第三章 控制系统的能控性和能观测性

合集下载

《现代控制理论基础》第3章_线性控制系统的能控性与能观测性 (1).

《现代控制理论基础》第3章_线性控制系统的能控性与能观测性 (1).
如果存在一个分段连续的输入u(t),能在 [t0 ,t f ] 的有限时间内使得系统的某一初始状态 x(t0) 转移到 任一终端状态x(tf ) ,则称此状态是能控的。如果系 统的所有状态都是能控的,则称系统是状态完全能 控的。
7
几点说明:根据初始状态和终端状态的不同位置, 可以分为:
1、系统的状态能控性: (常用 ) 初始状态为状态空间任意非零有限点;终端
,则系统状态完全
能控的充要条件为:
B阵中,对应于每一个约当块的最后一行
B
is
元素不全为零。
i
12
J1


J


J2 0 0O




Jl n´n
B1
B


B2
M

Bl n´r
li

1
l i
1

Ji



OO
O
1

l i si ´si

x&2


x&3 x&4



0
4 0
0
1
1
0 1

x2


0

x3

0
x4 0
0 0 1
2 0
u

0
状态完全能控
20

x&1 x& 2


4

0
1 4
0 0

F (t0 t ) e A(t0t ) aj (t0 t ) Aj

第3章 控制系统的能控性与能观测性

第3章 控制系统的能控性与能观测性

所以,能控。
3.3 能观测性判据
3.3.1 线性定常系统能观测性及其判据
1. 能观测性定义 线性定常系统方程为
x Ax Bu y Cx
(18)
如果在有限时间区间 [t0 , t1 ](t1 t0)内,通过观测 y (t ) ,能够惟
一地确定系统的初始状态x(t0 ),称系统状态在t 0 是能观测的。如果
上式代入(3)式
i 0
x(0)n1AiBt1ai(τ)u(τ)dτ
i0
0
(8)
βi1
t1 0
ai
(τ)u(τ) d
τ


βi
2



i

βir

(i0,1 , ,n1 )
于是
x(0) [B
β0
AB

An-1B]

β1

3.1 引言
首先,通过例子介绍能控性、能观测性的基本概念。
例3-1 电路如下图所示。如果选取电容两端的电压 u C 为状态变量, 即: x 。uC 电桥平衡时,不论输入电压 如u何(t )改变,
x(t)uC不随着 u (t ) 的变化而改变,或者说状态变量不受 u (t ) 的控
制。即:该电路的状态是不能控的。
第3章 控制系统的能控性和能观测性
在多变量控制系统中,能控性和能观测性是两个反映控制系统 构造的基本特性,是现代控制理论中最重要的基本概念。
本章的内容为: 1. 引言——能控性、能观测性的基本概念 2. 能控性及其判据
3. 能观测性及其判据 4. 离散系统的能控性和能观测性 5. 对偶原理
6. 能控标准形和能观测标准形 7. 能控性、能观测性与传递函数的关系 8. 系统的结构分解 9. 实现问题 10. 使用MATLAB判断系统的能控性和能观测性

第三章 线性系统的能控性

第三章 线性系统的能控性
• 从中必可找出n个线性无关的列或行。 • 不同的找法,会找出不同的列(行)。由它们构成
的变换矩阵将原系统方程变换成不同的规范形。
1 搜索线性无关的列(行)的两种方案
以从Qc中找寻线性无关的列或行为例。
系统完全能控,rank Qc=n.Qc中有且最多仅有n个线性无关的列。 如何找出它们?用格栅图表示。 方案 I 列搜索
第三章 线性系统的能控性和能观测性
3.1 能控性和能观测性的定义
• 能控性
– 状态点的能控性 对t0,x0, 存在t1>t0 和容许控制u(t), t属于[t0,t1], 使系统状态从x0→x(t1)=0 称此x0在t0时刻能控。
– 系统的能控性 状态空间中的所有x0 ,在t0时刻都能控,则称系统在t0时刻完全 能控。
该搜索方法的特点是, Ai bi 是其左边的向量的线性组合。
方案II 行搜索
先找[b1,b2, ,b p ]中的线性无关列; 再找[Ab1, Ab2, , Ab p ]中的线性无关列;
直到找够n个线性无关列。 找够后, 再排列成如下形式
{b1,
Ab1, , A11b1;
b

2
Ab2, ,
A2 1b2; ;
e11 e12 e1v1 ; ; el1 el2 elvl
的表达。 而B的第1列b1就是e1v1 , 所以其表达为
0 0 1; ; 0 0 0T
余类推。 所以,Bc的形式如前所示。
3 龙伯格规范形
3.8 线性系统的结构分解
• 能控性和能观测性在线性非奇异变换下保持不变。 • 线性定常系统按能控性的结构分解
Q
np
B p
AB p
A 1B p
p

现代控制理论第3章

现代控制理论第3章
f 0 (t f ) f (t ) n 1 1 f 有唯一解 A B f ( t ) n 1 f
(t f )]
X(0) B
AB
f 0 (t f ),
,f
n1
(t f )
2 rank [ B AB A B
A n1B] n
2 P2 A ( P A ) A P A P3 1 1 3 P3 A ( P2 A) A P A P4 1
n 1 Pn 1 A ( Pn 2 A) A P A Pn 1
P P 1 1 P P A P 2 1 , 其中P 1 ? n 1 P P A n 1 P 0 1B P AB 0 , 转置以后得 PB 1 n 1 P A B 1 1 1B P P 1 B P 1 AB AB
3.2控制系统的能观性
自动化学院 CISIA
一.能观性定义
定义: 对于线性定常系统 x Ax Bu, y Cx
在任意给定的输入 u(t) 下,能够根据输出量 y(t) 在
有限时间区间 [t0,tf] 内的测量值,唯一地确定系统
在 t0 时刻的初始状态 x(t0 ),就称系统状态x(t0 )是
X AX BU X PX Y CX
Y CX
X AX BU
A P 1 AP P非奇异 其中 B P 1B A与A为相似矩阵 C CP


det A det A, Rank ( A) Rank ( A)
a
i 1
n
ii
a ii ,
2.问题的提出 能控性问题?

现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版

现代控制理论-线性控制系统的能控性与能观性例题精选全文完整版
x Ax Bu
如果线性定常系统: y Cx 是状态不完全能控的, 它的能控性判别矩阵的秩
rankM n1 n
则存在非奇异变换:x Rcxˆ
将状态空间描述变换为:
xˆ y
Aˆ xˆ Cˆ xˆ
Bˆ u
n1 n n1
其中:

xˆ1

2
n1
n n1

R c1AR c
Aˆ 11 0
3.6.1 线性系统的对偶关系
线性系统1、2如下:
1:yx 11
A1x1 C1x1
B1u1
2:
x 2 y 2
A2x2 C2x2
B2u2
如果满足如下关系
A2 A1T , B2 C1T , C2 B1T
则称两系统是互为对偶的.
u1(t) B
x1(t)
x1(t)
++

y1(t) C
A
y2(t) BT
0
A 0 1 0 , b 0, c 1 1 1
1 4 3
1
解: 能控性矩阵
0 1 4
M b Ab A2b 0 0
0
1 3 8
rankM 2 n1 dim A n 3 不能控
构造变换矩阵
0 1 0 Rc 0 0 1
1 3 0
✓与前2个列向量 线性无关; ✓尽可能简单
结构分解
u
co
y
co
依据能控能观 性,将系统分解
co
为四个子系统
co
x Ax Bu
y Cx Du
特殊的线性变换
x xTco xTco xTco xTco
分解步骤:
1、将系统分解成能控与不能控子系统;

现代控制理论第三章PPT

现代控制理论第三章PPT

( A
c1
,bc1 ) 的能控性,其中
1 0 0 0 A c1 0 0 2 5
解:
0 0 1 0 0 1 1 10
0 0 b c1 0 1
0 1 0 0 0 0 1 10 A3 c1b c1 0 1 10 101 1 10 101 1025
若取
u( t ) B( t )T ΦT ( t0 ,t )Wc1( t0 ,t f )x( t0 )
tf t0
x( t f ) Φ( t f ,t0 )[ x( t0 )
Φ( t0 ,t )B( t )B( t )T ΦT ( t0 ,t )Wc1( t0 ,t f )x( t0 )dt ]
( k 1,2, , n 1 )
假设 F( t ) Φ( t0 ,t )B( t ) 对上式关于时间t求一阶、二阶、直至n-1阶导数 ,可得
(t ) Φ (t , t )B(t ) Φ(t , t )B (t ) F 0 0
(t ) Φ(t0 , t )A(t )B(t ) Φ(t0 , t )B
实现最优控制和最优估值及其它系统综合
与校正的必要条件。
4.1 系统的能控性
[定义]设系统的状态方程为
(t ) A(t )x(t ) B(t )u(t ) x
对于任意非零初始状态 x(t0 ) ,如果存在容许控制u(t ) ,在有限时区
t [t0 , t f ] 将其转移到状态空间原点,即 x(t f ) 0 ,则称系统在
(t )] Φ(t0 , t )[A(t )B(t ) B
Φ(t0 , t )B1 (t )

现代控制理论第三章

方法一: 直接根据状态方程的A阵和B阵
方法二:
转化为约旦标准形 ( Aˆ, Bˆ ) ,再根据 Bˆ 判断
方法三: 传递函数
3.2 线性连续系统的能控性
方法一:线性定常连续系统(A,B), 其状态完全能控的 充要条件是其能控性矩阵的秩为n,即:
rankQc = n Qc = [ B AB A2B … An 1B ]
0 0 2
3
4 1 0
4 2
(2)
x (t)
0
4
0 x(t) 0 0u(t)
0 0 2
3 0
3.2 线性连续系统的能控性 方法三:
3.2 线性连续系统的能控性 例:从输入和状态矢量间的传递函数确定其能控性?
3.2 线性连续系统的能控性 例:判断线性连续系统能控性?
解:
3.2 线性连续系统的能控性
3.3 线性系统的能观测性
例:判断能观测性?
x (t)
2 1
1 3
x(t
)
1
1
u(t)
y(t
)
1 1
0 0 x(t)
解:
C Q0 CA
10 1 0
2 1 2 1
rankQo = 2 = n
系统能观测
3.3 线性系统的能观测性
例: 若系统的状态空间表达式为
x (t)
a d
5
x(t
)
1
7
(2)
x (t)
5
x(t)
1
y(t) 0 4 5x(t)
3 2 0 y(t) 0 3 1 x(t)
(3)
3 1 0
0 3 1
x (t) 0 0 3
x(t)
2

现代控制理论第三章线性系统的能控性和能观测性


1 x1 u x 2 2 x2 u x y x x 1 2
1 x
u
1 s 1 s
2
x1
y
x2
2 x
由于状态变量x1、x2都受控于输入u,所以系统 是能控的;输出y能反映状态变量x1,又能反映状 态变量x2的变化,所以系统是可观测的。 即状态变量x1能控、可观测;状态变量x2能控、 可观测。
任意初态 x(t0 ) x 零终态 x(t f ) 0
状态完全能控
Байду номын сангаас
第 三章 线性控制系统式的能控性和能观测性
②把系统的初始状态规定为状态空间的原点, 即 x(t 0 ) 0,终端状态规定为任意非零有限点, 则可达定义表述如下: 对于给定的线性定常系统
Ax Bu ,如果 x
存在一个分段连续的输入 u (t ),能在 [t 0 , t f ] 有限时间间隔内,将系统由零初始状态 x(t 0 ) 转移 到任一指定的非零终端状态 x(t f ) ,则称此系统 是状态完全可达的,简称系统是可达的(能达的)。 任意初态 x(t0 ) 0 零终态 x(t f ) x 状态完全可达
第 三章 线性控制系统式的能控性和能观测性
1. 直接由A,B矩阵的结构判断系统的能控性 定理: 系统
( A, B )

A(t )x B(t )u x y C (t )x D(t )u
状态完全能控的充分必要条件是其能控性矩阵
Qk [ B AB A2 B An1 B]
一、线性定常连续系统状态能控性的定义 定义3.1(状态能控性定义):
Ax Bu,如果存在一个 对于线性定常系统 x 分段连续的输入u(t),能在有限时间间隔[t0,tf]内, 使得系统从某一初始状态x(t0)转移到指定的任一 终端状态x(tf) ,则称此状态是能控的。若系统的 所有状态都是能控的,则称此系统是状态完全能 控的,简称系统是能控的。

(整理)控制系统的能控性和能观测性

第三章 控制系统的能控性和能观测性3-1能控性及其判据 一:能控性概念定义:线性定常系统(A,B,C),对任意给定的一个初始状态x(t 0),如果在t 1> t 0的有限时间区间[t 0,t 1]内,存在一个无约束的控制矢量u(t),使x(t 1)=0,则称系统是状态完全能控的,简称系统是能控的。

可见系统的能控性反映了控制矢量u(t)对系统状态的控制性质,与系统的内部结构和参数有关。

二:线性定常系统能控性判据设系统动态方程为:x 2不能控y2则系统不能控,若2121,C C R R ==⎩⎨⎧+=+=DuCx y Bu Ax x设初始时刻为t 0=0,对于任意的初始状态x(t 0),有: 根据系统能控性定义,令x(t f )=0,得:即:由凯莱-哈密尔顿定理:令 上式变为:对于任意x(0),上式有解的充分必要条件是Q C 满秩。

判据1:线性定常系统状态完全能控的充分必要条件是:⎰-+=ft f f f d Bu t x t t x 0)()()0()()(τττφφ⎰⎰---=--=-ff t f f t f f d Bu t t d Bu t t x 01)()()()()()()0(τττφφτττφφ⎰--=f t d Bu x 0)()()0(τττφ∑-=-==-1)()(n k kk A A eτατφτ∑⎰⎰∑-=-=-=-=101)()()()()0(n k t k k t n k k k ff d u B A d Bu A x ττταττταkt k u d u f=⎰)()(ττταUQ u u u u B A B A AB B Bu A x c k n n k kk -=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=-=--=∑ 321121],,,[)0(能控性矩阵Q C =[B ,AB ,A 2B ,…A n-1B]满秩。

对于单输入系统,Q C =[b ,Ab ,A 2b ,…A n-1b] 如果系统是完全能控的,称(A 、B )或(A 、b )为能控对。

第3章_线性控制系统的能控性和能观性


证明 定理3.3-1
y(t1) 0(t1)Im 1(t1)Im n1(t1)Im C
y(t2) 0(t2)Im
1(t2)Im
n1(t2)ImC
A x(0)
y(tf)
0(tf)Im
1(tf)Im
n1(tf)ImCnA 1
上式表明,根据在(0,tf)时间间隔的测量值 y(t1),y(t2),…,y(tf),能将初始状态x(0)唯一地 确定下来的充要条件是能观测性矩阵N满秩。
4)不可控
18
3.1.2 线性定常系统的能控性判别
3.可控性约当型判据
J1

x AxBu
J2
xu
Jk
若 A为约当型,则状态完全可控的充要条件是:
每一个约当块的最后一行相应的 阵中所有的行 元素不全为零。(若两个约当块有相同特征值,此
结论不成立。)
精选可编辑ppt
19
3.1.2 线性定常系统的能控性判别
➢本章结构
• 第3章 线性控制系统的能控性和能观性 ✓3.1 能控性 ✓3.2 能观性 ✓3.3 能控性与能观性的对偶关系 ✓3.4 零极点对消与能控性和能观性的关系
精选可编辑ppt
1
引言
状态空间模型建立了输入、状态、输出之间的关系
u
x
y x Ax Bu
y Cx Du
状态方程反映了控制输入对状态的影响;输出方程 反映系统输出对控制输入和状态的依赖
10
3.1 能控性
3.1.2 线性定常系统的能控性判别
证明 定理3.1-1
n1
x(0) AkBk B AB A2B k0
0
An1B1
n1
若系统是能控的,那么对于任意给定的初始状态x(0)都
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(9)
如果系统能控,必能够从(9)式中解得 样就要求
0 ,1 , … , n1 。这
rankQC rank[B AB A2 B An1 B] n
(本判据本身很简单,因此是最为常用的方法。)
定理3-3 (PBH判别法) (2)式的线性定常系统为状态能 控的充分必要条件是,对A 的所有特征值 λi,都有
例3-2 电路如下图所示,如果选择电容C1、 C2两端的电压为状态 x 变量,即: 1 uC1 , x2 uC 2 ,电路的输出 y 为C2上的电压, 即 y x2 ,则电路的系统方程为
2 1 1 Ax bu x x u 1 2 1

根据定理3-5, 系统(1)能控 ; 系统(2)不能控
(定理(3-4)、定理(3-5)不仅可以判断系统能控性,而且对 于不能控的系统,可以知道哪个状态分量不能控。) 说明:1.上面通过几个定理给出判断系统能控性的判据。虽然它们 的表达形式、方法不同,但是,在判断线性定常系统能控性时是等 价的。
2.在线性连续定常系统中,由于能达性和能控性是等价的,因此, 能控性判据同样可以判断能达性。
-2 1 1 Ax Bu x x 0u 1 -2
y Cx 1 1x
系统状态转移矩阵为
1 e t e 3t e At t 3t 2 e e
At t
e t e 3t e t e 3t
0 4 1 0 (1) x 0 4 0 x 4u 0 3 0 2 0 4 1 4 2 (2) x 0 4 0 x 0 0u 0 3 0 0 2
系统状态方程的解为
x(t ) e x(0) e A(t τ ) bu(t τ ) d τ
0
为了简便起见,令 u(t ) 0

x(t ) e At x(0)
y(t ) C e At x(0) [ x1 (0) x2 (0)]e3t
从上式可知,不论初始状态取什么数值,由于输出阵决定了输出差 值 [ x1 (0) x2 (0)] 。当 x1 (0) x2 (0) ,则输出恒等于零。显然,无法通过对 输出的观测去确定初始状态,称这样的系统是不能观测的。 一般情况下,系统方程如式(1)所示,状态能观测与否,不仅取 决于C 阵(直接关系),还取决于A阵(间接关系)。
3)只有整个状态空间中所有的有限点都是能控的,系统才是能 控的。 4)满足(3)式的初始状态,必是能控状态。
x(0) e Aτ Bu(τ ) d τ
0
t1
(3)
5)当系统中存在不依赖于 u(t ) 的确定性干扰 f (t ) 时,f (t ) 不会改 变系统的能控性。 x Ax Bu f (t ) (4)
解 根据定理3-4, 系统(1) 不能控 ; 系统(2)能控。
定理3-5(2)式的线性定常系统的矩阵 A 具有重特征值,λ1、λ2 、
l λ3 、…、 λk 分别为 l1 重、 2 重、 3 重、…、l k 重。 l
且Leabharlann li 1k
i
n , i λ j ,(i j ) 经过非奇异线性变换,得到约当阵 λ
2)如果在有限时间区间[t0 , t1 ] 内,存在容许控制 u(t ) ,使系统 x 从状态空间坐标原点推向预先指定的状态 (t1 ) ,则称系统是状态 能达的;由于连续系统的状态转移矩阵是非奇异的,因此系统的能 控性和能达性是等价的容许控制
(对于一个实际的控制问题,输入控制的u(t)的取值必定要受一定条件的约束。 满足约束条件的控制作用u(t)的一个取值对应于r维空间的一个点,所有满足条件的控 制作用u(t)的取值构成r维空间的一个集合,记为Ω,称之为容许控制集。凡是属于容 许控制集Ω的控制,都是容许控制。)。
(2)
给定系统一个初始状态 x (t0 ) ,如果在 t1 t0 的有限时间区间[t0 , t1 ] 内,存在容许控制 u(t ) ,使 x (t1 ) 0 ,则称系统状态在 t 0 时刻是 能控的;如果系统对任意一个初始状态都能控,则称系统是状态完 全能控的。 说明: 1) 初始状态 是状态空间中的任意非零有限点,控制的目标是 状态空间的坐标原点。(如果控制目标不是坐标原点,可以通过坐 标平移,使其在新的坐标系下是坐标原点。)
J1 x 0
J2
0 x Bu Jk
λi Ji 0
1 λi
0 1 λi
(12)
则系统能控的充分必要条件是矩阵 B 中与每一个约当子块最下面 一行对应行的元素不全为零。
例3-7 有如下两个线性定常系统,判断其能控性。
rank[ λi I A B] n (i 1,2,, n) (证明略)
定理3-4 (2)式的线性定常系统的矩阵 A 的特征值
(10)
(i 1,2,, n) 将系统经过非奇异线性变换变换成对角阵
λi 互异,
0 λ1 λ2 x Bu (11) x 0 λn 则系统能控的充分必要条件是矩阵 B 中不包含元素全为零的行。
3.2.2 线性时变系统的能控性判据 线性时变系统的状态方程为 x A(t ) x B(t )u X(t0 )
(13)
定理3-6 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得函数矩阵 (t0 , t1 ) B(t ) 的n个行在 [t1 , t0 ] 上线性无关。 (证明略)
y Cx 0 1x
系统状态转移矩阵为
0 x (0) 如果初始状态为 0
1 e t e 3t e At t 3t 2 e e
e t e 3t t 3t e e
系统状态方程的解为 1 t (t τ ) x(t ) e u(τ ) d τ 0 1 可见,不论加入什么样的 输入信号,总是有 x1 x2 (由于控制矩阵决定状态 无规律)。
一般情况下,系统方程可以表示为
x Ax Bu y Cx
(1)
状态能控与否,不仅取决于B 阵(直接关系),还取决于A 阵(间 接关系)。 系统能观测问题是研究测量输出变量 y 去确定状态变量的问题。
y 例3-3 电路如下图所示。选取 u(t )为输入量, (t )为输出量,两个电 感上的电流分别作为状态变量,则系统方程为
2. 能控性判据
定理3-1 (2)式的线性定常系统为状态能控的充分必要条件是 下面的n×n维格拉姆矩阵满秩
WC (0, t1 )
t1
0
e

BB e
T
AT τ

(5)
(这个定理为能控性的一般判据,所谓满秩就是每个状态能控。由 于要计算状态转移矩阵,比较繁琐。一般不用该判据。)
定理3-2 (2)式的线性定常系统为状态能控的充分必要条件是下 面的n×r 维能控性矩阵满秩。
例3-6 有如下两个线性定常系统,判断其能控性。
0 7 2 x 0 u (1) x 5 0 9 1 0 7 0 1 (2) x 4 0u x 5 0 7 5 1
(t0 , t1 ) I A( 0 )d 0 A( 0 ) A(1 )d1d 0 A( 0 ) A(1 ) A( 2 )d 2d1d 0 ....
t0
t1
定理3-7 状态在时刻 t 0 能控的充分必要条件是存在一个有限时 间 t1 t0 ,使得以下格拉姆矩阵非奇异。
WC [t0 , t1 ] (t0 , t ) B(t ) BT (t ) T (t0 , t ) d t
t0
t1
(14)
定义:M k 1 (t ) A(t ) M k (t ) d M k (t )
dt M0 (t ) B(t )
k 0,1,, n 1 (15)
第3章 控制系统的能控性和能观测性
在多变量控制系统中,能控性和能观测性是两个反映控制系统 构造的基本特性,是现代控制理论中最重要的基本概念。 本章的内容为: 1. 2. 3. 4. 引言——能控性、能观测性的基本概念 能控性及其判据 能观测性及其判据 离散系统的能控性和能观测性
5.
对偶原理
问题的提出



这是由于在经典控制理论中,只限于讨论控制作用(输入)对输出的 控制。输入与输出这两个量的关系,唯一地由系统的传递函数所确定, 只要系统是稳定的,系统就是能控的。另一方面,系统的输出量本身 就是被控量,对于一个实际的物理系统来说,它当然是可以观测到的, 所以在经典控制理论中没有必要涉及能控性和能观性。 然而在现代控制理论中,是把反映系统内部运动状态的状态向量作为 被控量,而且它们不一定是实际上可观测到的物理量,至于输出量则 是状态向量的线性组合,这就产生了从输入量 到状态量 的能控性问 题和从输出量 到状态量 的能观测性问题。 最优控制(optimal control)在满足一定约束条件下,寻求最优控制 策略,使得性能指标取极大值或极小值。 最优估计(optimum estimate )即滤波(是将信号中特定波段频率 滤除的操作,是抑制和防止干扰的一项重要措施。)方法的优化。
QC [ B AB
A2 B An1 B]
(6)
(7)
rankQC n
证明
应用凯-哈定理,有
e Aτ a0 ( τ ) I a1 ( τ ) A an1 ( τ ) An-1 ai ( τ ) Ai
上式代入(3)式
n 1 i 0
x(0) A B ai ( τ )u( τ ) d τ
(16)
相关文档
最新文档