lingo灵敏度分析

合集下载

LINGO使用说明比较简单

LINGO使用说明比较简单

LINGO使用说明比较简单
第九步,分析和优化结果。

优化模型求解完成后,你可以通过结果显
示区中的结果表格和图表来分析和优化结果。

LINGO还提供了一些分析工具,如灵敏度分析和场景分析,帮助你深入理解模型的行为和性能。

第十步,保存和导出结果。

在 LINGO 中,你可以保存整个优化模型
及其求解结果,以供将来使用。

通过点击菜单栏中的“文件”选项,选择“保存”或“导出”,就可以将模型和结果保存为不同的文件格式,如LINGO模型文件(.lng)、Excel 文件(.xls)或文本文件(.txt)。

通过上述十个步骤,你可以使用LINGO软件完成一个优化模型的建立、求解和分析。

当然,LINGO还具备其他高级功能和应用,如混合整数规划、随机规划和非线性规划等,可以根据你的具体需求进行进一步学习和应用。

LINGO使用手册和官方网站上有更多详细的说明和案例,可以帮助你更好
地使用和理解LINGO软件。

Lingo基本用法总结

Lingo基本用法总结

Lingo基本用法总结(除集函数部分)LINGO是用来求解线性和非线性优化问题的简易工具。

Lingo免费版可以支持30个未知数,lingo破解版可以支持几万个未知数、几万个约束条件。

当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口:外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。

在主窗口内的标题为LINGO Model – LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。

下面举两个例子。

例1.1 如何在LINGO中求解如下的LP问题:在模型窗口中输入如下代码:min=2*x1+3*x2;x1+x2>=350;x1>=100;2*x1+x2<=600;然后点击工具条上的按钮即可。

得到如下结果:所以当x1为250,x2为100时目标函数得到最大值。

算术运算符Lingo 中变量不区分大小写,以字母开头不超过32个字符算术运算符是针对数值进行操作的。

LINGO 提供了5种二元运算符: ^ 乘方 ﹡ 乘 / 除 ﹢ 加 ﹣ 减 LINGO 唯一的一元算术运算符是取反函数“﹣”。

这些运算符的优先级由高到底为:高 ﹣(取反) ^ ﹡/ 低 ﹢﹣运算符的运算次序为从左到右按优先级高低来执行。

运算的次序可以用圆括号“()”来改变。

例:在x1+x2>=350,x1>=100,2*x1+x2<=600的条件下求2*x1+3*x2的最小值 在代码窗口中编写 min =2*x1+3*x2; x1+x2>=350; x1>=100;2*x1+x2<=600;然后单击上面菜单lingo 菜单下solve 键即可。

数学函数标准数学函数:@abs(x) 返回x 的绝对值@sin(x) 返回x 的正弦值,x 采用弧度制 @cos(x) 返回x 的余弦值 @tan(x) 返回x 的正切值 @exp(x) 返回常数e 的x 次方 @log(x) 返回x 的自然对数@lgm(x) 返回x 的gamma 函数的自然对数 @sign(x) 如果x<0返回-1;否则,返回1@floor(x) 返回x 的整数部分。

Lingo与线性规划

Lingo与线性规划

Lingo 与线性规划线性规划的标准形式是Minz c 1 x 1 c n x na 11x1a 1n xnb 1 s..ta m1 x1a mnxn(1)b mx i 0, i 1,2,, n其中 z c 1 x 1 c n x n 称为目标函数, 自变量 x i 称为决策变量 ,不等式组 (1)称为约束条件 .满足不等式组 (1)的所有 ( x 1, , x n ) 的集合称为可行域,在可行域里面使得z取最小值的 ( x 1* , , x n * ) 称为最优解,最优解对应的函数值称为最优值。

求解优化模型的主要软件有 Lingo 、Matlab 、Excel 等。

其中 Lingo 是一款专业求解优化模型的软件, 有其他软件不可替代的方便功能。

本文将简要介绍其在线性规划领域的应用。

一、基本规定1、目标函数输入格式max=函数解析式; 或者 min=函数解析式;2、约束条件输入格式利用: >、<、>=、<=等符号。

但是 >与 >=没有区别。

Lingo 软件默认所以自变量都大于等于 0.3、运算 加 (+), 减(-), 乘(*), 除(/), 乘方 (x^a) ,要注意乘号 (*) 不能省略。

4、变量名不区分大小写字母,不超过 32 个字符,必须以字母开头。

5、标点符号每个语句以分号“;”结束,感叹号“!”开始的是说明语句(说明语句也需要以分号“ ; ”结束)。

但是,model ,sets ,data 以“:”结尾。

endsets ,enddata , end 尾部不加任何符号。

6、命令不考虑先后次序7、MODEL 语句一般程序必须先输入 MODEL :表示开始输入模型,以“ END ”结束。

对简单的模型,这两个语句也可以省略。

8、改变变量的取值范围 @bin(变量名 ) ;@bnd(a, 变量名 ,b ) ;@free( 变量名 ) ; @gin(变量名 ) ;例 1 求目标函数 z 2x 1限制该变量为 0 或 1.限制该变量介于 a,b 之间 .允许该变量为负数 .限制该变量为整数 .3x 2 的最小值,约束条件为s..t x1x2350x11002x12x2600x1 , x20输入 Lingo 程序:min = 2*x1 + 3*x2;x1 + x2 >= 350;x1 >= 100;2*x1 + x2 <= 600;有两种运行方式:1、点击工具条上的按钮即可。

数学中的灵敏度分析讲述

数学中的灵敏度分析讲述

假设条件成为了建模过程中一个影响模型好坏的影响因素,灵敏度分析就是在模型建立后,对假设条件变化,检验模型的优劣性一般来说Lingo做出来的灵敏度分析能够达到一个比较理想的程度,不过还是要根据模型本身来研究,建议你在开始之前先学习一下《数值分析》,对建模的灵敏度分析很有用哈,再根据《数值分析》的方法,对M-C(蒙特卡罗)方法进行灵敏度分析,你会很快掌握~~~随着现代工业的迅速发展,对工业设备的精度提出了更高的要求。

但是,由于制造误差、轴承间隙、弹性变形等因素的影响,不可避免地会对设备的精度产生一定的影响。

因此我们就有必要建立起一个数学模型并且应用恰当的分析方法来研究上述的各种误差对精度的影响关系,找出影响最大的因素,作为我们在实际的制造和装配过程中进行误差分配,降低生产成本,提高传动精度的理论依据。

这里就可以采用灵敏度分析的方法。

它主要包括局部灵敏度分析方法和全局灵敏度分析方法。

一、局部灵敏度分析方法局部法主要分析因素对模型的局部影响(如某点)。

局部法可以得到参数对输出的梯度,这一数值是许多领域研究中所需要的重要数据。

局部法主要应用于数学表达式比较简单,灵敏度微分方程较易推出,不确定因素较少的系统模型中。

主要包括直接求导法、有限差分法、格林函数法。

1.直接求导法对于输入因素个数少、结构不复杂、灵敏度微分方程较易推导的系统或模型,直接法是一种简单快速的灵敏度分析方法。

时变(非静止)系统可以用微分或微分-代数方程进行描述。

假设要考虑的初值问题是,(1)同样,代表n维输出变量,代表m维输入因素。

代表初值数组。

式(1)对输入因素微分得到下述的灵敏度微分方程(2)或以矩阵形式表示为(3)式中,是系统代数-微分方程右边对系统输出变量的导数(可称为雅可比矩阵),是对输入因素的导数,也可称为参数雅可比。

微分方程(2)的初始条件为零向量。

上述的直接法建立在微分方程(2)的基础上,要得到其灵敏度矩阵S的解,需要先求得矩阵J和F的值。

LINGO结果窗口内容解读与灵敏度分析

LINGO结果窗口内容解读与灵敏度分析

LINGO结果窗⼝内容解读与灵敏度分析1.结果窗⼝内容解读1. ⽬标函数值:Global option solution found.表⽰求出了全局最优解;Objective value表⽰最优⽬标值,Total solver iretion表⽰求解时共⽤了⼏次迭代2. 决策变量:Value给出最优解中各变量的值3. 变量的判别数:Reduced Cost表⽰最优单纯形表中判别数所在的⾏的变量的系数,表⽰当变量有微⼩变化时,⽬标函数的变化率。

其中基变量的reduced cost值应为零。

对于基变量相应的reduced cost值表⽰这个变量增加⼀个单位时⽬标函数值减少的量(max型问题)4. 紧约束与松约束:slack or Surplus给出松弛或剩余变量的值,其值为零的对应约束为"紧约束",表⽰在最优解下该项资源已经⽤完;其值为⾮零的对应约束为"松约束",表⽰在最优解下该项资源还有剩余5. 对偶价格(经济学:影⼦价格):DUAl PRICE(对偶价格)表⽰当对应约束有微⼩变动时⽬标函数的变化率。

输出结果中对应每⼀个"紧约束"有⼀个对偶价格。

若其数值为怕,则表⽰对应约束不等式右端项正好增加⼀个单位,⽬标函数将增加P个单位(max)模型。

显然,如果在最优解处约束条件正好取等号(也就是"紧约束",也称为有效约束或起作⽤约束),对偶价格值才可能不是0.6. 变量框(Variables):Total表⽰当前模型的全部变量数,Nonlinear显⽰其中的⾮线性变量数,Integers显⽰其中的整数变量数。

⾮线性变量是指它⾄少处于某⼀个约束条件中的⾮线性关系中。

7. 约束(Constains)框:Total表⽰当前模型扩展后的全部约束个数,Nonlinear显⽰其中的⾮线性约束个数。

⾮线性约束是该约束⾄少有⼀个⾮线性变量。

如果⼀个约束中的所有变量都是定值,那么该约束就以定值不等式表⽰,该约束的真假由变量的具体值决定,仍计⼊约束总数中。

lindo常用的基本语法

lindo常用的基本语法

2、 min Z x1 3 x2 x1 2 x2 6 s.t. 3 x1 x2 15 x , x 0 1 2
2、lingo的优点 (1)可以用于求线性规划及非线性规划问 题,包括非线性整数规划问题。
(2)lingo包含内置的建模语言(常称矩阵 生成器),允许以简练、直观的方式描述 较大规模的优化模型(成千万个约束条件 和变量), 模型中所需的数据可以用一定格 式保存在独立的文件中,需要时再读取数据。
在Lingo中,所有的系统函数都必须是以“@”开头。
2、集合循环函数
集合循环函数是指对集合中的所有元素(下标) 进行循环操作的函数,如@sum,@for等。
具体的使用格式:
@循环函数名(循环变量所在的集 (循环变量)│ 过滤条件:循环表达式) 其中,如果在操作过程中没有过滤条件,可 以省略过滤条件;如果表达式是对集合的所有循 环变量进行操作,循环变量也可以省略。
LINGO软件的使用规则(3)
(6) 约束条件中的符号“≥”用 “> = ”或“>”表示, “≤”用“<=”或 “<”表示。
(7) 计算机把输入程序中的第一行默认为目标函数, 其它各约束条件可以用[_1],[_2]标明它的行号。 (8) 虽然决策变量可以放在约束条件的右端,但为 了提高Lingo的求解效率,应尽可能采用线性表达 式定义目标函数和约束条件。 (9) 在lingo中以感叹号“!”开始的是说明语句, 并且说明语句也需要以分号“;”结束,并且除 了“!”和“;”之外,说明语句中的其它字符 可以是任何字符。
3、 lingo中的灵敏度分析
在lindo中的目标函数最优值、最优解与灵敏度 而在lingo中,最优解、最 分析是一起显示出来, 优值与灵敏度分析是分别用不同的命令显示出来。 lingo中的灵敏度分析的数据输出结果与lindo 中的灵敏性分析中输出结果是相同的。 因为lingo的求解结果中是没有灵敏度分析的, 所以如果需要灵敏度分析的数据,可以通过修改 选项来实现。

实验二 答案

实验2 线性规划问题及对偶问题求解实验内容与答案提示:灵敏度分析设置方式:先在lingo菜单options里面设置general solver 的dual computation里面加上ranges然后在lingo菜单里面选range就行了注意lingo只能对线性的模型做灵敏度分析题1 线性规划问题的灵敏度分美佳公司计划制造 I、II 两种家电产品。

已知各制造一件时分别占用设备 A、B 的台时、调试时间、调试工序每天可用于这种家电的能力、各售出一件时的获利情况,如表 1-1 所示。

1.问该公司应制造两种家电各多少件,使其获取的利润最大。

max=2*x1+1*x2;5*x2<=15;6*x1+2*x2<=24;x1+x2<=5;Global optimal solution found.Objective value: 8.500000Infeasibilities: 0.000000Total solver iterations: 2Variable Value Reduced CostX1 3.500000 0.000000X2 1.500000 0.000000Row Slack or Surplus Dual Price1 8.500000 1.0000002 7.500000 0.0000003 0.000000 0.25000004 0.000000 0.50000002. 如果资源出租,资源出租的最低价格至少是多少(即每种资源的影子价格是多少)。

min=15*y1+24*y2+5*y3;6*y2+y3>=2;5*y1+2*y2+y3>=1;Global optimal solution found.Objective value: 8.500000Infeasibilities: 0.000000Total solver iterations: 3Variable Value Reduced CostY1 0.000000 7.500000Y2 0.2500000 0.000000Y3 0.5000000 0.000000Row Slack or Surplus Dual Price1 8.500000 -1.0000002 0.000000 -3.5000003 0.000000 -1.5000003.若家电 I 的利润不变,家电 II 的利润在什么范围内变化时,则该公司的最优生产计划将不发生变化。

灵敏度分析1

因为稍有差错就可能导致数据的偏差很大,更会导致以后其它点的测量出错,最终导致数据计算的错误,比如我们刚开始测量角度时,一个基准点没有瞄准,导致一个角度偏小,然后角度的闭合差也不符合要求,经过校验,才发现问题出在哪儿。
(1)实验仪器的整平对实验数据的误差有很大的影响;
(2)水准测量和水平角测量均需检查闭合差,超过差限则一定要重新测;
(3)要注意计算问题,计算最好由两个人完成,一个初步的计算,一个检验,不过,在此过程当中,也还是出现了计算错误的问题,我们在不断的重复检验之中算出了正确的数值,尽量让误差减少到了最少.。
通过这次实训,让我体会到了团队精神的重要性,也认识到测量学的严谨性,无论是少了中间的哪一环都无法完成任务,任何一个步骤、环节,都少不了,也出不得错,一步错步步错,因此,测量学才有“从整体到局部、先控制后碎部”的工作原则,并要求做到“步步有检核”.当然,搞好测量既离不开团队的合作,也离不开我们每个人的努力.。
实验序号
2
实验
名称
灵敏度分析
实验地点
格致楼c107
实验
日期
实验目的和实验内容
一、实验目的
1、学会使用LINGO软件求解线性规划问题的灵敏度分析。
2、学会分析LINGO软件求解的结果。
二.实验内容
已知某工厂计划生产I,II,III三种产品,各产品需要在A、B、C设备上加工,有关数据如下:
I
II
III
设备有效台时
就整个测量实训来说,我们从中学到了不少知识,不过这其中也反映出了我们还有许多的不足,希望在以后的学习中不断吸取经验教训,逐一克服,不断提高我们的测量水平。
与该门实习课程教学大纲(或实习教学任务书、指导书)要求一致。
(四)实习内容

2024年度培训教案LINGO一

选择合适的求解器
根据问题的类型和规模,选择适合的LINGO求解器,如线性规划、整数规划等 。
参数设置
了解并设置求解器的相关参数,如迭代次数、收敛精度等,以提高求解效率和 准确性。
2024/2/2
14
求解过程展示和结果输出格式说明
求解过程展示
通过LINGO的输出窗口或日志文件,展示求解过程的详细信息,包括迭代次数、 目标函数值变化等。
根据问题类型和规模选择合适的 求解器,避免使用不当导致求解 失败或效率低下。
2024/2/2
17
04
高级功能应用——灵敏度分析 和多目标优化
Chapter
2024/2/2
18
灵敏度分析概念及其作用阐述
2024/2/2
灵敏度分析定义
01
研究当模型中某些参数发生变化时,最优解将如何变化的分析
方法。
灵敏度分析作用
培训教案LINGO一
2024/2/2
1
目录
2024/2/2
• LINGO软件简介与安装 • 基础知识与数学模型构建 • 求解过程及结果解读 • 高级功能应用——灵敏度分析和多目标优化 • 实际应用场景——生产调度和物流配送问题 • 课程总结与回顾
2
01
LINGO软件简介与安装
Chapter
2024/2/2
2024/2/2
30
下一讲预告
下一讲将介绍LINGO软件在组 合优化问题中的应用,包括旅行 商问题、背包问题等经典组合优
化问题的求解方法。
还将讲解如何使用LINGO软件 进行灵敏度分析和参数优化,帮 助学员更好地理解和应用优化理
论。
最后,将提供一些实际案例供学 员练习和讨论,加深学员对

lingo-lindo简介

Lingo、lindo简介一、软件概述 (1)二、快速入门 (4)三、Mathematica函数大全--运算符及特殊符号 (11)参见网址: /一、软件概述(一)简介LINGO软件是由美国LINDO系统公司研发的主要产品。

LINGO是Linear Interactive and General Optimizer的缩写,即交互式的线性和通用优化求解器。

LINGO可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等,功能十分强大,是求解优化模型的最佳选择。

其特色在于内置建模语言,提供十几个内部函数,可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。

能方便与EXCEL,数据库等其他软件交换数据。

LINGO实际上还是最优化问题的一种建模语言,包括许多常用的函数可供使用者建立优化模型时调用,并提供与其他数据文件(如文本文件、Excel 电子表格文件、数据库文件等)的接口,易于方便地输入、求解和分析大规模最优化问题。

(二)LINGO的主要特点:Lingo 是使建立和求解线性、非线性和整数最佳化模型更快更简单更有效率的综合工具。

Lingo 提供强大的语言和快速的求解引擎来阐述和求解最佳化模型。

1 简单的模型表示LINGO 可以将线性、非线性和整数问题迅速得予以公式表示,并且容易阅读、了解和修改。

LINGO的建模语言允许您使用汇总和下标变量以一种易懂的直观的方式来表达模型,非常类似您在使用纸和笔。

模型更加容易构建,更容易理解,因此也更容易维护。

2 方便的数据输入和输出选择LINGO 建立的模型可以直接从数据库或工作表获取资料。

同样地,LINGO 可以将求解结果直接输出到数据库或工作表。

使得您能够在您选择的应用程序中生成报告。

3 强大的求解器LINGO拥有一整套快速的,内建的求解器用来求解线性的,非线性的(球面&非球面的),二次的,二次约束的,和整数优化问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灵敏度分析用于产生当前模型的灵敏性分析报告:研究当目标函数的费用系数和约束右端项在什么范围(此时假定其它系数不变)时,最优基保持不变。

灵敏性分析是在求解模型时作出的,因此在求解模型时灵敏性分析是激活状态,但是默认是不激活的。

为了激活灵敏性分析,运行LINGO|Options…,选择General Solver Tab,在Dual Computations列表框中,选择Prices and Ranges选项。

灵敏性分析耗费相当多的求解时间,因此当速度很关键时,就没有必要激活它。

·一个简单的具体例子
某家具公司制造书桌、餐桌和椅子,所用的资源有三种:木料、木工和漆工。

生产数据
“Global optimal solution found at iteration: 表示3次迭代后得到全局最优解。

“Objective value:表示最优目标值为280。

“Value”给出最优解中各变量的值:造2个书桌(desks), 0个餐桌(tables), 8个椅子(chairs)。

所以desks、chairs是基变量(非0),tables是非基变量(0)。

“Slack or Surplus”给出松驰变量的值:
第1行松驰变量=280(模型第一行表示目标函数,所以第二行对应第一个约束)
第2行松驰变量=24
第3行松驰变量=0
第4行松驰变量=0
第5行松驰变量=5
“Reduced Cost”列出最优单纯形表中判别数所在行的变量的系数,表示当变量有微小变动时, 目标函数的变化率。

其中基变量的reduced cost值应为0,对于非基变量Xj, 相应的reduced cost值表示当某个变量Xj 增加一个单位时目标函数减少的量( max型问题)。

本例中:变量tables对应的reduced cost值为5,表示当非基变量tables的值从0变为1时(此时假定其他非基变量保持不变,但为了满足约束条件,基变量显然会发生变化),最优的目标函数值= 280 - 5 = 275。

“DUAL PRICE”(对偶价格)表示当对应约束有微小变动时, 目标函数的变化率。

输出结果中对应于每一个约束有一个对偶价格。

若其数值为p,表示对应约束中不等式右端项若增加1 个单位,目标函数将增加p个单位(max型问题)。

显然,如果在最优解处约束正好取等号(也就是“紧约束”,也称为有效约束或起作用约束),对偶价格值才可能不是0。

本例中:第3、4行是紧约束,对应的对偶价格值为10,表示当紧约束
3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 20
变为3) 4 DESKS + 2 TABLES + 1.5 CHAIRS <= 21
时,目标函数值= 280 +10 = 290。

对第4行也类似。

对于非紧约束(如本例中第2、5行是非紧约束),DUAL PRICE 的值为0, 表示对应约束中不等式右端项的微小扰动不影响目标函数。

有时, 通过分析DUAL PRICE, 也可对产生不可行问题的原因有所了解。

灵敏度分析的结果是
Ranges in which the basis is unchanged:
Objective Coefficient Ranges
Current Allowable Allowable
Variable Coefficient Increase Decrease
DESKS 60.00000 20.00000 4.000000
TABLES 30.00000 5.000000 INFINITY
CHAIRS 20.00000 2.500000 5.000000
Righthand Side Ranges
Row Current Allowable Allowable
RHS Increase Decrease
2 48.00000 INFINITY 24.00000
3 20.00000 4.000000 4.000000
4 8.000000 2.000000 1.333333
5 5.000000 INFINITY 5.000000
目标函数中DESKS变量原来的费用系数为60,允许增加(Allowable Increase)=4、允许减少(Allowable Decrease)=2,说明当它在[60-4,60+20] = [56,80]范围变化时,最优基保持不变。

对TABLES、CHAIRS变量,可以类似解释。

由于此时约束没有变化(只是目标函数中某个费用系数发生变化),所以最优基保持不变的意思也就是最优解不变(当然,由于目标函数中费用系数发生了变化,所以最优值会变化)。

第2行约束中右端项(Right Hand Side,简写为RHS)原来为48,当它在[48-24,48+∞] = [24,∞]范围变化时,最优基保持不变。

第3、4、5行可以类似解释。

不过由于此时约束发生变化,最优基即使不变,最优解、最优值也会发生变化。

相关文档
最新文档