新课程改革高考数学专题训练教师版函数的图象

合集下载

高考数学 函数的图象(教师版)

高考数学 函数的图象(教师版)

专题2 函数的图象1.已知函数32()f x ax bx c =++,其导数()f x '的图象如图所示,则函数()f x 的极大值是( )A .a b c ++B .84a b c ++C .32a b +D .c【解析】由导函数的图象知,()f x 在(1,2)递增;在(2,)+∞上递减,所以当2x =时取得极大值, 极大值为:f (2)84a b c =++,则函数()f x 的极大值是84a b c ++故选B2.设函数()y f x =可导,()y f x =的图象如图所示,则导函数()y f x ='可能为( )A .B .C .D .【解析】根据()y f x =的图象可知其定义域为{|0}x x ≠,故其导函数的定义域也为{|0}x x ≠,又从原函数()y f x =的图象可知,函数()y f x =的单调性是:函数()y f x =在(,0)-∞,(0,)a 上是增函数,在(,)a b 上是减函数,在(,)b +∞是增函数,即()y f x =是先增后减再增,得出导函数是先正后负再正, 根据选项中的函数()f x 的单调性知选D .故选D 3.函数sin 21cos xy x=-的部分图象大致为( )A .B .C .D .【解析】函数sin 21cos x y x =-,可知函数是奇函数,排除选项B ,当3x π=时,2()1312f π==-A ,x π=时,()0f π=,排除D .故选C4.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()2||xf x ln x =B .2()||f x ln x x =-C .1()||f x ln x x=+ D .||()||xln x f x x =【解析】函数图象关于原点对称,函数为奇函数,排除B ,C ,又f (1)0=,则()2||xf x ln x =无意义,排除A ,故选D 5.函数2||()1xln x f x x =+的图象大致为( ) A . B .C .D .【解析】因为2||()()()1xln x f x f x x ---==--+,所以()f x 为奇函数,图象关于原点对称,排除C ,D ,因为f (1)0=,01x <<时,()0f x <,所以排除B .故选A6.函数22,01()(),01xlnxx x f x xln x x x ⎧>⎪⎪+=⎨-⎪<⎪+⎩的图象大致为( )A .B .C .D .【解析】若0x >,则0x -<,则2()()1xlnxf x f x x --==-+,若0x <,则0x ->, 则2()()()1xln x f x f x x ---==-+,综上()()f x f x -=-,即()f x 是奇函数,图象关于圆的对称,排除C ,D ,当0x >,且0x →时,()0f x <,排除B ,故选A 7.函数||()||xln x f x x =的大致图象是( ) A . B .C .D .【解析】|()|||()()||||x ln x xln x f x f x x x ----===--,()f x ∴是奇函数,图象关于原点对称,故A ,C 错误;又当1x >时,||0ln x lnx =>,()0f x ∴>,故D 错误,故选B8.函数1()()cos (f x x x x xππ=--且0)x ≠的图象可能为( )A .B .C .D .【解析】11()()cos()()cos ()f x x x x x f x x x -=-+-=--=-,∴函数()f x 为奇函数,∴函数()f x 的图象关于原点对称,故排除A ,B ,当x π=时,11()()cos 0f ππππππ=-=-<,故排除C , 故选D 9.已知21()sin()42f x x x π=++,()f x '为()f x 的导函数,则()f x '的图象是( ) A . B .C .D .【解析】由2211()sin()cos 424f x x x x x π=++=+,1()sin 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D .又1()cos 2f x x ''=-,当33x ππ-<<时,1cos 2x >,()0f x ∴''<,故函数()y f x ='在区间(3π-,)3π上单调递减,故排除C .故选A10.下面四图都是同一坐标系中某三次函数及其导函数的图象,其中一定不正确的序号是( )A .①②B .③④C .①③D .①④【解析】根据()0f x '>时,()f x 递增;()0f x '<时,()f x 递减可得:①中函数的图象从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;②中函数的图象也是从左向右先减后增再减,对应的导函数是小于0,大于0,再小于0;所以①②可能正确.而③中函数的图象从左向右先减后增,对应的导函数是小于0,大于0,再小于0,大于0;④中函数的图象从左向右先增后减后,对应的导函数也是小于0,大于0,再小于0,大于0;所以③④可能错误.故选B11.已知R 上的可导函数()f x 的图象如图所示,则不等式(2)()0x f x '->的解集为( )A .(-∞,2)(1-⋃,)+∞B .(-∞,2)(1-⋃,2)C .(-∞,1)(2⋃,)+∞D .(1-,1)(2⋃,)+∞【解析】由函数()f x 的图象可得,当(,1)x ∈-∞-,(1,)+∞时,()0f x '>, 当(1,1)x ∈-时,()0f x '<.由()0(2)()020f x x f x x '>⎧-'>⇔⎨->⎩①或()020f x x '<⎧⎨-<⎩②解①得,2x >,解②得,11x -<<,综上,不等式(2)()0x f x -'>的解集为(1-,1)(2⋃,)+∞,故选D12.函数32()f x x bx cx d =+++的大致图象如图所示,则2212x x +等于( )A .89B .109C .169D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-,22()32322f x x bx c x x ∴'=++=--.由题意有1x 和2x 是函数()f x 的极值点,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,1223x x =-.则2221212124416()2939x x x x x x +=+-=+=,故选C 13.如图是函数32()f x x bx cx d =+++的大致图象,则12(x x += )A .23B .109 C .89D .289【解析】32()f x x bx cx d =+++,由图象知,10b c d -+-+=,0000d +++=,8420b c d +++=,0d ∴=,1b =-,2c =-22()32322f x x bx c x x ∴'=++=--. 由题意有1x 和2x 是函数()f x 的极值,故有1x 和2x 是()0f x '=的根,1223x x ∴+=,故选A 14.函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A .0a <,0b >,0c <B .0a >,0b <,0c <C .0a >,0b <,0c >D .0a <,0b >,0c >【解析】依题意,函数()f x 的定义域为{|}x x c ≠-,从函数图象上看,0c ->,故0c <,当0x =时,()0f x <,所以20bc<,所以0b <,根据函数图象,当x →∞时,0ax b +>,故0a >,故选B 15.函数2()()ax bf x x c +=+的图象大致如图所示,则下列结论正确的是( )A .0a >,0b >,0c >B .0a <,0b >,0c <C .0a <,0b <,0c >D .0a >,0b >,0c <【解析】函数2()()ax bf x x c +=+,x c ∴=-时,函数值不存在,结合函数图象得0c >,排除B 和D ;当0x =时,(0)f b =,结合函数图象得0b >,排除C .故选A16.函数32()f x ax bx cx d =+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a <,0b <,0c >,0d >D .0a >,0b >,0c >,0d <【解析】由图可知,(0)0f d =>,32()f x ax bx cx d =+++,2()32f x ax bx c '∴=++,从图象可知,()f x 先递增,后递减,再递增,且极大值点和极小值点均大于0, 其导函数的图象大致如下:0a ∴>,03ba->,△2(2)430b a c =->,(0)0f '>,0a ∴>,0b <,0c >.故选A 17.函数22||(2)sin x x y x e x=-在[2-,2]的图象大致为( )A .B .C .D .【解析】根据题意,函数22||(2)sin x x y x e x=-在[2-,2]中,必有0x ≠;又由222||2||()()[2()](2)()sin()sin x x x x f x x e x e f x x x ---=--=--=--,函数为奇函数,排除B ,f (1)12(2)1sin1sin1e e -=-=≈-,排除D ,f (2)224(22)2sin 2e =⨯-≈,排除C ; 故选A18.函数2||2x y x e =-+在区间[2-,2]上的图象大致为( )A .B .C .D .【解析】根据题意,函数2||()2x y f x x e ==-+,有f (2)280e =-+<,排除A ,又由(0)1f =,11()122f =-+>,f (1)21e =-+<,排除C 、D ,故选B19.函数2||22x y x =-在[2-,2]的图象大致为( )A .B .C .D .【解析】函数2||22x y x =-在[2-,2]是偶函数,排除选项B 、D , 当2x =时,f (e )40=>,排除选项A .故选:C .20.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .2()||f x ln x x =-B .()||||f x ln x x =-C .2()2||f x ln x x =-D .()2||||f x ln x x =-【解析】由图可知,函数()f x 为偶函数,于是只需考查0x >的情况即可,且当0x >时,()f x 的极大值点小于1.选项A ,2()f x lnx x =-,1()2f x x x'∴=-,令()0f x '=,则x ,当(0,)2x ∈时,()0f x '>,()f x 单调递增;当(2x ∈,)+∞时,()0f x '<,()f x 单调递减,()f x ∴在(0,)+∞上的极大值点为1x <,符合题意;同理可得,选项B 中函数对应的极大值点为1x =, 选项C 中函数对应的极大值点为1x =,选项D 中函数对应的极大值点为21x =>,均不符合题意, 故选A21.已知某函数的图象如图所示,则该函数的解析式可能是( )A .1()||f x ln x x =-B .1()||f x ln x x =+C .1()||f x ln x x=- D .1()||||f x ln x x =+【解析】选项A ,f (1)1=-与图象矛盾,故A 错误;选项C ,1()10f e e =-<与图象矛盾,故C 错误;选项D ,(1)1f -=与图象矛盾,故D 错误.故选B 22.函数()f x 的图象如图所示,则它的解析式可能是( )A .21()2x x f x -=B .()2(||1)x f x x =-C .()||||f x ln x =D .()1x f x xe =-【解析】由图象可知,函数的定义域为R ,故排除C ;由f (1)0=可知,故排除D ; 当x →-∞时,()0f x →,故排除A ;故选B23.已知函数()f x 的图象如图所示,则该函数的解析式可能是( )A .||()x ln x f x e =B .()||xf x e ln x = C .||()ln x f x x =D .()(1)||f x x ln x =- 【解析】由图象可知,当x →+∞时,()0f x →,当x →-∞时,()f x →+∞对于A :满足要求,对于B :当x →+∞时,()||x f x e ln x =→+∞,不满足,对于C :当x →-∞时,()||0x f x e ln x =→,不满足,对于D :当x →-∞时,()(1)||f x x ln x =-→+∞,不满足,故选A 24.已知某函数的图象如图所示,则下列解析式中与此图象最为符合的是( )A .2()||xf x ln x =B .2||()||x f x ln x =C .21()1f x x =- D .1()1||||f x x x =-【解析】由函数的图象可知函数是偶函数,选项A 函数是奇函数不成立. 0x =,函数没有意义,所以选项C 的函数不成立;1x >时,11()11||||f x x x x x==--,函数是减函数,所以选项D 不成立;故选B25.已知函数()f x 的图象如图所示,则()f x 的解析式可能是( )11A .||()cos x f x e x =B .()||cos f x ln x x =C .||()cos x f x e x =+D .()||cos f x ln x x =+ 【解析】由图可知()02f π>,故可排除A ,B ;对于||:()cos x C f x e x =+,当(0,1)x ∈时()0f x >,故可排除C .故选D26.已知函数()f x 的局部图象如图所示,则()f x 的解析式可以是( )A .1||()sin 2x f x e x π=B .1||()cos 2x f x e x π=C .()||sin 2f x ln x x π=D .()||cos 2f x ln x x π= 【解析】由图可知,函数()f x 为偶函数,可排除选项A 和C ;对于选项B 和D ,都有f (1)0=, 当(0,1)x ∈时,1||()cos 02x f x ex π=>,与函数图象不符;()||cos 02f x ln x x π=<,与函数图象符合,所以选项B 错误.故选D。

高考数学专题《函数的图象》习题含答案解析

高考数学专题《函数的图象》习题含答案解析

专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。

函数的图象(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

函数的图象(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(原卷版)

考向12 函数的图象【2022·全国·高考真题(理)】函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .【答案】A 【解析】 【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解. 【详解】令()()33cos ,,22x xf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos x x x xf x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C.故选:A.【2022·全国·高考真题(文)】如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x xy x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 【答案】A 【解析】 【分析】由函数图像的特征结合函数的性质逐项排除即可得解. 【详解】设()321x xf x x -=+,则()10f =,故排除B;设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<,所以()222cos 2111x x xh x x x =<≤++,故排除C; 设()22sin 1xg x x =+,则()2sin 33010g =>,故排除D. 故选:A.1.函数图象的画法(1)直接法:当函数表达式(或变形后的表达式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.(2)转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象. 2.图象变换法若函数图象可由某个基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,并应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响.3.识图的三种常用方法(1).抓住函数的性质,定性分析:①由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复. (2).抓住函数的特征,定量计算:从函数的特征点,利用特征点、特殊值的计算分析解决问题. (3).根据实际背景、图形判断函数图象的方法:①根据题目所给条件确定函数解析式,从而判断函数图象(定量分析); ②根据自变量取不同值时函数值的变化、增减速度等判断函数图象(定性分析).(1)若()()f m x f m x +=-恒成立,则()y f x =的图像关于直线x m =对称.(2)设函数()y f x =定义在实数集上,则函数()y f x m =-与()y f m x =-(0)m >的图象关于直线x m =对称.(3)若()()f a x f b x +=-,对任意x ∈R 恒成立,则()y f x =的图象关于直线2a bx +=对称. (4)函数()y f a x =+与函数()y f b x =-的图象关于直线2a bx +=对称. (5)函数()y f x =与函数(2)y f a x =-的图象关于直线x a =对称. (6)函数()y f x =与函数2(2)y b f a x =--的图象关于点()a b ,中心对称. (7)函数平移遵循自变量“左加右减”,函数值“上加下减”.一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法 1.直接画①确定定义域;②化简解析式;③考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;④特殊点、极值点、与横/纵坐标交点;⑤特殊线(对称轴、渐近线等).2.图像的变换 (1)平移变换①函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿x 轴向左平移a 个单位得到的; ②函数()(0)y f x a a =->的图像是把函数()y f x =的图像沿x 轴向右平移a 个单位得到的; ③函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向上平移a 个单位得到的; ④函数()(0)y f x a a =+>的图像是把函数()y f x =的图像沿y 轴向下平移a 个单位得到的; (2)对称变换①函数()y f x =与函数()y f x =-的图像关于y 轴对称; 函数()y f x =与函数()y f x =-的图像关于x 轴对称;函数()y f x =与函数()y f x =--的图像关于坐标原点(0,0)对称; ②若函数()f x 的图像关于直线x a =对称,则对定义域内的任意x 都有()()f a x f a x -=+或()(2)f x f a x =-(实质上是图像上关于直线x a =对称的两点连线的中点横坐标为a ,即()()2a x a x a -++=为常数); 若函数()f x 的图像关于点(,)a b 对称,则对定义域内的任意x 都有()2(2)()2()f x b f a x f a x b f a x =---=-+或③()y f x =的图像是将函数()f x 的图像保留x 轴上方的部分不变,将x 轴下方的部分关于x 轴对称翻折上来得到的(如图(a )和图(b ))所示④()y f x =的图像是将函数()f x 的图像只保留y 轴右边的部分不变,并将右边的图像关于y 轴对称得到函数()y f x =左边的图像即函数()y f x =是一个偶函数(如图(c )所示).注:()f x 的图像先保留()f x 原来在x 轴上方的图像,做出x 轴下方的图像关于x 轴对称图形,然后擦去x 轴下方的图像得到;而()f x 的图像是先保留()f x 在y 轴右方的图像,擦去y 轴左方的图像,然后做出y 轴右方的图像关于y 轴的对称图形得到.这两变换又叫翻折变换.⑤函数1()y f x -=与()y f x =的图像关于y x =对称. (3)伸缩变换①()(0)y Af x A =>的图像,可将()y f x =的图像上的每一点的纵坐标伸长(1)A >或缩短(01)A <<到原来的A 倍得到.②()(0)y f x ωω=>的图像,可将()y f x =的图像上的每一点的横坐标伸长(01)ω<<或缩短(1)ω>到原来的1ω倍得到.1.(2022·青海·海东市第一中学模拟预测(理))函数sin cos yx x x 在[]π,π-上的图像大致是( )A .B .C .D .2.(2022·青海·模拟预测(理))已知函数()f x 的部分图像如图所示,则函数()f x 的解析式可能为( )A .()ln sin f x x x =+B .()ln cos f x x x =-C .()ln cos f x x x =+D .()ln sin f x x x =-3.(2022·浙江·三模)函数1sin 22x xxy -+=+在区间[,]-ππ上的图像可能是( )A .B .C .D .4.(2022·四川泸州·模拟预测(文))如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .5.(多选题)(2022·全国·模拟预测)在下列四个图形中,二次函数2y ax bx =+与指数函数xb y a ⎛⎫= ⎪⎝⎭的图象可能是( )A .B .C .D .1.(2022·青海·海东市第一中学模拟预测(文))函数()2222x xx xf x -+=+的部分图像大致是( )A .B .C .D .2.(2022·陕西·西北工业大学附属中学模拟预测(理))已知函数()f x 图象如图所示,那么该函数可能为( )A .ln ()||xf x x =B .()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩C .()()1(0)e 1e (0)x x x x f x x x -⎧>⎪=⎨⎪+<⎩D .ln ||()x f x x=3.(2022·湖北·模拟预测)函数()[]()0,1y f x x =∈对任意()10,1a ∈,由()()*1n n a f a n +=∈N 得到的数列{}n a 均是单调递增数列,则下列图像对应的函数符合上述条件的是( )A .B .C .D .4.(2022·浙江湖州·模拟预测)已知函数()2ln1(),cos x x f x a R x a+-=∈+的图像如图所示,则实数a 的值可能是( )A .2-B .12-C .12D .25.(2022·浙江绍兴·模拟预测)下图中的函数图象所对应的解析式可能是( )A .112x y -=-B .112xy =-- C .12x y -=- D .21xy =--6.(2022·河南·平顶山市第一高级中学模拟预测(文))函数sin 22cos x xy x=-的部分图像大致为( )A .B .C .D .7.(2022·浙江·模拟预测)如图所示的是函数()y f x =的图像,则函数()f x 可能是( )A .sin y x x =B .cos y x x =C .sin cos y x x x x =+D .sin cos y x x x x =-8.(2022·福建省福州第一中学三模)已知函数()()2()ln 1cos 3f x x x x ϕ=++⋅+.则当[0,]ϕπ∈时,()f x 的图象不可能是( )A .B .C .D .9.(2022·吉林·三模(理))下列各个函数图像所对应的函数解析式序号为( )①||()e sin x f x x = ②()ln ||=-g x x x ③2()sin =t x x x ④2e ()xh x x=A .④②①③B .②④①③C .②④③①D .④②③①10.(2022·浙江·镇海中学模拟预测)图象为如图的函数可能是( )A .()sin(cos )f x x =B .()sin(sin )f x x =C .()cos(sin )f x x =D .()cos(cos )f x x =11.(2022·浙江·模拟预测)已知函数()f x 的部分图像如图所示,则该函数的解析式可能是( )A .22cos ()ln 2cos xf x x x +=+-B .32cos ()ln 2cos xf x x x+=-C .32sin ()ln2sin xf x x x+=+-D .22sin ()ln2sin xf x x x+=-12.(2022·四川眉山·三模(理))四参数方程的拟合函数表达式为()01ba d y d x x c -=+>⎛⎫+ ⎪⎝⎭,常用于竞争系统和免疫检测,它的图象是一个递增(或递减)的类似指数或对数曲线,或双曲线(如1y x -=),还可以是一条S 形曲线,当4a =,1b =-,1c =,1d =时,该拟合函数图象是( ) A .类似递增的双曲线 B .类似递增的对数曲线 C .类似递减的指数曲线D .是一条S 形曲线13.(2022·江西赣州·二模(理))已知函数()f x 的图象的一部分如下左图,则如下右图的函数图象所对应的函数解析式( )A .(21)y f x =-B .412x y f -⎛⎫= ⎪⎝⎭C .(12)y f x =-D .142x y f -⎛⎫= ⎪⎝⎭14.(2022·浙江绍兴·模拟预测)在同一直角坐标系中,函数()log a y x =-,()10a y a x-=>,且1a ≠的图象可能是( )A .B .C .D .15.(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .16.(2022·全国·高三专题练习)匀速地向一底面朝上的圆锥形容器注水,则该容器盛水的高度h 关于注水时间t 的函数图象大致是( )A .B .C .D .1.(2022·全国·高考真题(理))函数()33cos x x y x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为( )A .B .C .D .2.(2022·全国·高考真题(文))如图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是( )A .3231x x y x -+=+B .321x xy x -=+C .22cos 1x xy x =+ D .22sin 1xy x =+ 3.(2021·天津·高考真题)函数2ln ||2x y x =+的图像大致为( ) A . B .C .D .4.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =5.(2020·天津·高考真题)函数241xy x =+的图象大致为( ) A . B .C .D .6.(2020·浙江·高考真题)函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .7.(2019·浙江·高考真题)在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是 A . B .C .D .8.(2018·全国·高考真题(文))函数()2e e x xf x x--=的图像大致为 ( ) A . B .C .D .9.(2017·全国·高考真题(文))函数y =1+x +2sin xx 的部分图象大致为( ) A . B . C . D .10.(2015·浙江·高考真题(文))函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( )A .B .C .D .11.(2018·浙江·高考真题)函数y =||2x sin2x 的图象可能是A .B .C .D .12.(2018·全国·高考真题(理))函数422y x x =-++的图像大致为A .B .C .D .13.(2017·全国·高考真题(文))函数sin21cos xy x=-的部分图像大致为A .B .C .D .14.(2015·安徽·高考真题(理))函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是A .0a >,0b >,0c <B .0a <,0b >,0c >C .0a <,0b >,0c <D .0a <,0b <,0c <1.【答案】D【解析】易知f (x )是偶函数,排除B ,C 项;当0πx ≤≤时,sin 0x ≥,所以sin cos 0y x x x =≥,排除A 项. 故选:D 2.【答案】B【解析】对于A ,()ln sin ,0f x x x x =+≠,()ln sin ()f x x x f x -=--≠, 即()ln sin ,0f x x x x =+≠不是偶函数,不符合题意;对于C, ()ln cos ,0f x x x x =+≠,()πln πcos π=ln π11f =+-<,不符合题意; 对于D ,()ln sin ,0f x x x x =-≠,()ln sin ()f x x x f x -=-+≠,不符合题意; 对于B ,()ln cos ,0f x x x x =-≠,()ln cos ()f x x x f x -=--=,故()f x 为偶函数,结合函数cos y x =的性质,可知B 符合题意, 故选:B 3.【答案】A【解析】当0x =时,12y =,排除C 选项;当2x π=-时,0y =,排除B 、D 选项.故选:A. 4.【答案】B【解析】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B , 故选B . 5.【答案】ABD【解析】当0a b >>时,A 正确;当0b a >>时,B 正确; 当0a b >>时,D 正确;当0b a >>时,无此选项. 故选:ABD .1.【答案】B【解析】函数的定义域为R ,因为()()2222x xx x f x f x -+-==+,所以()f x 是偶函数,排除选项A ;当x →+∞时,考虑到22y x x =+和22x x y -=+的变化速度,知x →+∞时,()0f x →,故排除选项C ,D .故选:B . 2.【答案】D【解析】由图象可知,函数定义域为(,0)(0,)-∞+∞,图象关于原点对称,函数是奇函数, 1x >时()0f x >, 据此,ln ()||xf x x =定义域不符合,排除A; 若 ()()22ln (0)ln (0)x x x f x x x x ⎧->⎪⎪=⎨-⎪<⎪⎩,则1x >时,()0f x <,不符合图象,故排除B ;若()()1(0)e 1e (0)xx x x f x x x -⎧>⎪=⎨⎪+<⎩,则当x 趋向于0+时,1()e x x f x -=趋向于1-,当x 趋向于0-时,()(1)e x f x x =+趋向于1,不符合图象,故排除C;故选:D3.【答案】A【解析】由题可知()()*1n n a f a n +=∈N ,1n n a a +>,∴()n n f a a >,故函数()f x 满足()f x x >,即函数()f x 的图像在直线y x =的图像上方,故排除BCD.故选:A.4.【答案】C 2210x x x x x x +=-≥210x x +>,分子一定有意义.又根据图象可得,当23x π=时分式无意义,故此时分母为0,故2cos 03a π+=,即102a -+=,12a = 故选:C5.【答案】A【解析】解:根据图象可知,函数关于1x =对称,且当1x =时,1y =-,故排除B 、D 两项;当1x >时,函数图象单调递增,无限接近于0,对于C 项,当1x >时,12x y -=-单调递减,故排除C 项. 故选:A.6.【答案】A【解析】设()sin 22cos x x f x x =-,则对任意的x ∈R ,2cos 0x ->, 则()()()()sin 2sin 22cos 2cos x x x x f x f x x x---===---,所以函数()f x 是偶函数,排除B 、D . 当0,2x π⎛⎫∈ ⎪⎝⎭时,()20,x π∈,则sin 20x >,所以()0f x >,排除C . 故选:A .7.【答案】C【解析】由图可知:()f x 是非奇非偶函数,且在y 轴右侧,先正后负.若()sin f x x x =,则()()()sin sin f x x x x x -=--=,所以函数sin y x x =为偶函数,与条件矛盾,A 错,若()cos f x x x =,则()()()cos cos f x x x x x -=--=-,所以函数cos y x x =为奇函数,与条件矛盾,B 错,若()sin cos f x x x x x =-,则()2sin 4f x x x π⎛⎫=- ⎪⎝⎭, 当04x π⎛⎫∈ ⎪⎝⎭,时,()2sin 04f x x x π⎛⎫=-< ⎪⎝⎭,与所给函数图象不一致,D 错, 若()sin cos f x x x x x =+,则()2sin 4f x x x π⎛⎫=+ ⎪⎝⎭, 当304x π⎛⎫∈ ⎪⎝⎭,时,()0f x >, 又2()4f π=, ()04f π-=,所以函数sin cos y x x x x =+为非奇非偶函数,与所给函数图象基本一致, 故选:C .8.【答案】D【解析】【详解】首先设()(2ln 1g x x x =++,得到()g x 为奇函数,再分别令0,,2πϕπ=,依次判断选项即可.9.【答案】A【解析】()f x ,()t x 的定义域为R ,()g x ,()h x 的定义域为{}|0x x ≠2e ()0xh x x=>在定义域内恒成立,则前两个对应函数分别为④② 当()0,πx ∈时,则()e sin x f x x =()π()e sin cos 2e sin 4x x f x x x x ⎛⎫'=+=+ ⎪⎝⎭,令()0f x '>,则30π4x << ()f x 在30,π4⎛⎫ ⎪⎝⎭上单调递增,在3π,π4⎛⎫ ⎪⎝⎭上单调递减,则3π432()(π)e 54f x f ≤=> ①对应的为第三个函数故选:A .10.【答案】A【解析】因为(0)f 为最大值,排除BD ;又因为cos(sin )0x >,排除C .故选:A .11.【答案】B【解析】观察函数图象可得该函数图象关于原点对称,所以函数()f x 为奇函数,由图象可得(2)0f <, 对于函数22cos ()ln 2cos x f x x x+=+-, 因为()()()222cos 2cos ()ln ln ()2cos 2cos x x f x x x f x x x+-+-=-+=+=---,所以函数22cos ()ln 2cos x f x x x +=+-为偶函数,A 错, 对于函数32sin ()ln 2sin x f x x x+=+-,()32sin ()ln ()2sin x f x x f x x --=-+=-+, 所以函数32sin ()ln2sin x f x x x +=+-为奇函数,又32sin 2(2)2ln 02sin 2f +=+>-,与图象不符,故C 错误, 对于函数22sin ()ln 2sin x f x x x+=-,()22sin ()ln ()2sin x f x x f x x --=-=-+, 所以函数22sin ()ln 2sin x f x x x+=-为奇函数,又22sin 2(2)2ln 02sin 2f +=>-,与图象不符,故D 错误, 对于函数32cos ()ln 2cos x f x x x+=-,因为()32cos ()ln ()2cos x f x x f x x +-=-=--, 所以函数32cos ()ln2cos x f x x x +=-为奇函数,且32cos 2(2)2ln 02cos 2f +=<-,与图象基本相符,B 正确, 故选:B.12.【答案】A【解析】解:依题意可得拟合函数为13 11y x-=++,()0x >, 即()31333114111x x y x x x +--=+=+=++++,()0x >, 由3 y x -=()1x >向左平移1个单位,再向上平移4个单位得到3 41y x -=++,()0x >, 因为3 y x-=在()1,+∞上单调递增, 所以拟合函数图象是类似递增的双曲线;故选:A13.【答案】C【解析】12()()(1)(12)x x x x x xy f x y f x y f x y f x →-→-→=→=-→=-→=-①②③ ①关于y 轴对称②向右平移1个单位③纵坐标不变,横坐标变为原来的一半故选:C.14.【答案】C【解析】解:因为函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称,所以函数()log a y x =-的图象恒过定点()1,0-,故选项A 、B 错误;当1a >时,函数log a y x =在()0,∞+上单调递增,所以函数()log a y x =-在(),0∞-上单调递减, 又()11a y a x -=>在(),0∞-和()0,∞+上单调递减,故选项D 错误,选项C 正确. 故选:C.15.【答案】A【解析】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ; 在区间(2π,π)上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B , 又由当x 1+x 2=π时,有f (x 1)=﹣f (x 2),f (x )的图象关于点(2π,0)对称,排除D , 故选:A16.【答案】A【解析】设圆锥PO 底面圆半径r ,高H ,注水时间为t 时水面与轴PO 交于点O ',水面半径AO x '=,此时水面高度PO h '=,如图:由垂直于圆锥轴的截面性质知,x h r H =,即r x h H=⋅,则注入水的体积为2223211()333r r V x h h h h H H πππ==⋅⋅=⋅, 令水匀速注入的速度为v ,则注水时间为t 时的水的体积为V vt =,于是得2223333222333r H vt H v h vt h h t H r r πππ⋅=⇒=⇒= 而,,r H v 2323H v r π是常数, 所以盛水的高度h 与注水时间t 的函数关系式是23323H v h t r π=203r H t v π≤≤,223323103H v h t r π-'=>,函数图象是曲线且是上升的,随t 值的增加,函数h 值增加的幅度减小,即图象是先陡再缓,A 选项的图象与其图象大致一样,B ,C ,D 三个选项与其图象都不同.故选:A1.【答案】A【解析】令()()33cos ,,22x x f x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦, 则()()()()()33cos 33cos x x x x f x x x f x ---=--=--=-, 所以()f x 为奇函数,排除BD ; 又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x x x -->>,所以()0f x >,排除C. 故选:A.2.【答案】A【解析】设()321x x f x x -=+,则()10f =,故排除B; 设()22cos 1x x h x x =+,当π0,2x ⎛⎫∈ ⎪⎝⎭时,0cos 1x <<, 所以()222cos 2111x x x h x x x =<≤++,故排除C; 设()22sin 1x g x x =+,则()2sin 33010g =>,故排除D. 故选:A. 3.【答案】B【解析】设()2ln ||2x y f x x ==+,则函数()f x 的定义域为{}0x x ≠,关于原点对称, 又()()()2ln ||2x f x f x x --==-+,所以函数()f x 为偶函数,排除AC ; 当()0,1∈x 时,2ln 0,20x x + ,所以()0f x <,排除D.故选:B.4.【答案】D【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ; 对于C ,()()21sin 4y f x g x x x ⎛⎫==+ ⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭, 当4x π=时,22120221642y ππ⎛⎫'=+> ⎪⎝⎭,与图象不符,排除C. 故选:D.5.【答案】A【解析】由函数的解析式可得:()()241x f x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误;当1x =时,42011y ==>+,选项B 错误. 故选:A.6.【答案】A【解析】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.7.【答案】D【解析】本题通过讨论a 的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【详解】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1xy a =过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.综上,选D.8.【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像. 详解:20,()()()x xe e xf x f x f x x --≠-==-∴为奇函数,舍去A, 1(1)0f e e -=->∴舍去D;243()()2(2)(2)()2,()0x x x x x xe e x e e x x e x ef x x f x x x ---+---++=='∴>'>, 所以舍去C ;因此选B.9.【答案】D【解析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【详解】当x =1时,y =1+1+sin1=2+sin1>2,排除A 、C ;当x →+∞时,y →+∞,排除B.故选:D.10.【答案】D【解析】【详解】 因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D. 考点:1.函数的基本性质;2.函数的图象.11.【答案】D【解析】【详解】分析:先研究函数的奇偶性,再研究函数在π(,π)2上的符号,即可判断选择. 详解:令||()2sin 2x f x x =, 因为,()2sin 2()2sin 2()x x x R f x x x f x -∈-=-=-=-,所以||()2sin 2x f x x =为奇函数,排除选项A,B; 因为π(,π)2x ∈时,()0f x <,所以排除选项C ,选D.12.【答案】D【详解】分析:根据函数图象的特殊点,利用函数的导数研究函数的单调性,由排除法可得结果. 详解:函数过定点()0,2,排除,A B ,求得函数的导数()()32'42221f x x x x x =-+=--,由()'0f x >得()22210x x -<, 得2x <20x <<C ,故选D. 13.【答案】C【解析】【详解】由题意知,函数sin 21cos x y x=-为奇函数,故排除B ;当πx =时,0y =,故排除D ;当1x =时,sin 201cos2y =>-,故排除A .故选C .14.【答案】C【解析】【详解】试题分析:函数在P 处无意义,由图像看P 在y 轴右侧,所以0,0c c -><,()200,0b f b c =>∴>,由()0,0,f x ax b =∴+=即b x a =-,即函数的零点000.0,0b x a a b c a=->∴<∴<,故选C . 考点:函数的图像。

2024年新高考版数学专题1_5.3 三角函数的图象及性质

2024年新高考版数学专题1_5.3 三角函数的图象及性质
高考 数学
专题五 三角函数与解三角形
5.3 三角函数的图象及性质
基础篇
考点一 三角函数的图象及其变换
1.用五点法作正弦函数和余弦函数的简图
1)正弦函数y=sin
x,x∈[0,2π]的图象中,五个关键点:(0,0),
2
,1
,(π,0),
3 2
, 1
,(2π,0).
2)余弦函数y=cos
x,x∈[0,2π]的图象中,五个关键点:(0,1),
2
解法二:由辅助角公式得f(x)=sin x+cos x=
2
sin
x
4
,
则y=
f
x
2
2
=
2
sin(
x
3 4
2
)
=2sin2
x
3 4
=1-cos
2x+ 3
2
=1-sin 2x,
所以该函数的最小正周期T= 2 =π.
2
(2)y=f(x)f
x
4
=sin
2x
4
+
2 2
,由x∈
0,
2
例3 (多选)(2022山东烟台、德州一模,9)将函数y=sin 2x的图象向右平移
个单位长度后得到函数f(x)的图象,则 ( )
6
A.
f(x)=cos
2x
6
B.
6
,
0
是f(x)图象的一个对称中心
C.当x=- 时, f(x)取得最大值
12
D.函数f(x)在区间
,
5 4
上单调递增
解析 将函数y=sin 2x的图象向右平移 个单位长度后得到函数f(x)=sin

适用于新教材2024版高考数学一轮总复习:三角函数的图象与性质课件北师大版

适用于新教材2024版高考数学一轮总复习:三角函数的图象与性质课件北师大版
A.f(x)的定义域为 R
C.f(x)的值域为 R
)
(k∈Z)
π
2x+4
B.f(x)的定义域为 x
D.f(x)在
π
0, 8
-1,则(
π
x≠
8
+
)
π
,k∈Z
2
上的值域为(0,+∞)
答案 (1)C
(2)BCD
解析 (1)由 sin
π
x+6
2
1
相邻的对称中心与对称轴之间的距离等于 T,正切曲线相邻两个对称中心之
4
1
间的距离是 T(其中
2
T 是相应函数的最小正周期).
5.函数y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)图象的对称轴方程、对
称中心横坐标的确定方法:
函数
y=Asin(ωx+φ)
y=Acos(ωx+φ)

π
φ≠ 2 (k∈Z)
函数
常用结论
1.函数 y=Asin(ωx+φ),y=Acos(ωx+φ)的最小正周期为
y=Atan(ωx+φ)的最小正周期为

T=|| ,函数
π
T=||.
2.函数 y=|Asin(ωx+φ)|,y=|Acos(ωx+φ)|的最小正周期分别是函数
y=Asin(ωx+φ),y=Acos(ωx+φ)最小正周期的一半,即
三角函数的定义域、值域与最值(多考向探究预测)
考向1三角函数的定义域与值域
题组(1)(2023·山东青岛高三月考)函数 f(x)= sin(

2022版新高考数学总复习真题专题--函数的图象(解析版)

2022版新高考数学总复习真题专题--函数的图象(解析版)

2022版新高考数学总复习--§2.5函数的图象—五年高考—考点1函数的图象1.(2021浙江,7,4分)已知函数f(x)=x2+14,g(x)=sin x,则图象为下图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y=f(x)g(x)D.y=g(x)f(x)答案D2.(2020浙江,4,4分)函数y=x cos x+sin x在区间[-π,π]上的图象可能是()答案A3.(2020天津,3,5分)函数y=4xx2+1的图象大致为()答案A4.(2019课标Ⅰ,文5,理5,5分)函数f(x)=sinx+xcosx+x2在[-π,π]的图象大致为()答案D5.(2019浙江,6,4分)在同一直角坐标系中,函数y=1a x ,y=log a(x+12)(a>0,且a≠1)的图象可能是()答案D6.(2018课标Ⅱ,文3,理3,5分)函数f(x)=e x-e-xx2的图象大致为()答案B7.(2018课标Ⅲ理,7,5分)函数y=-x4+x2+2的图象大致为()答案D8.(2018浙江,5,4分)函数y=2|x|sin 2x的图象可能是()答案D以下为教师用书专用(1—8)的部分图象大致为() 1.(2017课标Ⅰ文,8,5分)函数y=sin2x1-cosx答案 C 本题考查函数图象的识辨. 易知y =sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f (1)=sin21-cos1=√3,故排除A 选项;f (π)=sin2π1-cos π=0,故排除D 选项,故选C .方法总结 已知函数解析式判断函数图象的方法:(1)根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置; (2)根据函数的单调性判断图象的变化趋势; (3)根据函数的奇偶性判断图象的对称性; (4)根据函数的周期性判断图象的循环往复.2.(2017课标Ⅲ文,7,5分)函数y =1+x +sinxx 2的部分图象大致为( )答案 D 当x ∈(0,1)时,sin x >0,∴y =1+x +sinxx 2>1+x >1,排除A 、C . 令f (x )=x +sinx x 2,则f (-x )=-x +sin (-x )(-x )2=-f (x ),∴f (x )=x +sinxx 2是奇函数, ∴y =1+x +sinxx 2的图象关于点(0,1)对称,故排除B .故选D .解后反思 函数图象问题,一般从定义域、特殊点的函数值、单调性、奇偶性等方面入手进行分析.选择题通常采用排除法.3.(2016课标Ⅰ,理7,文9,5分)函数y =22-e |x |在[-2,2]的图象大致为( )答案 D 当x =2时,y =8-e 2∈(0,1),排除A ,B ;易知函数y =2x 2-e |x |为偶函数,当x ∈[0,2]时,y =2x 2-e x,求导得y'=4x -e x ,当x =0时,y'<0,当x =2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D .4.(2016浙江,3,5分)函数y =sin x 2的图象是 ( )答案 D 排除法.由y =sin x 2为偶函数判断函数图象的对称性,排除A ,C ;当x =π2时,y =sin (π2)2=sin π24≠1,排除B ,故选D .5.(2015课标Ⅱ,理10,文11,5分)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B 当点P 与C 、D 重合时,易求得PA +PB =1+√5;当点P 为DC 的中点时,有OP ⊥AB ,则x =π2,易求得PA +PB =2PA =2√2.显然1+√5>2√2,故当x =π2时, f (x )没有取到最大值,则C 、D 选项错误.当x ∈[0,π4)时, f (x )=tan x +√4+tan 2x ,不是一次函数,排除A ,故选B .6.(2015安徽文,10,5分)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是 ( )A.a >0,b <0,c >0,d >0B.a >0,b <0,c <0,d >0C.a <0,b <0,c >0,d >0D.a >0,b >0,c >0,d <0答案 A 由f (x )的图象易知d >0,且f '(x )=3ax 2+2bx +c 的图象是开口向上的抛物线,与x 轴正半轴有两个不同的交点,则{a >0,-b 3a>0,c >0,即{a >0,b <0,c >0,故选A .评析 本题考查导数的应用及运用图象解题的能力.7.(2015浙江,5,5分)函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)的图象可能为 ( )答案 D 因为f (-x )=(-x +1x )cos (-x )=-(x -1x )cos x =-f (x ),所以函数f (x )为奇函数,排除A 、B .当0<x <1时,x -1x <0,cos x >0,所以f (x )<0,排除C ,故选D .8.(2012课标理,10,5分)已知函数f (x )=1ln (x+1)-x ,则y =f (x )的图象大致为( )答案 B 令g (x )=ln (x +1)-x ,则g'(x )=1x+1-1=-xx+1, ∴当-1<x <0时,g'(x )>0,当x >0时,g'(x )<0,∴g (x )max =g (0)=0.∴f (x )<0,排除A 、C ,又由定义域可排除D ,故选B .评析 本题考查了函数的图象,考查了利用导数判断函数单调性,求值域,考查了数形结合的数学思想.考点2 函数图象的应用1.(2020北京,6,4分)已知函数f (x )=2x-x -1,则不等式f (x )>0的解集是 ( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞) 答案 D2.(2017天津文,8,5分)已知函数f (x )={|x |+2,x <1,x +2x,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是 ( )A.[-2,2]B.[-2√3,2]C.[-2,2√3]D.[-2√3,2√3] 答案 A以下为教师用书专用(1—2)1.(2016课标Ⅱ,12,5分)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x+1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1m(x i +y i )=( )A.0B.mC.2mD.4m答案 B 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x+1x =1+1x的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,∴∑i=1m(x i +y i )=0×m2+2×m 2=m.故选B .思路分析 分析出函数y =f (x )和y =x+1x的图象都关于点(0,1)对称,进而得两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,从而得出结论.2.(2015安徽文,14,5分)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 答案 -12解析 若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.— 三年模拟 —A 组 考点基础题组考点1 函数的图象1.(2020河北新时代NT 教育模拟)已知函数f (x )={e x -4,x ≥0,e -x -4,x <0,则函数g (x )=x 2f (x )的大致图象是 ( )答案 A2.(2020湖南炎陵一中仿真考试)函数f (x )=x 4e x -e -x 的部分图象可能是( )答案 B3.(2021湖南岳阳一模,3)函数f (x )=x +ln |x |x的图象大致为 ( )A BCD答案 A4.(2021辽宁沈阳市郊联体一模,4)函数f (x )=xcosx -1的部分图象大致是 ( )A BCD答案 D5.(2021山东德州二模,5)函数f (x )=2x+1·ln |x |4x +1的部分图象大致为 ( )A BCD答案 A6.(2020普通高等学校招生全国统一考试考前演练)某函数的部分图象如图,则下列函数中可以作为该函数的解析式的是 ( )A.y =sin2xe sin2xB.y =cos2xe cos2x C.y =|cos2x |e cos2xD.y =|cosx |e cosx答案 C7.(2021福建三明三模,5)若函数y =f (x )的大致图象如图所示,则f (x )的解析式可能是 ( )A. f (x )=x|x |-1 B. f (x )=x1-|x | C. f (x )=xx 2-1 D. f (x )=x1-x 2答案Ce|x|在[-32,32]上的图象大致为()8.(2020山东百师联盟自测,7)函数f(x)=2|x|cos x-12答案A考点2函数图象的应用(多选题)(2021江苏南通一模,12)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),则下列命题正确的是()A.当x>0时,f(x)=-e-x(x-1)B.函数f(x)有3个零点C. f(x)<0的解集为(-∞,-1)∪(0,1)D.∀x1,x2∈R,都有|f(x1)-f(x2)|<2答案BCDB组综合应用题组时间:30分钟分值:30分一、单项选择题(每小题5分,共20分)1.(2021山东日照一模,6)如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为()A BCD 答案 A2.(2021上海普陀二模,16)已知函数f (x )=3x 1+3x ,设x i (i =1,2,3)为实数,且x 1+x 2+x 3=0.给出下列结论: ①若x 1·x 2·x 3>0,则f (x 1)+f (x 2)+f (x 3)<32;②若x 1·x 2·x 3<0,则f (x 1)+f (x 2)+f (x 3)>32.其中正确的是 ( ) A.①与②均正确 B.①正确,②不正确C.①不正确,②正确D.①与②均不正确答案 A3.(2020河北邯郸备考检测,8)函数f (x )=e x +1e x -1·cos x 的部分图象大致为 ( )答案 A4.(2020普通高等学校招生全国统一考试考前演练,9)设符号min {x ,y ,z }表示x ,y ,z 中的最小者,已知函数f (x )=min {|x -2|,x 2,|x +2|},则下列结论正确的是 ( )A.∀x ∈[0,+∞), f (x -2)>f (x )B.∀x ∈[1,+∞), f (x -2)>f (x )C.∀x ∈R , f (f (x ))≤f (x )D.∀x ∈R , f (f (x ))>f (x )答案 C二、多项选择题(每小题5分,共10分)5.(2021江苏七市第二次调研,10)已知函数f (x )=√|x 2-a |(a ∈R ),则y =f (x )的大致图象可能为 ( )AB C D答案 ABD 6.(2021山东聊城二模,12)用符号[x ]表示不超过x 的最大整数,例如:[0.6]=0,[2.3]=2.设f (x )=(1-ln x )(ax 2+2ln x )有3个不同的零点x 1,x 2,x 3,则 ( )A.x =e 是f (x )的一个零点B.x 1+x 2+x 3=2√e +eC.a 的取值范围是(-1e ,0)D.若[x 1]+[x 2]+[x 3]=6,则a 的范围是[-2ln39,-ln24) 答案 AD — 一年原创 —1.(2021 5·3原创题)已知某函数图象如图所示,则该函数有可能是 ( )A.f (x )=(x 2-cx )e xB.f (x )=(x 2-cx )ln (x +3) C.f (x )=13x 3-cx D.f (x )=x 2-cx e x答案 A2.(2021 5·3原创题)若偶函数f (x )=ax 2+(b -2)x 的图象过点A (1,2),则函数g (x )=bx +a x ,x ∈[-3,-12]的值域为 .答案 [-203,-4]。

2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。

高中数学第一章三角函数1.4.1正弦函数、余弦函数的图像练习新人教A版必修4(2021年整理)

2017-2018学年高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图像练习新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图像练习新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第一章三角函数1.4.1 正弦函数、余弦函数的图像练习新人教A版必修4的全部内容。

1。

4。

1 正弦函数、余弦函数的图像题号1234567891011得分答案一、选择题(本大题共7小题,每小题5分,共35分)1.以下关于y=sin x的图像的描述不正确的是( )A.在[2kπ,2kπ+2π](k∈Z)上的图像形状相同,只是位置不同B.位于直线y=-1与y=1之间C.关于原点对称D.与y轴有无数个交点2.已知点错误!在余弦曲线上,则n=( )A。

错误! B。

错误! C。

错误! D.13.函数y=-xcos x的部分图像是()4.函数y=sin x的图像与函数y=-sin x的图像关于()A.x轴对称B.y轴对称C.原点对称D.直线y=x对称5.函数y=cos x·|tan x|错误!的大致图像是( )图L1。

4­26.方程|x|=cos x在区间(-∞,+∞)内()A.没有根B.有且仅有一个实根C.有且仅有两个实根D.有无穷多个实根7.已知函数y=2cos x(0≤x≤2π)的图像和直线y=2围成了一个封闭的平面图形,则这个封闭图形的面积为( )A .4B .8C .2π D.4π二、填空题(本大题共4小题,每小题5分,共20分)8.已知函数f(x )=3+2cos x 的图像经过点(错误!,b),则b =________.9.函数y =1+sin x ,x ∈[0,2π]的图像与直线y =错误!的交点个数是________. 10.函数y =cos x +4,x ∈[0,2π]的图像与直线y =4的交点坐标为________________. 11.满足10sin x =x 的实数x 的个数是________. 三、解答题(本大题共2小题,共25分)得分12.(12分)画出函数y =cos x ,x ∈⎣⎢⎡⎦⎥⎤-π2,3π2的简图.13.(13分)利用平移变换和对称变换作出函数y =-sin x -2的简图.得分14.(5分)函数f(x)=错误!则不等式f(x )>错误!的解集是________________________. 15.(15分)判断方程x 2-cos x =0的根的个数.1.D [解析]由题意知,该函数的图像与y轴有且只有一个交点.2.A [解析]由于点错误!在余弦曲线上,所以n=cos错误!=错误!.3.D [解析]因为函数y=-xcos x是奇函数,所以它的图像关于原点对称,所以可排除A,C;当x∈错误!时,y=-xcos x<0,所以排除B.4.A [解析]在同一直角坐标系中画出函数y=sin x与函数y=-sin x的图像(图略),易知它们关于x轴对称.5.C [解析]函数可化为y=错误!观察所给图像知只有C正确.6.C [解析]在同一直角坐标系中画出函数y=|x|和y=cos x的图像(图略),由图像可知,函数y=|x|与y=cos x的图像有且只有两个公共点,故原方程在(-∞,+∞)内有且仅有两个实根.7.D [解析]依题意,由余弦函数的图像关于点(π2,0)和点(错误!,0)成中心对称,可得y=2cos x(0≤x≤2π)的图像和直线y=2围成的封闭图形的面积为2π×2=4π.8.4 [解析] b=3+2cos错误!=4.9.2 [解析]在同一直角坐标系内画出y=1+sin x和y=错误!的图像(如图所示),观察图像可得交点的个数为2.10.错误!,错误![解析]作出函数y=cos x+4,x∈[0,2π]的图像(图略),知它与直线y=4的交点坐标为错误!,错误!。

2024年新高考版数学专题1_3.4 函数的图象


例2 (2019课标Ⅱ理,12,5分)设函数f(x)的定义域为R,满足f(x+1)=2f(x),且
当x∈(0,1]时, f(x)=x(x-1).若对任意x∈(-∞,m],都有f(x)≥-8 ,则m的,
9 4
C.
,
5 2
B.
,
7 3
D.
,
8 3
解析
当x∈(0,1]时,
2)对称变换 y=f(x)的图象与y=-f(x)的图象关于x轴对称; y=f(x)的图象与y=f(-x)的图象关于y轴对称; y=f(x)的图象与y=-f(-x)的图象关于坐标原点对称; y=ax(a>0,且a≠1)的图象与y=logax(a>0,且a≠1)的图象关于直线y=x对称.
规律总结 1.函数y=f(x)与y=f(2a-x)的图象关于直线x=a对称. 2.函数y=f(x)与y=2b-f(2a-x)的图象关于点(a,b)对称. 3.若函数y=f(x)的定义域内任意自变量x都满足f(a+x)=f(a-x),则函数y=f(x) 的图象关于直线x=a对称. 4.偶函数图象关于y轴对称. 5.奇函数图象关于原点对称.
3)伸缩变换
y=f(x)
y=f(x) 4)翻折变换 y=f(x) y=f(x) =f(|x|).
y=f(ax).
y=Af(x). y=|f(x)|;
y
综合篇
考法一 函数图象的识辨 函数图象的识辨,一般从以下几个方面入手: 1)从函数定义域判断图象的左右位置,从值域判断图象的上下位置; 2)从函数单调性判断图象的变化趋势; 3)从奇偶性判断图象的对称性; 4)从周期性判断图象的循环往复; 5)从特殊点或极限位置排除不合要求的图象.
7 3
或x≥

《艺考生一轮复习》2021新高考数学 03.07 - 函数图象 - 教师版

3.7 函数的图象1.利用描点法作函数图象的流程:①确定函数定义域;②化简函数解析式;③讨论函数的性质(奇偶性、单调性、周期性、最值等);④描点并作出函数图象.2.图象变换法作图:(1)平移变换提醒:对于平移,往往容易出错,在实际判断中可熟记口诀“左加右减,上加下减”(2)对称变换①y=f(x)y=.②y=f(x)y=.③y=f(x)y=.④若对定义域内的一切x均有f(m+x)=f(m-x),则y=f(x)的图象关于直线对称.(3)翻折变换①y=f(x)y=.②y=f(x)y=.(4)伸缩变换①y=f(x)y=.②y=f(x)y=.自查自纠2.(1)y =f (x +a ) y =f (x -a ) (2)①y =-f (x ) ②y =f (-x ) ③y =-f (-x ) ④x =m (3)①y =|f (x )| ②y =f (|x |) (4)①y =Af (x )(A >0) ②y =f (ax )(a >0)1.若log a 2<0(a >0,且a ≠1),则函数f (x )=log a (x +1)的图象大致是( )A B C D 答案:B.解析:因为log a 2<0,所以0<a <1,由f (x )=log a (x +1)的单调性可知A ,D 错误,再由定义域知B 选项正确.故选B.2.函数y =1-1x -1的图象是 ( )A B C D 答案:B.解析:将y =-1x 的图象向右平移1个单位长度,再向上平移1个单位长度,即可得到函数y=1-1x -1的图象,选项B 符合题意.故选B.3.(2019全国Ⅰ卷)函数f (x )=sin x +xcos x +x 2在[-π,π]的图象大致为( )A BC D 答案:D.解析:函数是奇函数,排除A ,又f (π)>0,排除B ,C.故选D.4.已知函数f (x )的部分图象如图所示,若不等式-2<f (x +t )<4的解集为(-1,2),则实数t 的值为________.答案:1.解析:由图象可知x +t 的范围是(0,3),即不等式的解集为(-t ,3-t ),依题意可得t =1.故填1.5.(2019·山东省烟台市高三(上)期末)已知函数f (x )=⎩⎨⎧|log 2x -1|,0<x ≤4,3-x ,x >4,设a ,b ,c是三个不相等的实数,且满足f (a )=f (b )=f (c ),则abc 的取值范围为________. 答案:(16,36).解析:作出f (x )的图象如图,当x >4时,由f (x )=3-x =0,得x =3,得x =9, 若a ,b ,c 互不相等,不妨设a <b <c , 因为f (a )=f (b )=f (c ),所以由图象可知1<a <2<b <4<c <9,由f (a )=f (b ), 得1-log 2a =log 2b -1,即log 2a +log 2b =2, 即log 2(ab )=2,则ab =4,所以abc =4c , 因为4<c <9,所以16<4c <36,即16<abc <36, 所以abc 的取值范围是(16,36).故填(16,36).题型一 函数图象的画法 1.作出下列函数的图象:(1)y =⎪⎭⎫ ⎝⎛21|x |;(2)y =|log 2(x +1)|; (3)y =2x -1x -1;(4)y =x 2-2|x |-1.解:(1)先作出y =⎪⎭⎫ ⎝⎛21x 的图象,保留y =⎪⎭⎫ ⎝⎛21x 图象中x ≥0的部分,再作出y =⎪⎭⎫ ⎝⎛21x的图象中x >0部分关于y 轴的对称部分,即得y =⎪⎭⎫ ⎝⎛21|x |的图象,如图①实线部分.① ② ③ ④(2)将函数y =log 2x 的图象向左平移一个单位,再将x 轴下方的部分沿x 轴翻折上去,即可得到函数y =|log 2(x +1)|的图象,如图②.(3)因为y =2+1x -1,故函数图象可由y =1x 图象向右平移1个单位,再向上平移2个单位即得,如图③.(4)y =⎩⎨⎧x 2-2x -1,x ≥0,x 2+2x -1,x <0.其图象如图④.[听课笔记]画函数图象的一般方法:①直接法.当函数解析式(或变形后的解析式)是熟悉的基本函数时,就可根据这些函数的特征描出图象的关键点直接作出.②转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象. ③图象变换法.若函数图象可由基本函数的图象经过平移、翻折、对称得到,可利用图象变换作出,应注意平移变换与伸缩变换的顺序对变换单位及解析式的影响. 巩固迁移1 作出下列函数的图象:(1)y =|x 2-4x +3|;(2)y =2x +1x +1;(3)y =10|lg x |.解:(1)先画出函数y =x 2-4x +3的图象,再将其x 轴下方的图象翻折到x 轴上方,如图①. (2)y =2x +1x +1=2-1x +1,可由y =-1x 的图象向左平移1个单位,再向上平移2个单位得到,如图②.(3)y =10|lg x |=⎩⎪⎨⎪⎧x ,x ≥1,1x ,0<x <1如图③所示.① ② ③ 题型二 函数图象的辨识1.设函数f (x )=2x ,则如图所示的函数图象对应的函数是( )A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)解析:图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象.故选C. 2.(2018·浙江高考)函数y =2|x |sin2x 的图象可能是 ( )A B C D 答案:D.解析:函数y =2|x |sin2x 是奇函数,故排除A ,B 选项.不论x 取何值,2|x |始终大于0.当x ∈⎪⎭⎫⎝⎛20π,时,sin2x >0,故y =2|x |sin2x >0,图象在x 轴的上方;当x ∈⎪⎭⎫⎝⎛ππ,2时,sin2x <0,故y =2|x |sin2x <0,图象在x 轴的下方,选项D 符合.故选D. 3.(2018·蚌埠二模)函数y =x 33x 4-1的图象大致是 ( )A B C D 答案:A.解析:由题意,函数在(-∞,-1),(0,1)上的函数值为负,在(-1,0),(1,+∞)上的函数值为正,仅选项A 符合.故选A. [听课笔记]辨析函数图象的一般策略:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置; (2)从函数的单调性,判断图象的变化趋势; (3)从周期性,判断图象的循环往复; (4)从函数的奇偶性,判断图象的对称性.(5)抓住图象的特征点,定量计算,排除不符合要求的图象. 巩固迁移21.已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数可能为 ( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |) 答案:C.解析:y =f (-|x |)=⎩⎪⎨⎪⎧f (-x ),x ≥0,f (x ),x <0.故选C.2.(2019·黑龙江大庆实验中学高考模拟)已知函数f (x )的图象如图所示,则函数f (x )的解析式可能是 ( )A .f (x )=(4x +4-x )|x | B .f (x )=(4x -4-x )log 2|x | C .f (x )=(4x +4-x )log 2|x | D .f (x )=(4x +4-x )||log 21x答案:C.解析:由图可知,函数f (x )是偶函数,且f (1)=0,f (x )=(4x +4-x )|x |是偶函数,但是f (1)≠0,不满足题意;f (x )=(4x -4-x )log 2|x |是奇函数,不满足题意;f (x )=(4x +4-x )log 2|x |是偶函数,f (1)=0满足题意;f (x )=(4x +4-x )||log 21x 是偶函数,f (1)=0,但x ∈(0,1)时,f (x )>0,不满足题意.故选C.3.(2019·江西名校联考)函数f (x )=x 2+ln(e -x )·ln(e +x )的大致图象为( )A B C D 答案:A. 解析:因为函数f (x )的定义域为(-e ,e),且f (-x )=x 2+ln(e +x )·ln(e -x )=f (x ),所以函数f (x )为偶函数,排除C ;因为x →e 时,f (x )→-∞,所以排除B ,D.故选A. 题型三 函数图象的应用1.已知函数f (x )=x |x |-2x ,则下列说法正确的是( )A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0) 答案:C.2.(2018·衡水中学6月训练)已知实数a ,b ,c ,2a=-log 2a ,⎪⎭⎫ ⎝⎛21b =-b 21log ,⎪⎭⎫ ⎝⎛21c=c -23,则( ) A .b >c >a B .c >b >a C .b >a >c D .c >a >b答案:C.解析:由题意可知,a 是函数y =2x与y =log 12x 的交点的横坐标,b 是函数y =⎪⎭⎫ ⎝⎛21x与y =log 2x的交点的横坐标.c 是y =⎪⎭⎫ ⎝⎛21x与y =x -23的交点的横坐标,在同一个平面直角坐标系中,作出函数y =2x,y =x 21log ,y =⎪⎭⎫ ⎝⎛21x,y =log 2x ,y =x -23的图象,结合图象,得b >a >c.故选C.3.(2019·衡阳市高三第一次联考)若函数f (x )的图象上存在两个不同点A ,B 关于原点对称,则称A ,B 两点为一对“优美点”,记作(A ,B ),规定(A ,B )和(B ,A )是同一对“优美点”.已知f (x )=⎩⎨⎧|cos x |,x ≥0,-lg (-x ),x <0,则函数f (x )的图象上共存在“优美点”( )A .14对B .3对C .5对D .7对答案:D.解析:与y =-lg(-x )的图象关于原点对称的函数是y =lg x ,函数f (x )的图象上的优美点的对数,即方程|cos x |=lg x (x >0)的解的个数,也是函数y =|cos x |与y =lg x 的图象的交点个数,在同一直角坐标系中分别作函数y =|cos x |与y =lg x 的图象,如图.f (3π)=1,f (-10)=-1,而9<3π<10,故由图可知,共有7个交点,函数f (x )的图象上存在“优美点”共有7对.故选D. [听课笔记]函数图象应用广泛,是研究函数性质不可或缺的工具.数形结合应以快、准为前提,充分利用“数”的严谨和“形”的直观,互为补充,互相渗透.巩固迁移31.(2018·深圳质检)设函数y=2x -1x -2,关于该函数图象的命题如下:①一定存在两点,这两点的连线平行于x 轴; ②任意两点的连线都不平行于y 轴; ③关于直线y =x 对称; ④关于原点中心对称.其中正确的是________.(填写所有正确命题的编号) 答案:②③.解析:y =2x -1x -2=2(x -2)+3x -2=2+3x -2,图象如图所示,x =2及y =2是其渐近线,则①不正确,②正确.y =2+3x -2由y =3x 向右、向上平移2个单位得到,由y =3x 关于y =x对称知③正确,④不正确.故仅②③正确.故填②③.2.(2018·安徽江淮十校4月联考K)若直角坐标系内A ,B 两点满足:①点A ,B 都在函数f (x )的图象上;②点A ,B 关于原点对称,则称点对(A ,B )是函数f (x )的一个“和谐点对”,(A ,B )与(B ,A )可看作一个“和谐点对”.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x <0,2e x ,x ≥0,则f (x )的“和谐点对”有( )A .1个B .2个C .3个D .4个答案:B .解析:作出函数y =x 2+2x (x <0)关于原点对称的图象,观察它与函数y =2e x (x ≥0)的图象的交点个数即可,由图象可得交点个数为2,即f (x )的“和谐点对”有2个.故选B . 3.已知函数f (x )(x ∈R )满足f (2-x )=4-f (x +4),若函数y =2x +2x -3与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑=mi 1(x i +y i )=( )A .3mB .5mC .6mD .10m答案:B.解析:因为f (2-x )=4-f (x +4),即f (2-x )+f (x +4)=4,令t =2-x ,x =2-t ,则有f (t )+f (6-t )=4(利用“若函数f (x )满足f (x )+f (2a -x )=2b ,则函数f (x )的图象关于点(a ,b )成中心对称图形”),所以f (x )的图象关于点(3,2)对称. 因为y=2x +2x-3=2(x -3)+8x -3=2+8x -3也关于点(3,2)对称,所以x 1+x 2+x 3+…+x m =m 2×6=3m ,y 1+y 2+y 3+…+y m =m2×4=2m ,则∑=mi 1(x i +y i )=x 1+x 2+x 3+…+x m +y 1+y 2+y 3+…+y m =5m.故选B.1.涉及函数图象问题的主要考查形式(1)知图选(求)式.(2)知式选(作)图. (3)图象变换. (4)图式结合等.对基本初等函数,要“胸有成图”,会“依图判性”,进而达到对图“能识会用”. 2.识图与用图(1)识图:对于给定的图象,要能从图象的左、右、上、下分布的范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性、最大值、最小值等.(2)用图:函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,使问题成功获解的重要依托. 函数图象主要应用于以下方面:①求函数的解析式;②求函数的定义域;③求函数的值域;④求函数的最值;⑤判断函数的奇偶性;⑥求函数的单调区间;⑦解不等式;⑧证明不等式;⑨探求关于方程根的分布问题;⑩比较大小;⑪求函数周期;⑫求参数范围等. 3.图象对称性的证明 (1)证明函数的对称性,即证明其图象上的任意一点关于对称中心(或对称轴)的对称点仍在图象上.(2)证明曲线C 1与C 2的对称性,即证明C 1上任一点关于对称中心(或对称轴)的对称点在C 2上,反之亦然.(满分100分 时间60分钟)一、选择题:(本大题共8小题,每小题5分,共40分) 1.(2019·全国卷Ⅲ)函数y =2x 32x +2-x在[-6,6]的图象大致为( )A B C D 答案:A.解析:设y =f (x )=2x 32x +2-x ,则f (-x )=2(-x )32-x +2x =-2x 32x +2-x=-f (x ),所以f (x )是奇函数,图象关于原点对称,排除选项C.又f (4)=2×4324+2-4>0,排除选项D ;f (6)=2×6326+2-6≈7,排除选项A.故选B .2.(2019·陕西咸阳一中期中)函数f (x )=2|x |-x 2的图象大致为( )A B C D 答案:C.解析:由题意知,当x >0时,f ′(x )=2x ln2-2x ,当x →0时,2x →1,2x →0,f ′(x )>0,说明函数f (x )的图象在y 轴右侧开始时是递增的,故排除选项A ,B ,D.故选C.3.(2018·甘肃省庆阳市月考)已知函数f (x )=x a ,g (x )=a x ,h (x )=log a x (其中a >0,a ≠1),在同一坐标系中画出其中两个函数在第一象限内的图象,其中正确的是 ( )A B C D 答案:B.解析:对于A ,其中指数函数的底数大于1,而幂函数的指数小于0,故A 不对;对于B ,其中幂函数的指数大于1,对数函数的底数也大于1,故B 对;对于C ,其中指数函数的底数大于1,而对数函数的底数小于1,故C 不对;对于D ,其中幂函数的指数大于1,而指数函数的底数小于1,故D 不对.综上,B 正确.故选B.4.(2019·山东青岛二中期末)已知f (x )=⎩⎨⎧-2x ,-1≤x ≤0,x ,0<x ≤1,则下列函数的图象错误的是( )y =f (x -1)的图象 y =f (-x )的图象A By =|f (x )|的图象 y =f (|x |)的图象C D 答案:D.解析:在坐标平面内画出函数y =f (x )的图象,将函数y =f (x )的图象向右平移1个单位长度,得到函数y =f (x -1)的图象,因此A 正确;作函数y =f (x )的图象关于y 轴的对称图形,得到y =f (-x )的图象,因此B 正确;y =f (x )在[-1,1]上的值域是[0,2],因此y =|f (x )|的图象与y =f (x )的图象重合,因此C 正确;y =f (|x |)的定义域是[-1,1],且是偶函数,当0≤x ≤1时,y =f (|x |)=x ,这部分的图象不是一条线段,因此选项D 不正确.故选D.5.(2019湖北武汉模拟)已知f (x )=2x -1,g (x )=1-x 2.规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ).则h (x ) ( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值 答案:C. 解析:如图,画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的大致图象,两图象相交于A ,B 两点.在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象为图中的实线部分,因此h (x )有最小值-1,无最大值.故选C.6.(安徽省六校2020届高三上第一次素质测试)某罐头加工厂库存芒果m kg ,今年又购进n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头.被加工为罐头的新芒果最多为f 1kg ,最少为f 2kg ,则下列图象中最能准确描述f 1,f 2分别与n 的关系的是( )A B C D 答案:C.解析:要使得被加工为罐头的新芒果最少,则尽量使用库存芒果,当m +n3≤m ,即n ≤2m 时,f 2=0,当m +n 3>m ,即n >2m 时,f 2=n +m 3-m =n -2m3,对照图象舍去B ,D ;要使得被加工为罐头的新芒果最多,则尽量使用新芒果,即当m +n 3≤n ,即n ≥m 2时,f 1=m +n 3,当m +n 3>n ,即n <m 2时,f 1=n ,因为m2<2m ,由A ,C 选项知,C 正确.故选C. 7.【多选题】(2020·山东济宁模拟)设函数f (x )是定义在R 上的偶函数,且任意的x ∈R 恒有f (x +1)=f (x -1),已知x ∈[0,1]时,f (x )=x-⎪⎭⎫ ⎝⎛121,则下列说法正确的是( )A .2是函数f (x )的周期B .函数f (x )在(1,2)上递减,在(2,3)上递增C .函数f (x )的最小值是0,最大值是1D .当x ∈(3,4)时,f (x )=321-⎪⎭⎫⎝⎛x答案:ABD.解析:由已知条件,得f (x +2)=f (x ),故f (x )是以2为周期的周期函数,A 正确;当—1≤x ≤0时, 当0≤—x ≤1时,f (x )=f (—x )=x+⎪⎭⎫⎝⎛121函数y =f (x )的图象如图所示,当3<x <4时,—1<x —4<0,f (x )=f (x —4)=321-⎪⎭⎫⎝⎛x因此BD 正确,C 不正确,故选ABD8.【多选题】(山东潍坊2020届高三期中)已知函数f (x )=⎩⎨⎧-x 2-2x ,x <0,f (x -2),x ≥0,以下结论正确的是( )A .f (-3)+f (2 019)=-3B .f (x )在区间[4,5]上是增函数C .若方程f (x )=kx +1恰有3个实根,则k ∈⎪⎭⎫⎝⎛--41,21 D .若函数y =f (x )-b 在(-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则∑=61i f (x i)的取值范围是(0,6)解析:函数f (x )的图象如图所示,对于A ,f (-3)=-9+6=-3,f (2 019)=f (1)=f (-1)=1,所以f (-3)+f (2 019)=-2,故A 错误;对于B ,由图象可知f (x )在区间[]4,5上是增函数,故B 正确; 对于C ,由图象可知k ∈⎪⎭⎫⎝⎛--41,21时,直线y =kx +1与函数图象恰有3个交点,故C 正确;对于D ,由图象可得,当函数y =f (x )-b 在 (-∞,4)上有6个零点x i (i =1,2,3,4,5,6),则0<b <1,又f (x i )=b ,故∑=61i =b (-2+2+6)=6b ∈(0,6),故D 正确.故选BCD.二、填空题:(本大题共4小题,每小题5分,共20分)9.(2019·吉林省实验中学模拟)函数f (x )=x +1x 的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________. 答案:2.解析:因为f (x )=x +1x =1x +1,所以f (x )的图象关于点(0,1)对称,而直线y =kx +1过(0,1)点,故两图象的交点(x 1,y 1),(x 2,y 2)关于点(0,1)对称,所以y 1+y 22=1,即y 1+y 2=2.故填2. 10.(2019·福建双十中学模拟)设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________. 答案:{x |x ≤0或1<x ≤2}.解析:画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0可化为⎩⎪⎨⎪⎧x >1,f (x )≤0或⎩⎪⎨⎪⎧x <1,f (x )≥0. 由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.故填{x |x ≤0或1<x ≤2}.11.已知f (x )=⎩⎨⎧|ln x |,x >0,2|x |,x ≤0,则函数y =2f 2(x )-3f (x )+1的零点个数是________.答案:5.解析:由2f 2(x )-3f (x )+1=0得f (x )=12或f (x )=1,作出函数y =f (x )的图象.由图象知y =12与y =f (x )的图象有2个交点,y =1与y =f (x )的图象有3个交点.因此函数y =2f 2(x )-3f (x )+1的零点有5个.故填5.12.【经典题】定义min {a ,b }=,,,,a ab b b a ≤⎧⎨<⎩已知函数f (x )=min {x ,x 2-4x +4}+4,若动直线y =m 与函数y =f (x )的图象有3个交点,则实数m 的取值范围为________. 答案:(4,5)解析:设g(x )=min {x ,x 2-4x +4},则f (x )=g(x )+4,故把g(x )的图象向上平移4个单位长度,可得f (x )的图象,函数f (x )=min {x ,x 2-4x +4}+4的图象如图所示,由直线y =m 与函数y =f (x )的图象有3个交点,可得m 的取值范围为(4,5). 三、解答题:(本大题共4小题,每小题10分,共40分) 13.已知f (x )=|x 2-4x +3|.(1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}. 解:(1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,-x 2+4x -3,1<x <3,∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}. 14.(湖北鄂南高中2020届高三上10月月考)已知f (x )=⎩⎪⎨⎪⎧-sin π2x ,-2≤x ≤0,|ln x |,x >0,若关于x的方程f (x )=k 有四个实根x 1,x 2,x 3,x 4. (1)作出y =f (x )的图象;(2)写出实数k 的取值范围;(3)求x 1+x 2+x 3+x 4的取值范围. 解:(1)f (x )的函数图象如图所示.(2)由图及题意知0<k <1.故实数k 的取值范围是(0,1). (3)设x 1<x 2<x 3<x 4,则x 1+x 2=-2,且1e<x 3<1<x 4<e ,因为-ln x 3=ln x 4,所以ln(x 3x 4)=0,所以x 3x 4=1, 所以x 1+x 2+x 3+x 4=-2+x 3+x 4=x 3+1x 3-2,设g (x )=x +1x -2,x ∈⎪⎭⎫⎝⎛1,1e ,则g ′(x )=1-1x 2<0,所以g (x )在⎪⎭⎫⎝⎛1,1e 上单调递减,所以0<g (x )<e +1e-2,所以x 1+x 2+x 3+x 4的取值范围⎪⎭⎫ ⎝⎛-+210e e ,. 15.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称.(1)求f (x )的解析式;(2)若g (x )=f (x )+ax ,且g (x )在区间(0,2]上为减函数,求实数a 的取值范围.解:(1)设f (x )图象上任一点P (x ,y ),则点P 关于(0,1)点的对称点P ′(-x ,2-y )在h (x )的图象上, 即2-y =-x -1x +2,所以y =f (x )=x +1x (x ≠0).(2)g (x )=f (x )+ax =x +a +1x ,g ′(x )=1-a +1x2.因为g (x )在(0,2]上为减函数,所以1-a +1x 2≤0在(0,2]上恒成立,即a +1≥x 2在(0,2]上恒成立,所以a +1≥4,即a ≥3,故a 的取值范围是[3,+∞).16.已知函数f (x )=⎩⎨⎧1-|x +1|,x ∈[-2,0],2f (x -2),x ∈(0,+∞).(1)求函数f (x )在[-2,4]上的解析式;(2)若方程f (x )=x +a 在区间[-2,4]内有3个不等实根,求实数a 的取值范围. 解:(1)当-2≤x ≤4时,函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x ∈[-2,0],2-2|x -1|,x ∈(0,2),4-4|x -3|,x ∈[2,4].(2)作出函数f (x )在区间[-2,4]上的图象如图.设y =x +a ,方程f (x )=x +a 在区间[-2,4]内有3个不等实根,即函数y =f (x )的图象与直线y =x +a 在区间[-2,4]上有3个交点.由图象易知,实数a 的取值范围是-2<a <0或a =1,即{a |-2<a <0或a =1}.附加题 (山东省德州市2020届高三期中)已知函数f (x )=⎩⎪⎨⎪⎧|x -1|,x ∈(0,2],min{|x -1|,|x -3|},x ∈(2,4],min{|x -3|,|x -5|},x ∈(4,+∞),其中min{a ,b }表示a ,b 中较小的数. (1)若f (x )=a 有且只有一个实根,则实数a 的取值范围是________;(2)若关于x 的方程f (x -T )=f (x )(T >0)有且只有三个不同的实根,则实数T 的取值范围是________.解:(1)函数式化简后为f (x )=⎩⎪⎨⎪⎧|x -1|,x ∈(0,2],|x -3|,x ∈(2,4],|x -5|,x ∈(4,+∞),作出函数图象,如图,f (x )在(0,1],[2,3],[4,5]上都是单调递减的,在[1,2],[3,4],[5,+∞)上都是单调递增的,f (2)=f (4)=f (6)=1,因此当a >1时,函数f (x )的图象与直线y =a 有且只有一个交点,所以f (x )=a 有且只有一个实根.(2)如图,把f (x )的图象向右平移,只有当a 段与d 段有一个交点,b 与e ,c 与f 各有一个交点,才能满足题意,这样有2<T <4. 故填(1)(1,+∞);(2)(2,4).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的图象A 组基础巩固一、选择题1.函数y =x |x |的图象的形状大致是( D )2.函数f (x )=4x -12x 的图象关于( A )A .原点对称B .直线y =x 对称C .直线y =-x 对称D .y 轴对称[解析] 由题意可知,函数f (x )的定义域为R ,且f (x )=4x -12x =2x-2-x ,f (-x )=2-x -2x=-f (x ),所以函数f (x )为奇函数,故选A .3.下列函数f (x )的图象中,满足f (14)>f (3)>f (2)的只可能是( D )[解析] 因为f (14)>f (3)>f (2),所以函数f (x )有增有减,排除A ,B .又C 中,f (14)<f (0)=1,f (3)>f (0),即f (14)<f (3),所以排除C .4.若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1的图象如图所示,则f (-3)等于( C )A .-12B .-54C .-1D .-2[解析] 由图象可知:a (-1)+b =3,ln(-1+a )=0,所以a =2,b =5,f (x )=⎩⎪⎨⎪⎧2x +5,x <-1,ln (x +2),x ≥-1,所以f (-3)=2×(-3)+5=-1. 5.(2018·河北高三模拟)为了得到函数y =log 2x -1的图象,可将函数y =log 2x 的图象上所有的点( A )A .纵坐标缩短到原来的12,横坐标不变,再向右平移1个单位B .横坐标缩短到原来的12,纵坐标不变,再向左平移1个单位C .横坐标伸长到原来的2倍,纵坐标不变,再向右平移1个单位D .纵坐标伸长到原来的2倍,横坐标不变,再向左平移1个单位 [解析] y =log 2x -1=log 2(x -1)12=12log 2(x -1),由y =log 2x 的图象纵坐标缩短到原来的12,横坐标不变,可得y =12log 2x 的图象,再向右平移1个单位,可得y =12log 2(x -1)的图象,也即y =log 2x -1的图象.故选A .6.(2018·浙江,5)函数y =2|x |sin2x 的图象可能是( D )[解析] 本小题考查函数的奇偶性,指数型函数、三角函数的值域.因为y =2|x |sin2x 为奇函数,所以排除A ,B ;因为2|x |>0,且当0<x <π2时,sin2x >0,当π2<x <π时,sin2x <0,所以x ∈(0,π2)时,y >0,x ∈(π2,π)时,y <0,所以排除C .故选D .7.若函数y =f (x )的图象如图所示,则函数y =-f (x +1)的图象大致为( C )[解析] 将f (x )的图象左移一个单位,再将所得图象沿x 轴翻折(即作关于x 轴对称的图象)即得y =-f (x +1)的图象,故选C .或由f (x )的定义域为(-∞,1)知y =-f (x +1)的定义域为(-∞,0),故选C .8.(2018·北京模拟)函数y =f (x )的图象如图所示,则y =f (x )的解析式可以为( C )A .f (x )=1x -x 2B .f (x )=1x -x 3C .f (x )=1x-e xD .f (x )=1x-ln x[解析] 对于选项A ,因为f ′(x )=-1x 2-2x ,故当x <0时,f ′(x )=-1x 2-2x 的符号不确定,因此不单调,即选项A 不正确;对于选项B ,因为f ′(x )=-1x 2-3x 2,故当x <0时,f ′(x )<0,故函数f (x )=1x -x 3是递减函数,但函数有两个零点,则B 不正确;对于选项D ,因为f (x )的定义域为x >0,故D 不正确;对于选项C ,f ′(x )=-1x 2-e x <0,故函数在x <0时,是单调递减函数,当x >0时,函数也是单调递减函数,故C 选项符合.9.(2018·广西贵港联考)正数a 、b 、c 满足log 2a =log 3b =-log 5c >0,则( C ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a[解析] log 2a =log 3b =-log 5c >0, 即log 2a =log 3b =log 15c >0.在同一坐标系中作y =log 2x 、y =log 3x 、y =log 15x ,y =t (t >0)的图象,如图.则由图可知c <a <b ,故选C .另解:记t=log2a=log3b=-log5c>0,则a=2t,b=3t,c=(1t,5)又幂函数y=x t(t>0)是增函数,∴c<a<b,故选C.10.(2018·云南昆明检测)已知f(x)=2x-1,g(x)=1-x2,规定:当|f(x)|≥g(x)时,h(x)=|f(x)|;当|f(x)|<g(x)时,h(x)=-g(x),则h(x)(C)A.有最小值-1,最大值1 B.有最大值1,无最小值C.有最小值-1,无最大值D.有最大值-1,无最小值[解析]如图,画出y=|f(x)|=|2x-1|与y=g(x)=1-x2的图象,它们交于A,B两点.由“规定”,在A,B两侧,|f(x)|≥g(x),故h(x)=|f(x)|;在A,B之间,|f(x)|<g(x),故h(x)=-g(x).综上可知,y=h(x)的图象是图中的实线部分,因此h(x)有最小值-1,无最大值.二、填空题11.函数y=f(x)在x∈[-2,2]上的图象如图所示,则当x∈[-2,2]时,f(x)+f(-x)=__0__.[解析]由题图可知函数f(x)为奇函数,所以f(x)+f(-x)=0.12.(2018·石家庄模拟)若函数y=f(x)的图象过点(1,1),则函数y=f(4-x)的图象一定经过点__(3,1)__.[解析]由于函数y=f(4-x)的图象可以看作y=f(x)的图象先关于y轴对称,再向右平移4个单位长度得到.点(1,1)关于y轴对称的点为(-1,1),再将此点向右平移4个单位长度,可推出函数y=f(4-x)的图象过定点(3,1).13.(2018·北京西城区期末)已知函数f(x)的部分图象如图所示,若不等式-2<f(x+t)<4的解集为(-1,2),则实数t的值为__1__.[解析] 由图象可知x +t 的范围是(0,3),即不等式的解集为(-t,3-t ),依题意可得t =1.故填1.14.(2018·东苏扬州期末)不等式2-x ≤log 2(x +1)的解集是__{x |x ≥1}__.[解析] 画出y =2-x ,y =log 2(x +1)的图象如图所示,由图可知,解集为{x |x ≥1}.B 组能力提升1.(2018·衡水中学调研卷)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( C )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度[解析] y =lg x +310=lg(x +3)-1,将y =lg x 的图象向左平移3个单位长度得到y =lg(x +3)的图象,再向下平移1个单位长度,得到y =lg(x +3)-1的图象.2.函数y =-e x 的图象( D ) A .与y =e x 的图象关于y 轴对称 B .与y =e x 的图象关于坐标原点对称 C .与y =e -x 的图象关于y 轴对称D .与y =e -x 的图象关于坐标原点对称[解析] 由点(x ,y )关于原点的对称点是(-x ,-y )知,D 正确.故选D .3.已知函数y =f (x )和函数y =g (x )的图象,则函数y =f (x )·g (x )的部分图象可能是( A )[解析] 由图可知y =f (x )·g (x )的定义域为(-∞,0)∪(0,+∞),排除C 、D ,又当x ∈(0,π2)时,y <0,排除B ,故选A . 4.(文)(2018·河南周口期末抽测)函数y =sin x1-x的部分图象大致为( B )(理)(2018·安徽宿州第一次教学质量检测)函数y =x 3e x (其中e 为自然对数的底数)的大致图象是( B )[解析] (文)函数y =sin x1-x 的定义域为(-∞,1)∪(1,+∞),排除A ,D ;当x =0时,y=0,排除C ,故选B .(理)解法一:由函数y =x 3e x 可知,当x =0时,y =0,排除C ;当x <0时,y <0,排除A ;y ′=3x 2e x -x 3e x (e x )2=x 2(3-x )e x ,当x <3时,y ′>0,当x >3时,y ′<0, ∴函数在(0,+∞)上先增后减.故选B .解法二:由函数y =x 3e x 可知,当x =0时,y =0,排除C ;当x <0时,y <0,排除A ;当x →+∞时,y →0.故选B .5.已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x ,x ≤0,且关于x 的方程f (x )-a =0有两个实根,则实数a 的取值范围是__(0,1]__.[解析] 当x ≤0时,0<2x ≤1,画出f (x )的图象,由图象可知要使方程f (x )-a =0有两个实根,即函数y =f (x )与y =a 的图象有两个交点,此时0<a ≤1.。

相关文档
最新文档