九年级(上)第四章 一元二次方程 第6课时 用一元二次方程解决问题(一)

合集下载

第6课时 一元二次方程根的判别式

第6课时  一元二次方程根的判别式
要忘记考虑二次项系数不为0的限制;
第6课时 一元二次方程根的判别式
1.我们已经学过一元二次方程的解法有哪些?
①直接开平方法 ②因式分解法
③配方法
④公式法
2.配方法的步骤是什么?
求根公式是怎样的?怎样得到的?
由此发现一元二次方程的根有三种情况:
①当b2-4ac>0时,方程有两个不相等的实数根; ②当b2-4ac=0时,方程有两个相等的实数根; ③当b2-4ac<0时,方程没有实数根;
A.有两个相等的实数根
B.有两个不等的实数根
C.有两个实数根
D.无实数根
5.当k为何值时,关于x的方程x2-(2k-1)x=-k2+2k+3 ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根;
6. 关于x的方程(m+2)x2+2x-1=0有实数根,求m的取值范围;
1.利用根的判别式来判断根的情况; 2.根据根的情况来判断判别式的符号; 3.特别注意:在求一元二次方程中字母的取值范围时,千万不
号表示为“△”
例1.解下列方程: ①x2-2x-3=0
②x2-2x+1=0
③x2-2x+2=0
由此可得:
①若方程有两个不相等的实数根,则b2-4ac>0; ②若方程有两个相等的实数根,则b2-4ac=0; ③若方程没有实数根,则b2-4ac<0;
值范围是( C )
A. m 1
5
C.m 1且 m 0
5
B.0 m 1或 m 0
5
D. m 1
5
3.已知k>0,且方程3kx2+12x+k=-1有两个相等的实数根,那么k

2015届九年级数学中考一轮复习教学案:第6课时一元二次方程及其应用

2015届九年级数学中考一轮复习教学案:第6课时一元二次方程及其应用

第6课时一元二次方程及其应用【复习目标】1.了解一元二次方程的定义及一般形式.2.理解配方法,能用配方法、公式法、因式分解法解带有数字系数的一元二次方程.3.会用一元二次方程根的判别式判断方程是否有实根和两个实根是否相等.4.了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题).5.能根据具体问题的实际意义,检验方程的解是否合理.【知识梳理】1.-元二次方程的定义:只含有_______个未知数,并且未知数的最高次数是_______的_______式方程叫做一元二次方程.2.一元二次方程的一般形式是________(a_______0),其中ax2叫做_______项,a是_______,bx叫做_______,b是_______,c叫做_______项.3.一元二次方程的解法:(1)直接开平方法:形如(mx+n)2=p(p≥0)的方程的根为________.(2)配方法的步骤:移项,二次项的系数化为1(该步有时可省略),配方,直接开平方.(3)求根公式法:方程ax2+bx+c=0(a≠0),当b2-4ac_______0时,x=________.(4)因式分解法:如果一元二次方程可化为a(x-x1)(x-x2)=0的形式,那么方程的解为________.4.一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=________.(1)当△>0时,方程有两个_______的实数根.(2)当△=0时,方程有两个_______的实数根.(3)当△<0时,方程没有实数根.5.若一元二次方程ax2+bx+c=0(a≠0)的两根为x1、x2,则x1+x2=________,x1·x2=________.6.列一元二次方程解增长率问题可简化为a(1±x)2=b,其中a为变化前的基础,b为变化后的结果,x为变化率,但要注意:增长率没有单位,且对于连续变化的问题都是以前一个时间段为基础,如2月份产量是在1月份基础上变化的,而不是以任意一个月份为基础的.【考点例析】考点一 一元二次方程根的意义例1已知1是关于x 的一元二次方程(m -1)x 2+x +1=0的一个根,则m 的值是( )A .1B .-1C .0D .无法确定提示 由方程根的意义,把x =1代入方程,得到与m 有关的方程,解之即可. 考点二 一元二次方程的解法例2 解下列方程:(1) (x -3)2-9=0;(2) x 2-2x =5;(3) x 2-4x +2=0;(4) 2(x -3)=3x (x -3).提示 观察方程的特点可发现:(1)可用直接开平方法;(2)用配方法或公式法;(3)可用公式法;(4)方程都有共同的因式(x -3),故可用因式分解法.考点三 一元二次方程根的判别式例3 如果关于x 的一元二次方程kx 2-2110k x ++=有两个不相等的实数根,那么k 的取值范围是 ( )A . k<12B .k<12且k ≠0 C .-12≤k<12 D .-12≤k<12且k ≠0 提示 解决本题时需要从三方面综合考虑,一是由“一元二次方程”知k ≠0,二是由二次根式的意义知2k +1≥0,三是由原方程有两个不相等的实数根知()22140x k +->,三者缺一不可.考点四 一元二次方程根与系数的关系例4已知一元二次方程x 2-3x -1=0的两个根分别是x 1、x 2,则x 21x 2+x 1x 22的值为 ( )A .-3B .3C .-6D .6提示由于x21x2+x1x22=x1x2(x1+x2),此时根据一元二次方程根与系数的关系分别求得x1x2、x1+x2的值,从而解决问题.例5 (2012.南充)关于x的一元二次方程x2+3x+m-1=0的两个实数根分别为x1、x2.(1)求m的取值范围;(2)若2(x1+x2)+x1x2+10=0,求m的值.提示(1)因为一元二次方程有两个实数根,所以△≥0,从而解出m的取值范围;(2)根据根与系数的关系,可以用含有m的代数式分别表示出x1+x2及x1x2,代入2(x1+x2)+x1x2+10=0即可求出m的值.考点五一元二次方程的应用例6据媒体报道,我国2009年公民出境旅游总人数约5 000万人次,2011年公民出境旅游总人数约7 200万人次,若2010年、2011年公民出境旅游总人数逐年递增,请解答下面的问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2012年仍保持相同的年平均增长率,请你预测2012年我国公民出境旅游总人数约多少万人次?提示(1)设年平均增长率为x.根据题意2010年公民出境旅游总人数为5000(1+x)万人次,2011年公民出境旅游总人数为5000(1+x)2万人次.根据题意列方程求解;(2)2012年我国公民出境旅游总人数约7 200(1+x)万人次.例7某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每辆汽车的售价与销售量有如下关系:若当月仅售出1辆汽车时,则该辆汽车的进价为27万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆;月底厂家根据销售量一次性返利给销售公司,销售10辆以内(含10辆),每辆返利0.5万元;销售量在10辆以上,每辆返利1万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为万元;(2)如果汽车的售价为28万元/辆,该公司计划当月盈利12万元,那么需要售出多少辆汽车(盈利=销售利润+返利)?提示用销售数量表示出每辆的进价、返利等,再表示出盈利,根据“盈利=销售利润+返利”列出方程求解.【反馈练习】1.方程(x-1)(x+2)=0的两根为( )A.x1=-1,x2=2 B.x1=1,x2=2C.x1=-1,x2=-2 D.x1=1,x2=-22.已知关于x的一元二次方程(k-2)2x2+(2k+1)x+1=0有两个不相等的实数根,则k的取值范围是( )A.k>43且k≠2 B.k≥43且k≠2C.k>43且k≠2 D.k≥43且k≠23.湛江市2009年平均房价为每平方米4000元,连续两年增长后,2011年平均房价达到每平方米5 500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是( )A.5500(1+x)2=4000 B.5500(1-x)2=4000C.4 00(1-x)2=5500 D.4000(1+x)2=55004.已知关于x的方程x2+mx-6=0的一个根为x=2,则这个方程的另一个根是________.5.已知m和n是方程2x2-5x-3=0的两根,则11m n+=_______.6.解方程:-x2-2x=2x+1.7.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克,若该专卖店销售这种核桃想要平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?。

初中数学九年级上册《1.4 用一元二次方程解决问题》PPT课件 (2)

初中数学九年级上册《1.4 用一元二次方程解决问题》PPT课件 (2)

未知数
未知量
方程
【课后作业】
课本习题1.4第7、8题.
Hale Waihona Puke 1.4 用一元二次方程解决问题(2)
【问题3】
某商场销售一批衬衫,平均每天可售出20件,每件 盈利40元.为了扩大销售,增加盈利,商场采取了降价 措施.假设在一定范围内,衬衫的单价每降1元,商场平 均每天可多售出2件.如果商场通过销售这批衬衫每天盈 利12分50析元:,设那衬么衫衬的衫单的价单降价x降元了,多则少商元场?平均每天可多售 出2 x件衬衫.根据“售出的衬衫件数×每件衬衫的盈利 =1250元”,列出方程.
1.4 用一元二次方程解决问题(2)
1.4 用一元二次方程解决问题(2)
【回顾】
解应用题的一般步骤. 第一步:设未知数(单位名称); 第二步:列出方程;
第三步:解这个方程,求出未知数的值; 第四步:验(1)值是否符合实际意义;
第五步:(答2)值题是完否整使(所单列位方名程称左)右.相等.
1.4 用一元二次方程解决问题(2)
1.4 用一元二次方程解决问题(2)
【问题4】
某公司组织一批员工到该风景区旅游,支付给旅行社 28000元,你能确定参加这次旅游的人数吗?
1.4 用一元二次方程解决问题(2)
【练习】
课本练习P27练习.
1.4 用一元二次方程解决问题(2)
【小结】
① 用一元二次方程解决应用题的基本步骤;
② 怎样去分析问题?

部编数学九年级上册专题一元二次方程的解法(考点题型)【一题三变系列】考点题型精讲(解析版)含答案

部编数学九年级上册专题一元二次方程的解法(考点题型)【一题三变系列】考点题型精讲(解析版)含答案

专题02 一元二次方程的解法【思维导图】◎题型1:直接开平方法技巧:把方程ax2+c=0(a≠0)这解一元二次方程的方法叫做直接开平方法。

例.(2022·浙江绍兴·八年级期末)一元二次方程x2 -1=0的根是()A.x1=x2=1B.x1=1,x2=-1C.x1=x2=-1D.x1=1,x2=0【答案】B【解析】【分析】先移项,再两边开平方即可.【详解】解:∵x2-1=0,∴x2=1,∴x=±1,即x1=-1,x2=1.故选:B.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.变式1.(2023·福建省福州第十六中学八年级期末)方程210x -=的解是( )A .121x x ==B .120,1x x ==C .121,1x x ==-D .120,1x x ==-【答案】C【解析】【分析】先移项,再两边开平方可得解.【详解】解:由原方程可得:x 2=1,两边开平方可得:121,1x x ==-,故选:C .【点睛】本题考查一元二次方程的应用,熟练掌握一元二次方程的求解方法是解题关键.变式2.(2022·江苏·苏州市吴中区城西中学八年级期中)如果关于x 的方程2(9)4x m -=+可以用直接开平方法求解,那么m 的取值范围是( )A .3m >B .3m ³C .4m >-D .4m ³-【答案】D【解析】【分析】根据直接开平方法求解可得.【详解】解:∵2(9)4x m -=+,且方程2(9)4x m -=+可以用直接开平方法求解,∴40m +³,∴4m ³-.故选:D .【点睛】此题主要考查了直接开平方法解一元二次方程,正确化简方程是解题关键.变式3.(2022·全国·九年级课时练习)方程y2=-a有实数根的条件是()A.a≤0B.a≥0C.a>0D.a为任何实数【答案】A【解析】【分析】根据平方的非负性可以得出﹣a≥0,再进行整理即可.【详解】解:∵方程y2=﹣a有实数根,∴﹣a≥0(平方具有非负性),∴a≤0;故选:A.【点睛】此题考查了直接开平方法解一元二次方程,关键是根据已知条件得出﹣a≥0.◎题型2:配方法技巧:将一元二次方程化成一般形式,如ax2+bx+c=0(a≠0);把常数项移到方程的右边,如ax2+bx=-c;方程的两边都除以二次项系数,使二次项系数为1,如x²+例.(2020·江苏无锡·九年级期中)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=5B.(x-2) 2=5C.(x-2) 2=3D.(x+2) 2=3【答案】D【解析】【分析】移项后两边配上一次项系数一半的平方可得.【详解】解:∵x 2+4x +1=0,∴x 2+4x =-1,∴x 2+4x +4=-1+4,即(x +2)2=3,故选:D .【点睛】本题主要考查配方法解一元二次方程,熟练掌握配方法解一元二次方程的基本步骤是解题的关键.变式1.(2021·浙江温州·八年级期中)用配方解方程2610x x -+=,原方程可变形为( )A .()2335x -=B .()238x -=C .()238x +=D .()2335x +=【答案】B【解析】【分析】方程常数项移到右边,两边加上9变形得到结果即可.【详解】解∶ 2610x x -+=,变形得-=-261x x ,配方得26919x x -+=-+,即2(3)8x -=.故选∶B .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.变式2.(2022·河北·大城县教学研究中心九年级期末)用配方法解方程241x x =+,配方后得到的方程是( )A .2(2)5x +=B .2(2)5x -=C .2(2)3x +=D .2(2)1x -=【答案】B【解析】【分析】先把一次项移到等式的左边,然后在左右两边同时加上一次项系数−4的一半的平方.【详解】解:把方程x 2=4x +1移项,得:x 2−4x =1,方程两边同时加上一次项系数一半的平方,得到x2−4x+4=1+4,配方得(x−2)2=5,故选:B.【点睛】本题考查了配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.变式3.(2022·江苏·九年级专题练习)关于x的方程x(x﹣1)=3(x﹣1),下列解法完全正确的是( )A.A B.B C.C D.D【答案】D【解析】【分析】A.不能两边同时除以(x﹣1),会漏根;B.化为一般式,利用公式法解答;C.利用配方法解答;D.利用因式分解法解答【详解】解:A.不能两边同时除以(x﹣1),会漏根,故A错误;B.化为一般式,a=l,b=﹣4,c=3,故B错误;C.利用配方法解答,整理得,x 2﹣4x =﹣3,配方得,x 2﹣4x +22=1,故C 错误;D.利用因式分解法解答,完全正确,故选:D【点睛】本题考查解一元二次方程,涉及公式法、配方法、因式分解法等知识,是重要考点,掌握相关知识是解题关键.◎题型3:配方法的应用例.(2022·全国·九年级课时练习)已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( )A .c >8B .5<c <8C .8<c <13D .5<c <13【答案】C【解析】【分析】先利用配方法对含a 的式子和含有b 的式子配方,再根据偶次方的非负性可得出a 和b 的值,然后根据三角形的三边关系可得答案.【详解】解:∵a 2-10a +b 2-16b +89=0,∴(a 2-10a +25)+(b 2-16b +64)=0,∴(a -5)2+(b -8)2=0,∵(a -5)2≥0,(b -8)2≥0,∴a -5=0,b -8=0,∴a =5,b =8.∵三角形的三条边为a ,b ,c ,∴b -a <c <b +a ,∴3<c <13.又∵这个三角形的最大边为c ,∴8<c <13.故选:C .本题考查了配方法在三角形的三边关系中的应用,熟练掌握配方法、偶次方的非负性及三角形的三边关系是解题的关键.变式1.(2022·全国·九年级课时练习)已知方程264x x -+=W ,等号右侧的数字印刷不清楚,若可以将其配方成()27x p -=的形式,则印刷不清楚的数字是( )A .6B .9C .2D .2-【答案】C【解析】【分析】设印刷不清的数字是a ,根据完全平方公式展开得出x 2-2px +p 2=7,求出x 2-2px +4=11-p 2,再根据题意得出-2p =-6,a =11-p 2,最后求出答案即可.【详解】设印刷不清的数字是a ,(x -p )2=7,x 2-2px +p 2=7,∴x 2-2px =7-p 2,∴x 2-2px +4=11-p 2,∵方程x 2-6x +4=□,等号右侧的数字印刷不清楚,可以将其配方成(x -p )2=7的形式,∴-2p =-6,a =11-p 2,∴p =3,a =11-32=2,即印刷不清的数字是2,故选:C .【点睛】本题考查了解一元二次方程和完全平方公式,能求出-2p =-6是解此题的关键.变式2.(2020·福建省泉州第一中学九年级阶段练习)已知实数m ,n ,c 满足2104m m c -+=,22112124n m m c =-++,则n 的取值范围是( )A .74n ³-B .74n >-C .2n ³-D .2n >-【答案】A【分析】由2104m m c -+=变形得214m m c -=-,代入22112124n m m c =-++中得到2134n c c =-+,再进行配方,根据非负数的性质即可得到答案.【详解】2104m m c -+=Q \ 214m m c -=-\22111(244m m m -=--³-1c \£22222211111121212()12()344444n m m c m m c c c c c \=-++=-++=´-++=-+23(22n c \=-- 231(24c -³Q 74n \³- 故选:A .【点睛】本题主要考查了配方法的应用,涉及非负数的性质、偶次方,熟练运用上述知识是解题的关键.变式3.(2022·全国·九年级课时练习)若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( )A .0c ³B .9c ³C .0c >D .9c >【答案】B【解析】【分析】把二次三项式进行配方即可解决.【详解】配方得:226(3)9x x c x c-+=--+∵2(3)0x -³,且对x 为任意实数,260x x c -+³∴9c ³故选:B【点睛】本题考查了配方法的应用,对于二次项系数为1的二次三项式,加上一次项系数一半的平方,再减去这个数即可配成完全平方式.◎题型4:公式法技巧:一元二次方程ax 2+bx+c =0(a广泛的代换意义,只要是有实数根的一元二次方程,均可将a ,b ,c 的值代入两根公式中直接解出,所以把这种方法=0(a ≠0)的求根公式。

第6讲 一元二次方程及其求解(配方法公式法因式分解法)

第6讲 一元二次方程及其求解(配方法公式法因式分解法)

第6讲一元二次方程及其求解(配方法、公式法、因式分解法)目标导航课程标准1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.4.了解配方法的概念,会用配方法解一元二次方程;5.掌握运用配方法解一元二次方程的基本步骤;6.通过用配方法将一元二次方程变形的过程,进一步体会转化的思想方法,并增强数学应用意识和能力. 7.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;8.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;9.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.知识精讲知识点01 一元二次方程的有关概念1.一元二次方程的概念通过化简后,只含有未知数(一元),并且未知数的最高次数是(二次)的整式方程,叫做一元二次方程.注意:识别一元二次方程必须抓住三个条件(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:(1)只有当时,方程才是一元二次方程;(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解使一元二次方程左右两边的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.知识点02 一元二次方程的解法(一)直接开方法解一元二次方程1.直接开方法解一元二次方程:利用直接开平方求一元二次方程的解的方法称为直接开平方法.2.直接开平方法的理论依据:平方根的定义.3.能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.注意:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.(二)配方法解一元二次方程:1.配方法解一元二次方程将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.2.配方法解一元二次方程的理论依据是公式:.3.用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解. 注意:(1)配方法解一元二次方程的口诀:一除二移三配四开方;(2)配方法关键的一步是“配方”,即在方程两边都加上一次项系数一半的平方. (3)配方法的理论依据是完全平方公式2222()a ab b a b ±+=±. 4.配方法的应用(1)用于比较大小:在比较大小中的应用,通过作差法最后拆项或添项、配成完全平方,使此差大于零(或小于零)而比较出大小.(2)用于求待定字母的值:配方法在求值中的应用,将原等式右边变为0,左边配成完全平方式后,再运用非负数的性质求出待定字母的取值.(3)用于求最值:“配方法”在求最大(小)值时的应用,将原式化成一个完全平方式后可求出最值. (4)用于证明:“配方法”在代数证明中有着广泛的应用,我们学习二次函数后还会知道“配方法”在二次函数中也有着广泛的应用. 注意:“配方法”在初中数学中占有非常重要的地位,是恒等变形的重要手段,是研究相等关系,讨论不等关系的常用技巧,是挖掘题目当中隐含条件的有力工具,同学们一定要把它学好. (三)公式法解一元二次方程 1.一元二次方程的求根公式 一元二次方程,当 时,2.一元二次方程根的判别式一元二次方程根的判别式: . ①当时,原方程有两个不等的实数根 ; ②当时,原方程有两个相等的实数根 ; ③当时,原方程 实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值; ④若,则利用公式求出原方程的解;若,则原方程无实根.注意:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.② 当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③ 当240b ac ∆=-<时,右端是负数.因此,方程没有实根. (四)因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为 ;(2)将方程左边分解为两个一次式的 ;(3)令这两个一次式分别为 ,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 注意:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次 因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0; (3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.考法01 关于一元二次方程的判定【典例1】下列方程①x 2﹣5x =2022,②20ax bx c ++=,③2316xx +=,④2(2)(6)1x x x -+=+,一定是关于x 的一元二次方程的有( ) A .1个B .2个C .3个D .4个【即学即练】若()2230aa x x --+= 是关于x 的一元二次方程,则a 的值是( ) A .2-B .2C .1D .2±考法02 一元二次方程的一般形式、各项系数的确定能力拓展【典例2】将方程2x 2=5x -1化为一元二次方程的一般形式,其中二次项系数为2,则一次项系数、常数项分别是( ) A .-5、1B .5、1C .5、-1D .-5、-1【即学即练】将下列一元二次方程化成一般形式后,其中二次项系数是2,一次项系数是4-,常数项是3的方程是( ) A .2234x x +=B .2234x x -=C .2243x x +=D .2243x x -=考法03 一元二次方程的解(根)【典例3】若2x =是关于x 的一元二次方程20ax x b --=的一个根,则282a b +-的值为( ) A .0B .2C .4D .6【即学即练】若一元二次方程()221310k x x k -++-=有一个解为0x =,则k 为( )A .±1B .1C .1-D .0考法04 用直接开平方法解一元二次方程【典例4】方程()219x +=的解为( ) A .2x =,4x =-B .2,4x x =-=C .4,2x x ==D .2,4x x =-=-【即学即练】一元二次方程()2116x +=可转化为两个一元一次方程,其中一个一元一次方程是14x +=,则另一个一元一次方程是( ) A .14x -=-B .14x -=C .14x +=D .14x +=-考法05 用配方法解一元二次方程【典例5】用配方法解一元二次方程 x 2-10x +11=0,此方程可化为( ) A .(x -5)2=14B .(x +5)2=14C .(x -5)2 =36D .(x +5)2 =36【即学即练】慧慧将方程2x 2+4x ﹣7=0通过配方转化为(x +n )2=p 的形式,则p 的值为( ) A .7B .8C .3.5D .4.5考法06 配方法在代数中的应用【典例6】已知三角形的三条边为,,a b c ,且满足221016890a a b b -+-+=,则这个三角形的最大边c 的取值范围是( ) A .c >8B .5<c <8C .8<c <13D .5<c <13【即学即练】已知方程264x x -+=,等号右侧的数字印刷不清楚,若可以将其配方成()27x p -=的形式,则印刷不清楚的数字是( ) A .6B .9C .2D .2-考法07 公式法解一元二次方程【典例7】已知关于x 的一元二次方程ax 2+bx +c =0(a ≠0),下列命题是真命题的有( )①若a +2b +4c =0,则方程ax 2+bx +c =0必有实数根;②若b =3a +2,c =2a +2,则方程ax 2+bx +c =0必有两个不相等的实根; ③若c 是方程ax 2+bx +c =0的一个根,则一定有ac +b +1=0成立; ④若t 是一元二次方程ax 2+bx +c =0的根,则b 2﹣4ac =(2at +b )2. A .①②B .②③C .①④D .③④【即学即练】x = )A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=考法08 因式分解法解一元二次方程【典例8】一元二次方程2560x x -+=的根是( ) A .12x =,23x =B .12x =-,23x =C .12x =,23x =-D .12x =-,23x =-【即学即练】一个等腰三角形两边的长分别等于一元二次方程216550x x -+=的两个实数根,则这个等腰三角形周长为( ) A .11B .27C .5或11D .21或27题组A 基础过关练1.把一元二次方程(1)(1)3x x x +-=化成一般形式,正确的是( ) A .2310x x --=B .2310x x -+=C .2310x x +-=D .2310x x ++=2.若方程||(2)310m m x mx +++=是关于x 的一元二次方程,则( ) A .2m =±B .m =2C .2m ≠-D .2m ≠±3.用配方法解方程2410x x -+=时,结果正确的是( ) A .()225x -= B .()223x -= C .()225x +=D .()223x +=4.若关于x 的一元二次方程2210kx x +-=有实数根,则实数k 的取值范围是( ) A .k ≥-1B .k >-1C .k ≥-1且k ≠0D .k >-1且k ≠05.方程22240x x --=的根是( ) A .16x =,24x = B .16x =,24x =- C .16x =-,24x =D .16x =-,24x =-6.已知关于x 的一元二次方程(x +1)2+m =0可以用直接开平方法求解,则m 的取值范围是________. 7.若一元二次方程240x x k -+=无实数根,则k 的取值范围是_______.分层提分8.关于x 的一元二次方程220x x k ++=有两个相等的实数根,则这两个相等的根是x 1=x 2=__________________.题组B 能力提升练1.如果关于x 的一元二次方程()223390m x x m -++-=,有一个解是0,那么m 的值是( )A .3B .3-C .3±D .0或3-2.用配方法解方程2210x x --=时,配方结果正确的是( ) A .2(1)2x -=B .2(1)0x -=C .2(1)1x -=D .2(1)2x +=3.有关于x 的两个方程:ax 2+bx +c =0与ax 2-bx +c =0,其中abc >0,下列判断正确的是( ) A .两个方程可能一个有实数根,另一个没有实数根 B .若两个方程都有实数根,则必有一根互为相反数C .若两个方程都有实数根,则必有一根相等D .若两个方程都有实数根,则必有一根互为倒数4.由四个全等的直角三角形和一个小正方形EFGH 组成的大正方形ABCD 如图所示.连结CF ,并延长交AB 于点N .若35AB =,3EF =,则FN 的长为( )A .2B 5C .22D .35.已知实数a 、b 满足()()2222220a b a b +-+-=,则22a b +=________.6.如果关于x 的方程2(1)-=x m 没有实数根,那么实数m 的取值范围是__________. 7.已知方程2x 2+bx +a =0(a ≠0)的一个根是a . (1)求2a +b 的值;(2)若此方程有两个相等的实数解,求出此方程的解. 8.先阅读,后解题.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=.∵()210m +≥,()230n -≥,且和为0,∴()210m +=且()230n -=,∴1m =-,3n =.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c .题组C 培优拔尖练1.若方程22432mx x x +-=是关于x 的一元二次方程,则m 的取值范围是( ) A .0m >B .0m ≠C .2m ≠D .2m ≠-2.若对于任意实数a ,b ,c ,d ,定义a bc d=ad -bc ,按照定义,若11x x +- 23x x -=0,则x 的值为( ) A .3B .3-C .3D .3±3.对于一元二次方程()200++=≠ax bx c a ,下列说法:①若0a b c ++=,则240b ac -≥;②若方程20ax c +=有两个不相等的实根,则方程20ax bx c ++=必有两个不相等的实根; ③若c 是方程20ax bx c ++=的一个根,则一定有10ac b ++=成立;②若0x 是一元二次方程20ax bx c ++=的根,则()22042b ac ax b -=+其中正确的( ) A .只有①②④B .只有①②③C .①②③④D .只有①②4.如图,在矩形ABCD 中,AB =14,BC =7,M 、N 分别为AB 、CD 的中点,P 、Q 均为CD 边上的动点(点Q 在点P 左侧),点G 为MN 上一点,且PQ =NG =5,则当MP +GQ =13时,满足条件的点P 有( )A .4个B .3个C .2个D .1个5.已知代数式A =3x 2﹣x +1,B =4x 2+3x +7,则A ____B (填>,<或=). 6.若x m =时,代数式223x x --的为0,则代数式243m m --=________. 7.已知:关于x 的方程kx 2﹣(4k ﹣3)x +3k ﹣3=0 (1)求证:无论k 取何值,方程都有实根; (2)若x =﹣1是该方程的一个根,求k 的值;(3)若方程的两个实根均为正整数,求k 的值(k 为整数).8.如果一元二次方程的两根相差1,那么该方程称为“差1方程”.例如x 2+x =0是“差1方程”. (1)判断下列方程是不是“差1方程”,并说明理由; ①x 2﹣5x ﹣6=0; ②x 25+1=0;(2)已知关于x 的方程x 2﹣(m ﹣1)x ﹣m =0(m 是常数)是“差1方程”,求m 的值;(3)若关于x 的方程ax 2+bx +1=0(a ,b 是常数,a >0)是“差1方程”,设t =10a ﹣b 2,求t 的最大值.。

苏教科版初中数学九年上册-1.4 用一元二次方程解决问题(1)PPT课件

苏教科版初中数学九年上册-1.4 用一元二次方程解决问题(1)PPT课件

1.4 用一元二次方程解决问题(1)
【问题2】
某商店6月份的利润是2500元,要使8月份的利
润达到3600元,平均每月增长的百分率是多少? 分析: 如果设平均每个月增长的百分率为x,
那么:7月份的利润是 2500(1+x) 元, 8月份的利润是 2500(1+x) 2 元.
解:设平均每个月增长的百分率是x.根据题意得 2500(1+x)2 =3600.

时,

时,
答:用一根长22cm的铁丝能围成面积是30cm2的矩形.
1.4 用一元二次方程解决问题(1)
用一根长22cm的铁丝: (1) 能否围成面积是30cm2的矩形? (2) 能否围成面积是32cm2的矩形? (2) 根据题意,得 即 因为
所以此方程没有实数解. 答:用一根长22cm的铁丝不能围成面积是32cm2 的矩形.
初中数学 九年级(上册)
1.4 用一元二次方解决问题(1)
作 者:孔祥明(南京市高淳区第一中学)
1.4 用一元二次方程解决问题(1)
【回顾】
解应用题的一般步骤 第一步:设未知数(单位名称); 第二步:列出方程; 第三步:解这个方程,求出未知数的值;
第四步:验(1)值是否符合实际意义; zxxk
(2)值是否使所列方程左右相等. 第五步:答题完整(单位名称).
1.4 用一元二次方程解决问题(1)
【问题1】
用一根长22cm的铁丝: (1) 能否围成面积是30cm2的矩形? (2) 能否围成面积是32cm2的矩形?
解:设这根铁丝围成的矩形的长是xcm,则矩形
的宽是(11-x)cm. (1)根据题意,得 即 解这个方程,得 .
课本习题1.4第1、2、3、4、5、6题.

苏教科版初中数学九年级上册用一元二次方程解决问题一元二次方程的应用

苏教科版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要!苏科版初中数学和你一起共同进步学业有成!
用一元二次方程解决问题一元二次方程的应用
课前参与
预习内容:课本P24问题1,P26问题3、4.
知识整理:
1、列方程的关键是找出相等关系.列一元二次方程解应用题一般有“审、设、列、解、检验、答”六个步骤。

2、进一步增强实际问题转化为数学模型的能力,并能根据实际情况对方程的根的情况进行讨论。

尝试练习:
1、用长为100cm的金属丝做一个矩形框子,框子各边的长取多少厘米时?
(1)框子的面积可以是625cm2吗?若能,求出长宽;不能,请说明理由.
(2)能制成面积是800cm2的矩形框子吗?
2、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

为了扩大销售,增加盈利,商场决定采取适当的降价措施。

经调查发现,在一定范围内,衬衫的单价每降一元,商场平均每天可多售出2件。

如果商场通过销售这批衬衫每天要盈利1200元,衬衫的单价应
降多少元?
【分析】设衬衫的单价应降x元,则可以根据问题中的数量关系用列表法分析其中的量
每件衬衫的利润每天销售的件数每天获得的总利润
降价前40元20件40×20=800元
降价后
因此,可列方程:
解:
若将条件中中“为了扩大销售,增加盈利”改为“为了尽快销售,增加盈利”,那么问题的结论又应该是 .
通过预习,你学到了哪些知识?还有什么疑惑吗?
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。

数学思维可。

人教版九年级数学上《实际问题与一元二次方程》知识全解

《实际问题与一元二次方程》知识全解课标要求能根据具体问题中的数量关系列出一元二次方程,体会方程是刻画现实世界数量关系的有效模型。

知识结构内容解析1.列一元二次方程解应用题1.应用一元二次方程解决实际问题的步骤可归结为:“设、找、列、解、验、答”:⑴设:是指设未知数,可分为直接设和间接设。

所谓直接设,就是指问什么设什么;在直接设未知数比较难列出方程或者列出的方程比较复杂时,可考虑间接设未知数。

⑵找:是指读懂题目,审清题意,明确已知条件和未知条件,找出它们之间的等量关系。

⑶列:就是指根据等量关系列出方程。

⑷解:就是求出所列方程的解。

⑸验:分为两步:一是检验解出的数值是否是方程的解,二是检验方程的解是否符合实际情况。

⑹答:就是书写答案,一定要遵循“问什么答什么,怎么问就怎么答”的原则。

以上几个步骤中,找出等量关系是解决问题的关键,能否恰当设元直接影响着列方程和解方程的难易,所以要根据不同的具体情况把握好解题的每一步。

2.一元二次方程应用类型一元二次方程的应用常见问题常用规律、技巧、方法增长率、减少率(1)na x b±=几何问题借助面积或体积,相关图形的性质及内在关系倍数传播(1)nx b+=市场经济销售利润=每件的利润×件数数字问题用相关的代数式表示数位注意:一元二次方程解应用题应注意:⑴写未知数时必须写清单位,用对单位;列方程时,方程两边必须单位一致;答必须写清单位。

⑵注意语言和代数式的转化,要把用语言给出的条件用代数式表示出来。

重点难点教学重点:将实际问题转化为数学问题,借助各种数量关系列出一元二次方程解应用题。

关键是学会将实际应用问题转化为数学问题,体验解决问题策略的多样性,发展数学实际应用意识。

教学难点如何把实际问题转化为数学问题。

(1)审题是设未知数、列方程的基础,所谓审题,就是要善于理解题意,弄清题中的已知量和未知数,分清它们之间的数量关系,寻求隐含的相等关系;(2)设未知数分直接设未知数和间接设未知数,这就需根据题目中的数量关系正确选择设未知数的方法和正确地设出未知数。

人教版九年级数学上册《解一元二次方程(第6课时)》示范教学课件

解一元二次方程(第6课时)
解一元二次方程的基本思想是“降次”,即通过配方、因式分解等,把一个一元二次方程转化为两个一元一次方程来解. 具体地,根据平方根的意义,可得出方程x2=p和(x+n)2=p的解;通过配方,可将一元二次方程转化为(x+n)2=p的形式再解;一元二次方程的求根公式,就是对方程ax2+bx+c=0(a≠0)配方后得出的.若能将ax2+bx+c分解为两个一次因式的乘积,则可令每个因式为0来解.
解:(1)原方程可化为(x-1)2-[2(x+2)]2=0.因式分解,得[(x-1)+2(x+2)][(x-1)-2(x+2)]=0.整理,得3(x+1)· (-x-5)=0,于是得x+1=0或-x-5=0,解得x1=-1,x2=-5.
解:(2)整理,得3(x-4)2-(16-x2)=0,即3(x-4)2+(x2-16)=0.因式分解,得3(x-4)2+(x+4)(x-4)=0,即(x-4)[3(x-4)+(x+4)]=0.整理,得(x-4)(4x-8)=0,于是得x-4=0或4x-8=0,所以x1=4,x2=2.
归纳
类型二、配方法解方程
2.用配方法解方程:2x2-5x+3=0.
总结
3.用配方法证明:不论 x 取何值,代数式 x2-4x+12的值总不小于8.
证明:因为x2-4x+12=(x2-4x+4)+8=(x- 2)2+8,且(x-2)2≥0,所以(x-2)2+8≥8,即x2-4x+12≥8.所以不论 x 取何值,代数式x2-4x+12的值总不小于8.
类型一、直接开平方法解方程
1.用直接开平方法解下列方程:(1)x2-9=0; (2)3x2-54=0;
类型一、直接开平方法解方程
1.用直接开平方法解下列方程:(3)(x+2)2=9; (4)(2y+3)2=16;

第6课时用因式分解法解一元二次方程


第6课时 用因式分解法解一二次方程
例 3 教材补充例题 选择合适的方法解下面的方程: (1)3x2-1=6x; (2)(3x-2)2=(2x-3)2; (3)y2-2y-399=0.
解:(1)将原方程整理,得 3x2-6x-1=0.
∵a=3,b=-6,c=-1,b2-4ac=36+12=48,

10、阅读一切好书如同和过去最杰出的人谈话。16:20:3816:20:3816:209/9/2021 4:20:38 PM

11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。21.9.916:20:3816:20Sep-219-Sep-21
3 =2这个根.
正解:移项,得(2x-3)2-3(2x-3)=0. 因式分解,得(2x-3)(2x-3-3)=0,
3 ∴2x-3=0 或 2x-6=0,∴x1=2,x2=3.
6± 48 3±2 3
3+2 3
3-2 3
∴x= 6 = 3 ,即 x1= 3 ,x2= 3 .
第6课时 用因式分解法解一元二次方程
(2)将原方程整理,得(3x-2)2-(2x-3)2=0. (3x-2+2x-3)(3x-2-2x+3)=0, (5x-5)(x+1)=0,5x-5=0 或 x+1=0, ∴x1=1,x2=-1. (3)y2-2y=399,y2-2y+1=400,(y-1)2=400,y-1=±20, ∴y1=21,y2=-19.
第6课时 用因式分解法解一元二次方程
目标突破
目标一 会用因式分解法解一元二次方程
例 1 教材补充例题 下面四个方程:(1)x2-25=0;(2)y2= 3 y;(3)(x+1)2-4(x+1)+4=0;(4)x2+2x+1=0.其中能用因式分 解法求解的个数是( D )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6课时 用一元二次方程解决问题(一) (附答案)
一、选择题
1.一个两位数等于它的个位上的数的平方,且个位数字比十位数字大3,则这个两位数是
( )
A .25
B .36
C .25或36
D .-25或-36
2.若两个连续整数的积是56,则它们的和是 ( ) A .±15 B .15 C .-15 D .11
3.如图,在一幅长80 cm 、宽50 cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图.如果要使整个挂图的面积是5 400 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 ( ) A. 213014000x x +-= B .2653500x x +-= C. 213014000x x --= D .2653500x x --=
4.如图是一张长方形纸片,长19 cm ,宽15 cm .要做一个底面积为77 cm 2
的无盖长方体纸盒,则在四个角处需要剪去的小正方形边长是 ( ) A. 2 cm B .3 cm C .4 cm D .5 cm 二、填空题
5.两个连续自然数的和的平方比它们的平方和大112.若设较大的自然数为x ,则另一个自然数为_________,根据题意列方程为____________________.
6.长方形的长比宽多7 cm ,面积为60 cm 2,如果设长方形的宽为x cm ,那么可列方程为__________________.
7.一条长64 cm 的铁丝被剪成两段,每段均折成正方形.若两个正方形的面积和等于160 cm 2,则这两个正方形的边长分别为__________.
8.直角三角形的三边长是三个连续偶数,则这个三角形的周长是_________. 三、解答题
9.三个连续整数两两相乘所得积的和为26.求这三个数.
10.如图,利用一面墙(墙的长度不超过45 m),用80m长的篱笆围一个矩形场地.
(1)怎样围才能使矩形场地的面积为750 m2 ?
(2)能否使所围矩形场地的面积为810 m2? 说明你的理由.
11.常州春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如下收费标准:
某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27 000元,请问该单位这次共有多少名员工去天水湾风景区旅游?
12.如图,张大叔从市场上购买一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米.现已知购买这种铁皮每平方米需20元,则张大叔购买这块矩形铁皮共花了多少元?
参考答案
1.C 2.A 3.B 4.C
5.1x - ()()2
2
211112x x x x +-=+-+
6.x(x+7)=60 7.12 cm 、4 cm 8.24
9.设其中最小的数为x ,则其余两个数分别为x+l 、x+2.根据题意列方程得x(x+1)+(x+1)(x+2)+x(x+2)=26.解得
1
2
2,4x x
==-.当x=2时,x+1=3,x+2=4;当x=-4
时,x+1=-3,x+2=-2.即这三个数分别为2、3、4或-2、-3、-4 10.(1)设所围矩形ABCD 的长AB 为x 米,则宽AD 为1
2
(80-x)米.由题意列方程得x ⨯
1
2
(80-x)=750.即28015000x x -+=.解得1230,50x x ==.墙的长度不超过45 m, ∴250x =不合题意,舍去.当x=30m 时,1
2
(80-x)=25,∴当所围矩形的长为30 m 、宽为
25 m 时,能使矩形的面积为750m 2.
(2)不能 理由:由
1
2
(80-x)=810,得,28016200x x -+=.又24ac b -=(-80)2-4xl ×1 620=-80<0. ∴上述方程没有实数根.∴不能使所围矩形场地的面积为810 m 2
11.设该单位这次共有x 名员工去天水湾风景区旅游,l 000×25=25 000<27 000, ∴员工
人数一定超过25人.可得方程()1000202527000x x --=⎡⎤⎣⎦.解得.1245,30x x ==。


1
45x =时,l 000-20(x-25):600<700,舍去;当2
30x
=时,1 000-20(x-25)=900>700,
符合题意.∴x=30.∴该单位这次共有30名员工去天水湾风景区旅游
12.设这种箱子底部宽为x 米,则长为(x+2)米.由题意列方程得x(x+2)×1=15.解得
1
2
3,5x x
==- (不合题意,舍去).∴这种箱子底部长为5米、宽为3米.由长方体展开
图知,要购买矩形铁皮面积为(5+2)×(3+2)=35(米2),∴做一个这样的箱子要花35×20=700(元)。

相关文档
最新文档