2。
根据强度条件确定AB直径d1
AB
TAB Wt
16TAB
d12
[ ]
根据刚度条件确定AB直径d1
mB
(a)
1
350 2
C
1
2
T1
11463
446
A
D
3
mB
(b)
(c) mB
mC
T2
mC
mA T3
mD
T1 350N m 350 1 350 2
材料力学第四版课件 第三章 扭转

例1:图示空心圆轴外径D=100mm,内径 图示空心圆轴外径D=100mm,内径 d=80mm, M1=6kN·m, M2=4kN·m, 材料的切变 =6kN· 模量 G=80GPa. (1) 试画轴的扭矩图; 试画轴的扭矩图; (2) 求轴的最大切应力,并指出其位置. 求轴的最大切应力,并指出其位置.
平面假设:圆轴扭转后各横截面仍保持为平面, 平面假设:圆轴扭转后各横截面仍保持为平面, 各横截面如同刚性平面仅绕轴线作相对转动。 各横截面如同刚性平面仅绕轴线作相对转动。
横截面上无σ 1)横截面上无σ 2)横截面上只有τ
F O1 a d dφ d1 dx O2
dd1 ρdφ γ ρ ≈ tanγ ρ = = ad dx
4
πd
3 0
(
)
16T ∴d0 ≥ 3 = 76.3mm 4 π (1−α )[τ ]
取 d0 = 76.3mm、 、 (3)比较空心轴与实心轴的重量 比较空心轴与实心轴的重量 积之比: 二者重量之比等于横截面 积之比:
π (d − di ) 4 = 0.395 β= 2 4 πd
2 0 2
可见空心轴比实心轴的重量轻 可见空心轴比实心轴的重量轻
任一点处的切应变 切应变与到 距圆心为 ρ 任一点处的切应变与到 成正比。 圆心的距离ρ成正比。
2. 物理方面
dφ γρ = ρ dx
dφ τ ρ = Gρ dx
3. 静力学方面
dφ 2 T = ∫ ρτ ρ dA = G ∫ ρ dA dx A A
Ip = ∫ ρ dA 称为极惯性矩
2 A
ρ
dA
MB
1
MC
MA
2 2
A
3
MD
材料力学(机械工业出版社)知识小结:第三章 扭转

第三章扭转3–1概述轴:工程中以扭转为主要变形的构件。
如:机器中的传动轴、石油钻机中的钻杆等。
扭转:外力的合力为一力偶,且力偶的作用面与直杆的轴线垂直,杆发生的变形为扭转变形。
扭转角(ϕ):任意两截面绕轴线转动而发生的角位移。
剪应变(γ):直角的改变量。
3–2传动轴的外力偶矩 · 扭矩及扭矩图一、传动轴的外力偶矩传递轴的传递功率、转数与外力偶矩的关系:m)(N 9550⋅=nP m 其中:P —功率,千瓦(kW )n —转速,转/分(rpm ) m)(N 7024⋅=n P m 其中:P —功率,马力(PS )n —转速,转/分(rpm ) m)(N 7121⋅=nP m 其中:P —功率,马力(HP )n —转速,转/分(rpm ) 二、扭矩及扭矩图1、扭矩:构件受扭时,横截面上的内力偶矩,记作“T ”。
2、截面法求扭矩mT m T m x ==-=∑003、扭矩的符号规定:“T ”的转向与截面外法线方向满足右手螺旋规则为正,反之为负。
4、扭矩图:表示沿杆件轴线各横截面上扭矩变化规律的图线。
目的:①扭矩变化规律;②|T |max 值及其截面位置->强度计算(危险截面)。
3–3薄壁圆筒的扭转一、实验:1.实验前:①绘纵向线,圆周线;②施加一对外力偶m 。
2.实验后:①圆周线不变;②纵向线变成斜直线。
3.结论:①圆筒表面的各圆周线的形状、大小和间距均未改变,只是绕轴线作了相对转动。
②各纵向线均倾斜了同一微小角度γ 。
③所有矩形网格均歪斜成同样大小的平行四边形。
4.ϕ与γ的关系:L R ⋅=ϕγ二、薄壁圆筒剪应力τ大小:tr T 220πτ=三、剪应力互等定理:ττ'=在单元体相互垂直的两个平面上,剪应力必然成对出现,且数值相等,两者都垂直于两平面的交线,其方向则共同指向或共同背离该交线。
单元体的四个侧面上只有剪应力而无正应力作用,这种应力状态称为纯剪切应力状态。
四、剪切虎克定律:剪切虎克定律:当剪应力不超过材料的剪切比例极限时(τ≤τp ),剪应力与剪应变成正比关系。
材料力学第3章扭转

试问:纵向截面里的切应力是由什么内力平衡的?
§3.8 薄壁杆件的自由扭转
薄壁杆件:杆件的壁厚远小于截面的其它尺寸。 开口薄壁杆件:杆件的截面中线是不封闭的折线或曲
线,例如:工字钢、槽钢等。 闭口薄壁杆件:杆件的截面中线是封闭的折线或曲线,
例如:封闭的异型钢管。
一、开口薄壁杆的自由扭转
= Tl
GI t
变形特点:截面发生绕杆轴线的相对转动 本章主要研究圆截面等直杆的扭转
§3.2 外力偶矩的计算 扭矩和扭矩图
功率: P(kW) 角速度:ω 外力偶矩:Me
P = Meω
转速:n(r/min)
2n/ 60
Me
1000 P=9549
P n
(N
m)
内力偶矩:扭矩 T 求法:截面法
符号规则: 右手螺旋法则 与外法线同向“ + ” 与外法线反向“-”
max
T max
It
It
1 3
hi
3 i
二、闭口薄壁杆的自由扭转
max
T
2 min
TlS
4G 2
其中:ω截面为中线所围的面积
S 截面为中线的长度
闭口薄壁杆的应力分布:
例: 截面为圆环形的开口和闭口薄壁杆件如图所 示,设两杆具有相同平均半径 r 和壁厚δ,试 比较两者的扭转强度和刚度。
开=3 r 闭 开=3( r )2 闭
8FD3n Gd 4
C
ห้องสมุดไป่ตู้
Gd 4 8D3n
F C
§3.7 矩形截面杆扭转的概念
1) 翘曲
变形后杆的横截面不再保持为平面的现象。
2) 自由扭转和约束扭转
自由扭转:翘曲不受限制的扭转。 各截面翘曲程度相同,纵向纤维无伸缩, 所以,无正应力,仅有切应力。
材料力学第三章剪切和扭转

T
Ⅰ
T
d1
(a)
l
T (b)
D2
Ⅱ
T
l
36
3.3 等直圆杆扭转时的应力
解:
Wp1
πd13 16
Wp2
πD23 14
16
1,maxW Mpt11
T Wp1
16T πd13
2,ma xW M pt2 2W Tp2πD 2 311T 6 4
D 2 31 4 d 1 3
螺栓连接[图(a)]中,螺栓主要受剪切及挤压(局部压
缩)。
F
3
3.1 剪切
键连接[图(b)]中,键主要受剪切及挤压。
4
3.1 剪切
剪切变形的受力和变形特点: 作用在构件两侧面上的外力的合力大小相等、方向相 反,作用线相隔很近,并使各自推动的部分沿着与合 力作用线平行的受剪面发生错动。
受剪面上的内力称为剪力; 受剪面上的应力称为切应力;
3.3 等直圆杆扭转时的应力
传动轴的外力偶矩:
已知:
T2
T1
从动轮
n 主动轮
T3 从动轮
传动轴的转速 n ;某一轮上 所传递的功率
NK (kW)
作用在该轮上的外力偶矩T 。
一分钟内该轮所传递的功率等于其上外力偶矩所 作的功:
NK60 13 0(J)T2πn(Nm)
33
3.3 等直圆杆扭转时的应力
26
3.3 等直圆杆扭转时的应力
dj M t
d x GI pBiblioteka G djdx
GGMItp
Mt
Ip
等直圆杆扭转时横截面上切应力计算公式
Mt
O
材料力学笔记(第三章)

材料力学(土)笔记第三章 扭 转1.概 述等直杆承受作用在垂直于杆轴线的平面内的力偶时,杆将发生扭转变形 若构件的变形时以扭转为主,其他变形为次而可忽略不计的,则可按扭转变形对其进行强度和刚度计算等直杆发生扭转变形的受力特征是杆受其作用面垂直于杆件轴线的外力偶系作用其变形特征是杆的相邻横截面将绕杆轴线发生相对转动,杆表面的纵向线将变成螺旋线 当发生扭转的杆是等直圆杆时,由于杆的物性和横截面几何形状的极对称性,就可用材料力学的方法求解对于非圆截面杆,由于横截面不存在极对称性,其变形和横截面上的应力都比较复杂,就不能用材料力学的方法来求解2.薄壁圆筒的扭转设一薄壁圆筒的壁厚δ远小于其平均半径0r (10r ≤δ),其两端承受产生扭转变形的外力偶矩e M ,由截面法可知,圆筒任一横截面n-n 上的内力将是作用在该截面上的力偶 该内力偶矩称为扭矩,并用T 表示由横截面上的应力与微面积dA 之乘积的合成等于截面上的扭矩可知,横截面上的应力只能是切应力考察沿横截面圆周上各点处切应力的变化规律,预先在圆筒表面上画上等间距的圆周线和纵向线,从而形成一系列的正方格子在圆筒两端施加外力偶矩e M 后,发现圆周线保持不变,纵向线发生倾斜,在小变形时仍保持直线薄壁圆筒扭转变形后,横截面保持为形状、大小均无改变的平面,知识相互间绕圆筒轴线发生相对转动,因此横截面上各点处切应力的方向必与圆周相切。
相对扭转角:圆筒两端截面之间相对转动的角位移,用ϕ来表示圆筒表面上每个格子的指教都改变了相同的角度γ,这种直角的该变量γ称为切应变 这个切应变和横截面上沿沿圆周切线方向的切应力是相对应的 由于圆筒的极对称性,因此沿圆周各点处切应力的数值相等由于壁厚δ远小于其平均半径0r ,故可近似地认为沿壁厚方向各点处切应力的数值无变化 薄壁圆筒扭转时,横截面上任意一点处的切应力τ值均相等,其方向与圆周相切 由横截面上内力与应力间的静力学关系,从而得⎰=⨯AT r dA τ由于τ为常量,且对于薄壁圆筒,r 可以用其平均半径0r 代替,积分⎰==Ar A dA δπ02为圆筒横截面面积,引进π200r A =,从而得到δτ02A T=由几何关系,可得薄壁圆筒表面上的切应变γ和相距为l 的两端面间相对扭转角ϕ之间的关系式,式子中r 为薄壁圆筒的外半径γϕγsin /==l r 当外力偶矩在某一范围内时,相对扭转角ϕ与外力偶矩e M (在数值上等于T )之间成正比可得τ和r 间的线性关系为γτG =上式称为材料的剪切胡克定律,式子中的比例常数G 称为材料的切变模量,其量纲和单位与弹性模量相同,钢材的切边模量的约值为GPa G 80=剪切胡克定律只有在切应力不超过某材料的某极限值时才适用该极限称为材料的剪切比例极限p τ,适用于切应力不超过材料剪切比例极限的线弹性范围3.传动轴的外力偶矩·扭矩及扭矩图 3.1 传动轴的外力偶矩设一传动轴,其转速为n (r/min ),轴传递的功率由主动轮输入,然后通过从动轮分配出去 设通过某一轮所传递的功率为P ,常用单位为kW 1 kW=1000 W ;1 W=1 J/s ; 1 J=1 N ·m当轴在稳定转动时,外力偶在t 秒内所做的功等于其矩e M 与轮在t 秒内的转角α之乘积 因此,外力偶每秒钟所作的功即功率P 为310}{}{}{}{-⋅⨯=sradmN e kW t M P α 3/10}{}{-⋅⨯=s rad m N e M ω3min/1060}{2}{-⋅⨯⨯⨯=r m N e n M π 即得到作用在该轮上的外力偶矩为min/3min /3}{}{1055.9}{26010}{}{r kWr kW mN e n P n P M ⨯=⨯⨯=⋅π 外力偶的转向,主动轮上的外力偶的转向与轴的转动方向相同,从动轮上的外力偶的转向则与轴的转动方向相反3.2 扭矩及扭矩图可用截面法计算轴横截面上的扭矩为使从两段杆所求得的同一横截面上扭矩的正负号一致按杆的变化情况,规定杆因扭转而使其纵向线在某段内有变成右手螺旋线的趋势时 则该段杆横截面上的扭矩为正,反之为负 若将扭矩按右手螺旋法则用力偶矢表示,则当力偶矢的指向离开截面时扭矩为正,反之为负 为了表明沿杆轴线各横截面上扭矩的变化情况,从而确定最大扭矩及其所在横截面的位置 可仿照轴力图的作法绘制扭矩图4.等直圆杆扭转时的应力·强度条件 4.1 横截面上的应力与薄壁圆筒相仿,在小变形下,等直圆杆在扭转时横截面上也只有切应力 ①几何方面为研究横截面上任意一点处切应变随点的位置而变化的规律 在等直圆杆的表面上作出任意两个相邻的圆周线和纵向线 当杆的两端施加一对其矩为e M 的外力偶后,可以发现:两圆周线绕杆轴线相对旋转了一个角度,圆周线的大小和形状均为改变在变形微小的情况下,圆周线的间距也未变化 纵向线则倾斜了一个角度γ假设横截面如同刚性平面般绕杆的轴线转动,即平面假设 上述假设只适用于圆杆为确定横截面上任一点处的切应变随点的位置而变化的规律 假想地截取长为dx 的杆段进行分析由平面假设可知,截面b-b 相对于截面a-a 绕杆轴转动了一个微小的角度ϕd 因此其上的任意半径也转动了同一角度ϕd由于截面转动,杆表面上的纵向线倾斜了一个角度γ纵向线的倾斜角γ就是横截面周边上任一点A 处的切应变同时经过半径上任意一点的纵向线在杆变形后也倾斜了一个角度ργρ为圆心到半径上点的距离即为横截面半径上任意一点处的且应变 由几何关系可得dxd ϕργγρρ=≈tan即dxd ϕργρ=上式表示等直接圆杆横截面上任一点处的切应变随该点在横截面上的位置而变化的规律②物理方面由剪切胡可定律可知,在线弹性范围内,切应力与切应变成正比 令相应点处的切应力为ρτ,即得横截面上切应力变化规律表达式dxd G G ϕργτρρ== 由上式可知,在同一半径ρ的圆周上各点处的切应力ρτ 值均相等,其值与ρ成正比因ργ为垂直于半径平面内的切应变,故ρτ的方向垂直于半径③静力学方面由于在横截面任一直径上距圆心等远的两点处的内力元素dA ρτ等值且反向则整个截面上的内力元素dA ρτ的合力必等于零,并组成一个力偶,即为横截面上的扭矩T 因为ρτ的方向垂直于半径,故内力元素dA ρτ对圆心的力矩为dA ρρτ 由静力学中的合力矩原理可得⎰=AT dA ρρτ经整理后得⎰=A T dA dxd G2ρϕ上式中的积分⎰AdA 2ρ仅与横截面的几何量有关,称为极惯性矩,用p I 表示⎰=Ap dA I 2ρ其单位为4m ,整理得pGI Tdx d =ϕ 可得pI T ρτρ=上式即等直圆杆在扭转时横截面上任一点处切应力的计算公式当ρ等于横截面的半径r 时,即在横截面周边上的各点处,切应力将达到其最大值p I Tr =max τ 在上式中若用p W 代表r I p /,则有pW T =m ax τ 式中,p W 称为扭转截面系数,单位为3m推导切应力计算公式的主要依据为平面假设,且材料符合胡克定律 因此公式仅适用于在线弹性范围内的等直圆杆 为计算极惯性矩和扭转截面系数在圆截面上距圆心为ρ处取厚度为ρd 的环形面积作为面积因素 可得圆截面的极惯性矩为⎰⎰===Ad p d d dA I 32242032πρπρρ圆截面的扭转截面系数为162/3d d I rI W p p p π===由于平面假设同样适用于空心截面杆件,上述切应力公式也适用于空心圆截面杆 设空心圆截面杆的内、外直径分别为d 和D ,其比值Dd =α 则可得空心圆截面的极惯性矩为⎰⎰-===AD d p d D d dA I )(322442232πρπρρ所以)1(3244απ-=D I p扭转截面系数为)1(1616)(2/4344αππ-=-==D Dd D D I W p p4.2 斜截面上的应力在圆杆的表面处用横截面、径向截面及与表面相切的面截取一单元体在其左右两侧(即杆的横截面)上只有切应力τ,其方向与y 轴平行 在其前后两平面(即与杆表面相切的面)上无任何应力 由于单元体处于平衡状态,故由平衡方程0=∑yF可知单元体在左右两侧面上的内力元素dydz τ应是大小相等,指向相反的一对力并组成一个力偶,其矩为dx dydz )(τ 为满足令两个平衡方程,0=∑xF和0=∑z M在单元体上、下两个平面上将有大小相等、指向相反的一对内力元素dxdz 'τ 并组成其矩为dy dxdz )('τ的力偶该力偶与前一力偶矩数值相等而转向相反,从而可得ττ='上式表明,两相互垂直平面上的切应力τ和'τ数值相等,且均指向(或背离)该两平面的交线,称为切应力互等定理 该定理具有普遍意义纯剪切应力状态:单元体在其两对互相垂直的平面上只有切应力而无正应力的状态 等直圆杆和薄壁圆筒在发生扭转时,其中的单元体均处于纯剪切应力状态现分析在单元体内垂直于前、后量平面的任意斜截面上的应力 斜截面外法线n 与x 轴的夹角为α规定从x 轴至截面外法向逆时针转动时α为正,反之为负 应用截面法,研究其左边部分的平衡设斜截面ef 的面积为dA ,则eb 面和bf 面的面积分别为αcos dA 和αsin dA 选择参考轴ξ和η分别于斜截面ef 平行和垂直 由平衡方程∑=0ηF 和∑=0ξF即0cos )sin (sin )cos ('=++ααταατσαdA dA dA0sin )sin (cos )cos ('=+-ααταατταdA dA dA利用切应力互等定理公式,整理后即得任意一斜截面ef 上的正应力和切应力的计算公式ατσα2sin -= αττα2cos =单元体的四个侧面(ο0=α和ο90=α)上的切应力绝对值最大,均等于το45-=α和ο45=α两截面上正应力分别为τσσ+==max 45οτσσ-==min 45ο即该两截面上的正应力分别为ασ中的最大值和最小值,即一为拉应力,另一为压应力 其绝对值均等于τ,且最大、最小正应力的作用面与最大切应力的作用面之间互成45° 这些结论是纯剪切应力状态的特点,不限于等直圆杆在圆杆的扭转试验中,对于剪切强度低于拉伸强度的材料(如低碳钢),破坏是由横截面上的最大切应力引起,并从杆的最外层沿与杆轴线约成45°倾角的螺旋形曲面发生拉断而产生的在最大切应力相等的情况下,空心圆轴的自重较实心圆轴为轻,比较节省材料4.3 强度条件强度条件是最大工作切应力不超过材料的许用切应力,即][max ττ≤等直圆杆的最大工作应力存在于最大扭矩所在横截面即危险截面的周边上任一点,即危险点 上述强度条件可写为][maxτ≤pW T5.等直圆杆扭转时的变形·刚度条件 5.1 扭转时的变形 等直杆的扭转变形是用两横截面绕杆轴相对转动的相对角位移,即相对扭转角ϕ来度量的ϕd 为相距dx 的两横截面间的相对扭转角 因此,长为l 的一段杆两端面间的相对扭转角 长为l 的一段杆两端间的相对扭转角ϕ为⎰⎰==lpldx GI Td 0ϕϕ 当等直圆杆仅在两端受一对外力偶作用时,则所有横截面上的扭矩T 均相同 且等于杆端的外力偶矩e M对于由同一材料制成的等直圆杆,G 及p I 亦为常量,则可得pe GI l M =ϕ或p GI Tl =ϕϕ的单位为rad ,其正负号随扭矩T 而定由上式可见,相对扭转角ϕ与p GI 成反比,p GI 称为等直圆杆的扭转刚度由于杆在扭转时各横截面上的扭矩可能并不相同,且杆的长度也各不相同因此在工程中,对于扭转杆的刚度通常用相对扭转角沿杆长度的变化率dx d /ϕ来度量,称为单位长度扭转角,并用'ϕ表示pGI T dx d ==ϕϕ' 公式只适用于材料在线弹性范围内的等直圆杆例题3-5截面C 相对于截面B 的扭转角,应等于截面A 相对于B 的扭转角与截面C 相对于A 的扭转角之和AC BA BC ϕϕϕ+=5.2 刚度条件等直杆扭转时,除需满足强度条件外,有时还需满足刚度条件刚度要求通常是限制器单位长度扭转角'ϕ中最大值不超过某一规定的允许值]['ϕ,即][''max ϕϕ≤上式即为等直圆杆在扭转时的刚度条件式中,]['ϕ称为许可单位长度扭转角,其常用单位是m /)(ο需要将单位换算,于是可得][180'max ϕπ≤⨯p GI T 许可单位长度扭转角是根据作用在轴上的荷载性质以及轴的工作条件等因素决定的6.等直圆杆扭转时的应变能当圆杆扭转变形时,杆内将积蓄应变能计算杆内应变能,需先计算杆内任一点处的应变能密度,再计算全杆内所积蓄的应变能 受扭圆杆的任一点处于纯剪切应力状态设其左侧面固定,则单元体在变形后右侧面将向下移动dx ⋅γ当材料处于线弹性范围内,切应力与切应变成正比,且切应变值很小 因此在变形过程中,上、下两面上的外力将不作功只有右侧面上的外力dydz ⋅τ对相应的位移dx ⋅γ做功,其值为)(21))((21dxdydz dx dydz dW τγγτ=⋅⋅=单元体内所积蓄的应变能εdV 数值上等于dW 于是可得单位体积内的应变能即应变能密度εv 为τγεε21===dxdydz dW dV dV v 根据剪切胡克定律,上式可改写为Gv 22τε=或22γεG v =求得受扭圆杆任一点处的应变能密度εv 后,全杆的应变能εV 可由积分计算dAdx v dV v V Vl A⎰⎰⎰==εεεV 为杆的体积,A 为杆的横截面积,l 为杆长若等直杆仅在两端受外力偶矩e M 作用,则任一横截面的扭矩T 和极惯性矩p I 均相同可得杆内得应变能为222222222)(22ϕρτεlGI GI l M GI l T dA I T G l dAdx G V p p e A p p l A =====⎰⎰⎰以上应变能表达式也可利用外力功与应变能数值上相等的关系,直接从作用在杆端的外力偶矩e M 在杆发生扭转过程中所做的功W 算得7.等直非圆杆自由扭转时的应力和变形对于非等直圆杆,在杆扭转后横截面不在保持为平面取一矩形截面杆,事先在其表面绘出横截面的周线,则在杆扭转后,这些周线变成了曲线 从而可以推知,其横截面在杆变形后将发生翘曲而不再保持平面 对于此类问题,只能用弹性的理论方法求解 等直非圆杆在扭转时横截面发生翘曲,但当等直杆在两端受外力偶作用,且端面可以自由翘曲时,称为纯扭转或自由扭转这时,杆相邻两横截面的翘曲程度完全相同,横截面上仍然是只有切应力没有正应力若杆的两端受到约束而不能自由翘曲,称为约束扭转,则其相邻两横截面的翘曲程度不同,将在横截面上引起附加的正应力8.开口和闭口薄壁截面杆自由扭转时的应力和变形 8.1 开口薄壁截面杆薄壁截面的壁厚中线是一条不封闭的折线或曲线,责成开口薄壁截面如各种轧制型钢(工字钢、槽钢、角钢等)或工字形、槽形、T 字型截面等8.2 闭口薄壁截面杆薄壁截面的壁厚中线是一条封闭的折线或曲线,这类截面称为闭口薄壁截面 讨论这类杆件在自由扭转时的应力和变形计算设一横截面为任意形状、变厚度的闭口薄壁截面等直杆 在两自由端承受一对扭转外力偶作用杆横截面上的内力为扭矩,因此其横街满上将只有切应力 假设切应力沿壁厚无变化,且其方向与壁厚的中线相切在杆的壁厚远小于其横截面尺寸时,又假设引起的误差在工程计算中是允许的 取dx 的杆段,用两个与壁厚中线正交的纵截面从杆壁中取出小块ABCD 设横截面上C 和D 两点处的切应力分别为1τ和2τ,而壁厚分别为1δ和2δ 根据切应力互等定理,在上、下两纵截面上应分别有切应力2τ和1τ 由平衡方程0=∑xF,dx dx 2211δτδτ=可得2211δτδτ=由于所取的两纵截面是任意的,上式表明横截面沿其周边任一点处的切应力τ与该点处的壁厚δ乘积为一常数常数=τδ沿壁厚中线取出长为ds 的一段,在该段上的内力元素为ds ⋅τδ 其方向与壁厚中线相切,其对横截面内任意一点O 的矩为r ds dT )(⋅=τδr 是从矩心O 到内力元素ds ⋅τδ作用线的垂直距离由力矩合成原理可知,截面上扭矩应为dT 沿壁厚中线全长s 的积分,即得⎰⎰⎰===sssrds rds dT T τδτδrds 为图中阴影三角形面积2倍故其沿壁厚中线全长s 的积分应是该中线所围面积0A 的2倍,于是可得02A T ⨯=τδ或者δτ02A T=上式即为闭口薄壁截面等直杆在自由扭转时横截面上任一点处切应力的计算公式 可得杆截面上最大切应力为min0max 2δτA T =式子中,min δ为薄壁截面的最小壁厚闭口薄壁截面等直杆的单位长度扭转角可按功能原理来求得22022028)2(212δδτεGA T A T G G v === 根据应变能密度计算扭转时杆内应变能的表达式,得单位长度杆内得应变能为⎰⎰==V V dVGA T dV v V 22028δεε 式子中,V 为单位长度杆壁的体积,ds ds dV ⨯=⨯⨯=δδ1,代入上式⎰=s dsGA T V δε2028 计算单位长度杆两端截面上的扭矩对杆段的相对扭转角'ϕ所做的功,杆在线弹性范围内2'ϕT W =因为W V =ε,则可解得⎰=sdsGA T δϕ20'4即所要求得单位长度扭转角式子中的积分取决于杆的壁厚δ沿壁厚中线s 的变化规律,当壁厚δ为常数时,得到δϕ20'4GA Ts=式子中,s 为壁厚中线的全长如有侵权请联系告知删除,感谢你们的配合!。
材料力学第三章-PPT

Me3
r / min
Me1 15915 N m
2
3
Me2 Me3 4774.5 N m
Me4 6366 N m
Me1 n Me4
1
4
6366 N·m
+
2)画扭矩图
4774.5 N·m
9549 N·m
【课堂练习】若将
Me2
Me4
从动轮3与4对调如
18
Me1 n Me3
图,试作扭矩图、
2
BC段内:
2,max
T2 Wp 2
π
14103 71.3MPa 100 103 3
3)校核强度
16
2,max >1,max且2,max<[ ] = 80MPa,满足强度条件、
36
§3-5 等直圆杆扭转时得变形·刚度条件
Ⅰ、 扭转时得变形
等直圆杆得扭转变形可用两个横截面得
相对扭转角(相对角位移) j 来度量。
GIP
j Tl 180 GIP
—单位为度 (º)
若圆轴在第i段标距li内Gi、IPi、Ti为常 数,则相对扭转角:
n
j
T i li
—单位为弧度(rad)
i1 Gi I Pi
n
j
T i li 180 —单位为度 (º)
i1 Gi I Pi
39
【例3-4】钢制实心圆轴中,M1=1 592 N·m,M2 = 955 N·m,M3 = 637 N·m,lAB = 300 mm,lAC = 500 mm,d = 70 mm ,切变模量G = 80 Gpa、试求横截面C 相对于
Me
Me
FS左=τ左dydz
FS右=τ右dydz
材料力学 剪切和扭转.

§3–2 连接接头的强度计算
(合力) P 1、连接处破坏三种形式: ①剪切破坏
n
n
P (合力) 剪切面 n
沿铆钉的剪切面剪断,如
沿n– n面剪断 。 ②挤压破坏 铆钉与钢板在相互接触面 上因挤压而使溃压连接松动,
FS n
P
发生破坏。
③拉伸破坏
钢板在受铆钉孔削弱的截面处,应力增大,易在连接处拉断。
2、剪切的实用计算
此杆安全。
[例6]木榫接头如图所示,宽b=20cm,材料[]=1MPa, [bs]=10MPa。受拉力P=40kN作用,试设计尺寸a 、h 。 F F
a
h
剪切面
Fbs
挤压面
F
解: 剪切面面积:As
ab bh
Abs 挤压面面积:
a
h
剪切面
Fbs
挤压面
F
取接头右边,受力如图。
Fs Fbs F
P=40KN,试求接头的剪应力和挤压应力。 h P a 解::受力分析如图∶ P
FS Fbs P 挤压面和挤压力为:
P :剪应力和挤压应力
剪切面和剪力为∶
P b
c
As
Abs
P P
FS P 40 107 0.952MPa AS bh 12 35
Pbs P 40 bs 107 7.4MPa Abs cb 4.5 12
度条件。
P
t
d
t
P
多铆钉连接件,为计算方便,各铆钉受力可视作相同。
上板受力图
F/4 F/4 F/4
F/4
3F/4
F
F
上板轴力图
铆钉受力图
F/4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
ρ
T Ip
Ip
R
定义: Wt
Ip R
m
T m R Ip
极惯性矩
圆截面上最大剪应力 剪应力具有最大值
称之为抗扭截面模量
T m Wt
3、抗扭截面模量
实心圆截面
Wt
d
3
16
空心圆截面 Wt
D
3
16
1
4
4、扭转轴内最大剪应力
2-2 挤压及其实用计算
1、挤压的概念
两构件相互接触,且在接触面上有较大力传递时,在 两接触面上所发生的局部相互压紧现象。
挤压破坏的特点:
在构件相互接触的表面,因承受了较大的压力, 在接触处的局部区域发生显著的塑性变形或挤碎。
作用于接触面的压力称为挤压力
挤压力的作用面称为挤压面。
铆钉或螺栓连接 挤压面为上半个圆周面 挤压面为下半个圆周面
B
C 955N· m
A
477.5N· m Tn 637N· m
3-4 薄壁圆筒的扭转
1、薄壁圆筒扭转时的应力
观察一个实验 将一薄壁圆筒表面用纵向平行 线和圆周线划分。 两端施以大小相等方向相反 一对力偶矩 # 圆周线大小形状不变,各圆周线间距离不变
观察到: # 纵向平行线仍然保持为直线且相互平行,只
拉杆危险截面 t P
最大拉力为 P 位置在右边第一个铆钉处。 N P 80 1000 拉杆强度计算: 125MPa A b d t 80 16 10 铆钉受剪切 工程上认为各个铆钉平均受力 剪切力为 P/4 铆钉强度计算:
4Q 4 P / 4 80 1000 2 99.5 MPa 2 2 d d 16
左右两段
P P/2 P/2
P
结论:无论用中间段还是左右段分析,结果是一样的。
例2-1 图示拉杆,用四个直径相同的铆钉连接,校核铆钉和拉 杆的剪切强度。假设拉杆与铆钉的材料相同,已知P=80KN, b=80mm,t=10mm,d=16mm,[τ]=100MPa,[σ]=160MPa。 构件受力和变形分析: 假设下板具有足够 的强度不予考虑 上杆(蓝杆)受拉 d b P
关于挤压面面积的确定
键连接 铆钉或螺栓连接
l h b d
挤压力 分布
Abs l h
2
h
Abs d h
剪切与挤压的主要区别
剪切面与外力平行 挤压面与外力垂直
剪切应力为剪应力
剪切面计算
1 铆钉与螺栓 A d 2 4
挤压应力为正应力
挤压面计算
Abs d h
Abs l h 2
由强度条件得 T WT [ ] T 3 0 .2 d [ ]
d3
T 543 3 0.0407 m 4.07cm 6 0.2[ ] 0.2 40 10
选取轴的直径 d=4.5cm。 (3)校核轴的刚度
mA
N 10 mB 9550 B 9550 191 Nm n 500
NC 6 mC 9550 9550 114 .6 Nm n 500
x
Mn1
M
Mn2
X
0
mc
M n1 mA 0
0
计算扭矩: AB段 BC段 Mn1设为正的 Mn2设为正的
M
X
M n1 mA 76.4 Nm
令
I p 2 dA
A
是一个只决定于横截面的形状和大小的几何量,称 为横截面对形心的极惯性矩。
dj 2 G dA T dx A
I p 2 dA
A
dj T dx GI P
T j dx 0 GI p
l
扭转角
Tl j GI p
dj T T G G dx GI p I p
A bl
螺栓和单键剪应力及强度计算:
螺栓 单键
4F 4P 2 2 d d
设合外力为P 则剪应力为: 剪切力为Q
QP
Q P bl bl
单剪切与双剪切
单剪切
杆件在外力作用下只有一个剪切面。 P
P
双剪切
杆件在外力作用下出现两个剪切面。 P/2 P/2 中间段 P/2 P/2 剪切力为P 剪切面面 积2倍 剪切力为P/2 剪切面面 积单倍
键
A bl
第三章
扭 转
本单元主要内容
#
#
# # 扭转变形的特点
外力偶矩的计算
扭矩的计算 扭转剪应力的计算
3-1 扭转变形的特点
Mn A'
A
g
Mn
B j
B'
1、外力特点
杆件受到一对力偶矩的大小相等、旋向相反,作用平面与杆轴线垂直 的力偶作用。
2、变形特点:
纵向线发生倾斜,相邻横截面发生相对错动;横截面仍为平面,只是 绕轴线发生转动。
dj T T G G dx GI p I p
• 横截面上某点的剪应力 的方向与扭矩方向相同, 并垂直于该点与圆心的 连线 • 剪应力的大小与其和圆 心的距离成正比
Mn
τ
τ
注意:如果横截面是空心圆,剪应力分布规律一 样适用,但是,空心部分没有应力存在。
2、扭转剪应力的计算
外力偶矩正负号的规定
和所有外力的规定一样,
与坐标轴同向为正,反向为负
离开截面
例3-1 传动轴如图所示,转速 n = 500转/分钟,主动轮B输入 功率NB= 10KW,A、C为从动轮,输出功率分别为 NA= 4KW , NC= 6KW,试计算该轴的扭矩。 B A C x 先计算外力偶矩
m A 9550 NA 4 9550 76.4 Nm n 500
螺栓连接
P
内力外力要平衡
二、键类
F M d
单键连接
花键连接
单键连接的受力分析
2-2 剪切的实用计算
1、剪切变形的内力计算
剪切面
F
P
X 0
P
P
将螺栓从剪切面截开,由力的平衡,有:
F P 0
FP
F为剪切内力,即剪应力在剪切面上的合力,我们称之为剪力.
2、剪应力及剪切强度计算
由于变形区域较小,应力计算采用假定计算法。
满足强度要求
3-6 扭转变形、扭转刚度条件
1、扭转变形——扭转角
为了描述扭转变形的变形程度, 引入单位长度扭转角的概念。
Tl j GI p
抗扭刚度
物理意义:相距单位长度的两
横截面在扭转变形过程中相对错 动的角度。
T l GI p
或
j
单位
rad / m
/m
2、扭转刚度条件 以每米弧度为单位时
3-2 外力偶矩的计算
输入功率:N(kW)
m 转速:n (转/分)
1分钟输入功: 1分钟m 作功:
W 60N1000 60000N
W m m 2n 1 2nm
W W'
N m 9550 n
Nm
单位
3-3 圆轴扭转时的内力及内力图
1、圆轴扭转时的内力----扭矩
剪切与扭转
本单元主要讨论:
键连结和铆钉连接件 应力计算
2-1 剪切
1、剪切变形的特点
(1)外力特点:大小相等,方向相反,作用线平行且距离很近。
(2)变形特点:两外力作用线之间的横截面发生相互错动。
我们将错位横截面称为剪切面
2、受剪切构件的主要类型
一、铆钉类
铆钉连接 螺栓受力情况
受剪切面为两组力分界面 P
是倾斜了一个角度
结论:横截面上没有正应力,只 有剪应力。
由于壁很薄,可以假设剪应力 沿壁厚均匀分布。
包括横截面取出一个单元体。
各个截面上只有剪应力没有正应力的情况称为纯剪切
将(d)图投影到铅垂坐标平面,得到一个平面单元
2、剪应力互等定理
由静力平衡条件的合力矩 方程可以得到
'
两互相垂直截面上在其相交处的剪应力 成对存在,且数值相等、符号相反,这称为 剪应力互等定理。
键连接
上半部分挤压面
l
h
2
下半部分挤压面
2、挤压应力及强度计算
在挤压面上,单位面积上所具有的挤压力称为挤 压应力。
bs
假定计算法: 假设一:假设挤压力在计算挤压面上呈均匀分布;
假设二:计算挤压面为挤压面的正投影面。
挤压力
P bs bs Abs
许用挤压应力 计算挤压面的面积
T GI p
许用单位长度扭转角
以每米度为单位时
T 180 GI p
例3—4 5吨单梁吊车,NK=3.7kW,n=32.6r/min.试选择传动 轴CD的直径,并校核其扭转刚度。轴用45号钢, []=40MPa,G=80×103MPa, = 1º /m。
以扭转变形为主的杆------------轴 扭转时的内力称为扭矩
2、扭矩利用截面法、并建立平衡方程得到 m m
m
Mn
M
X
0
Mn m 0
Mn m
3、扭矩正负号的规定 确定扭矩方向的右手法则:
4个手指沿扭矩转动的方向,大拇指即为扭矩的方向。
扭矩正负号:
离开截面为正,指向截面为负。 指向截面
(1)计算抗扭截面模量
d 0.945 D cm3 WT 0.2 D 3 (1 4 ) 0.2 8.9 3 (1 0.9454 ) 29
(2) 强度校核
max
T WT 1930 6 2910 6 66.7 10 Pa 66.7MPa [ ] 70MPa