高三数学概率与统计知识点
高三概率(理:立足文科)

统计与概率专题(理科)【总知识脉络】概率概念随机事件必然事件不可能事件随机事件的概率等可能性事件的概率互斥事件互斥事件有一个发生的概率相互独立事件相互独立事件同时发生的概率计算频率与概率数理统计随机变量离散型随即变量随即变量的概率分布列数学期望方差连续型随即变量抽样方法系统抽样分层抽样简单随机抽样【知识梳理】一、离散型随机变量及其分布列、均值与方差1、随机变量、离散型随机变量的定义(1)随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母ξ、η等表示。
(2)离散型随机变量:在上面的射击、产品检验等例子中,对于随机变量X 可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.2、离散型随机变量的分布列:(1)定义:一般的,设离散型随机变量X 可能取的值为12,,,,,i n x x x xX 取每一个值(1,2,)i x i =的概率()i i P x p ξ==,则称表为离散型随机变量X 的概率分布,简称分布列:(2)分布列性质:①0,1,2,i p i ≥= ;②12... 1.n p p p +++=3、两点分布与超几何分布(1)二点分布:如果随机变量X 的分布列为:其中01,1p q p <<=-,则称离散型随机变量X 服从参数p 的二点分布(2)超几何分布:一般地, 设总数为N 件的两类物品,其中一类有M 件,从所有物品中任取()n n N ≤件,这n 件中所含这类物品件数X 是一个离散型随机变量,则它取值为k 时的概率为),2,1,0()(m k C C C k X P nNk n MN k M ===--, 其中{}min,m M n =,且*,,,,n N M N n M N N∈≤≤4、※均值与方差※则称1122()n n E X x p x p x p =+++为X 的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量。
高三数学概率表知识点归纳

高三数学概率表知识点归纳概率是数学中一门重要的分支,也是高中数学必学内容之一。
在高三数学中,概率是一个相对简单但又不容忽视的知识点。
在复习过程中,归纳概率表的知识点能够帮助学生更好地理解和记忆概率相关概念和公式。
下面是对高三数学概率表知识点的归纳总结。
1. 基本概念概率是描述某一事件发生可能性大小的数值。
其中,事件是指某一结果或结果集合。
2. 概率的表示方法概率的表示可以有三种方式:- 百分数表示法:用百分比来表示概率,如75%- 小数表示法:用小数来表示概率,如0.75- 分数表示法:用分数表示概率,如3/43. 必然事件和不可能事件必然事件是概率为1的事件,不可能事件是概率为0的事件。
4. 事件的互斥和对立互斥事件是指两个事件不能同时发生,对立事件是指两个事件只能有一个发生。
互斥事件的概率为两个事件概率之和,对立事件的概率为1减去事件的概率。
5. 事件的组合事件的组合包括并、交、差等运算。
- 并事件的概率为两个事件概率之和减去交事件的概率;- 交事件的概率为两个事件概率之和减去并事件的概率;- 差事件的概率为一个事件发生的概率减去另一个事件发生的概率。
6. 条件概率条件概率是指在另一个事件已经发生的条件下,某一事件发生的概率。
条件概率的计算公式为:P(A|B) = P(AB) / P(B)。
7. 乘法定理乘法定理是指两个独立事件同时发生的概率等于各自发生的概率的乘积。
乘法定理可以推广到多个事件同时发生的情况。
8. 全概率公式和贝叶斯定理全概率公式和贝叶斯定理是在条件概率的基础上,分别用于计算事件的概率。
全概率公式用于计算未知事件的概率,贝叶斯定理用于在已知某个事件发生的条件下计算其他事件发生的概率。
9. 排列和组合排列是指从n个不同元素中取出m个元素进行排序的方法数,排列的计算公式为A(n, m) = n! / (n-m)!;组合是指从n个不同元素中取出m个元素进行组合的方法数,组合的计算公式为C(n, m) = n! / (m!(n-m)!)。
高三文科数学概率知识点

高三文科数学概率知识点概率是数学中一个重要的分支,也是高中数学中的一门重要课程,它研究的是不确定事件发生的可能性。
在高三文科数学中,概率作为其中的一部分内容,涵盖了很多重要的知识点。
本文将针对高三文科数学中的概率知识点进行详细论述。
一、基本概率规则在概率的计算中,我们首先要掌握的是基本概率规则。
基本概率规则包括等可能概型、互斥事件与对立事件等概念。
等可能概型指的是实验中每个基本结果发生的概率相等的情况。
例如,掷一个均匀的六面骰子,每个面出现的概率都是1/6。
互斥事件指的是两个事件不能同时发生的情况。
例如,投篮比赛中不同队员投进的概率是互斥事件。
对立事件指的是两个事件至少有一个发生的情况。
例如,掷一个均匀的六面骰子,出现奇数点数和出现偶数点数是对立事件。
二、概率计算方法在计算概率时,我们有多种方法可供选择,如频率法、古典概型法、几何概型法等。
频率法是通过重复实验的统计结果来估计概率。
例如,我们可以通过掷一枚硬币多次,统计正面朝上的次数来估计正反面朝上的概率。
古典概型法适用于每个基本结果发生的概率相等的情况。
例如,两个均匀的骰子同时掷出,计算两个骰子之和为7的概率。
几何概型法适用于几何空间问题。
例如,在一个圆盘内随机放置一个点,计算该点落在一个扇形区域内的概率。
三、条件概率条件概率是指在某个条件下事件发生的概率。
例如,某次抽奖中,已知甲中奖的概率为1/10,已知乙中奖的概率为1/5,求在乙中奖的条件下,甲中奖的概率。
条件概率的计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B在事件A发生条件下发生的概率。
四、独立事件独立事件是指两个事件的发生与否相互独立,即一个事件的发生不会影响到另一个事件的发生。
例如,掷一颗骰子,第一次掷得6点,第二次掷得1点的概率。
独立事件的概率计算方法可以通过乘法定理来实现。
乘法定理指出,如果事件A和事件B相互独立,那么事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
高三数学知识点归纳概率

高三数学知识点归纳概率概率是数学中一个非常重要的分支,它可以帮助我们理解事件发生的可能性。
在高三数学中,概率是一个必学的知识点。
本文将对高三数学概率知识点进行归纳总结,旨在帮助高三学生加深对概率的理解和掌握。
一、基础概念概率是指事件发生的可能性,用来表征事件的随机性。
它的取值范围是0到1之间,其中0表示不可能事件,1表示必然事件。
常用的求概率的方法有频率法、几何法和古典概型法等。
二、事件的概率计算1.频率法频率法是通过实验的次数和结果的出现次数来计算概率的方法。
当实验的次数足够多时,事件发生的频率将逼近其概率。
2.几何法几何法是通过对样本空间的几何图形进行面积比较来计算概率。
对于连续型随机事件,可以使用几何法计算概率。
3.古典概型法古典概型法适用于样本空间元素个数有限且等可能的随机事件。
通过计算事件的有利结果个数与总结果个数之比来计算概率。
三、概率的性质与公式1.加法公式对于两个互斥事件A和B,其概率之和等于两个事件分别发生的概率之和。
2.乘法公式对于两个独立事件A和B,其同时发生的概率等于两个事件分别发生的概率之积。
3.全概率公式全概率公式是在事件A的基础上,将样本空间划分为若干互斥事件,并计算这些事件的概率之和等于事件A的概率。
4.条件概率条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
通过条件概率,我们可以计算两个事件的相关性。
四、排列与组合排列与组合是概率中常见的计数方法。
排列是指从n个不同元素中选取m个元素按照一定顺序排列的方法数,计算公式为P(n,m)=n!/(n-m)!。
组合是指从n个不同元素中选取m个元素并不考虑顺序的方法数,计算公式为C(n,m)=n!/[(n-m)!m!]。
五、常见的概率模型1.简单随机抽样简单随机抽样是指从总体中随机选择样本的抽样方法,其样本容量n较小时,可以近似认为是简单随机抽样,使用古典概型法计算概率。
2.二项分布二项分布是一种离散型概率分布,适用于只有两种可能结果的重复试验。
高三概率与统计知识点总结高三网

高三概率与统计知识点总结高三网高三概率与统计知识点总结概率与统计是高三数学中的一个重要内容,它涉及到生活中各种随机事件的概率及统计分析。
在高三学习中,我们需要对概率与统计的相关概念和技巧进行总结和掌握。
下面是对高三概率与统计知识点的总结:一、概率的基本概念1. 事件与样本空间:事件是指我们关心的一个具体结果,而样本空间是一个随机事件所有可能结果的集合。
2. 定义域与频率:事件发生的频率与概率有联系,频率是指某个事件在样本空间中出现的次数占样本的比例。
3. 可能性与概率:概率是对事件发生的可能性的度量,它是一个介于0和1之间的实数。
二、概率的计算方法1. 古典概型:当随机事件有限且等可能发生时,我们可以直接使用古典概率计算公式来计算概率。
2. 几何概型:当样本空间为连续区间时,我们可以使用几何概率计算公式来计算概率。
3. 组合分析:当事件具有多个条件时,我们可以使用组合分析的方法来计算概率。
4. 条件概率:当事件A的发生与另一个事件B的发生有关时,我们可以使用条件概率计算公式来计算概率。
5. 独立事件:当两个事件发生与对方无关时,我们可以使用独立事件的概率计算公式来计算概率。
6. 事件的互斥与对立:当两个事件无相同结果时,我们可以使用互斥与对立事件的概率计算公式来计算概率。
7. 贝叶斯定理:当事件A和事件B之间发生依赖关系时,我们可以使用贝叶斯定理计算概率。
三、统计分析方法1. 随机变量:随机变量是指一个随机试验的结果所对应的某个数值。
2. 离散型随机变量:当随机变量只能取有限个或可数个数值时,我们称其为离散型随机变量。
3. 连续型随机变量:当随机变量可以取到某个区间范围内的任意一个值时,我们称其为连续型随机变量。
4. 离散型随机变量的分布:离散型随机变量的分布可以用概率分布列或概率质量函数来表示。
5. 连续型随机变量的分布:连续型随机变量的分布可以用概率密度函数来表示。
6. 期望:期望是对随机变量的平均值进行度量,可以用数学期望的定义来计算。
统计与概率知识点

统计与概率知识点部门: xxx时间: xxx整理范文,仅供参考,可下载自行编辑统计与概率知识点一:统计1:简单随机抽样<1)总体和样本①在统计学中 , 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.b5E2RGbCAP④为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.p1EanqFDPw<2)简单随机抽样,也叫纯随机抽样。
就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。
特点是:每个样本单位被抽中的可能性相同<概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。
简单随机抽样是其它各种抽样形式的基础。
通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。
DXDiTa9E3d<3)简单随机抽样常用的方法:①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。
RTCrpUDGiT在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。
<4)抽签法:①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;5PCzVD7HxA③对样本中的每一个个体进行测量或调查<5)随机数表法:2:系统抽样<1)系统抽样<等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。
第一个样本采用简单随机抽样的办法抽取。
K<抽样距离)=N<总体规模)/n<样本规模)jLBHrnAILg前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。
可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。
如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。
xHAQX74J0X<2)系统抽样,即等距抽样是实际中最为常用的抽样方法之一。
(完整版)高三数学概率统计知识点归纳

概率统计知识点归纳平均数、众数和中位数平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.一、正确理解平均数、众数和中位数的概念平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.二、注意区别平均数、众数和中位数三者之间的关系平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.三、能正确选用平均数、众数和中位数来解决实际问题由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.极差、方差、标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:])()()[(1222212x x x x x x n S n -++-+-=Λ.三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差.四、极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.一、 随机事件的概率1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。
_新教材高中数学第五章统计与概率

5.1.1 数据的收集【课程标准】(1)获取数据的基本途径及相关概念:①知道获取数据的基本途径,包括:统计报表和年鉴、社会调查、试验设计、普查和抽样、互联网等.②了解总体、样本、样本量的概念,了解数据的随机性.(2)抽样:①简单随机抽样通过实例,了解简单随机抽样的含义及其解决问题的过程,掌握两种简单随机抽样方法:抽签法和随机数表法.会计算样本均值和样本方差,了解样本与总体的关系.②分层随机抽样通过实例,了解分层随机抽样的特点和适用范围,了解分层随机抽样的必要性,掌握各层样本量比例分配的方法.结合具体实例,掌握分层随机抽样的样本均值和样本方差.③抽样方法的选择在简单的实际情境中,能根据实际问题的特点,设计恰当的抽样方法解决问题.新知初探·自主学习——突出基础性教材要点知识点一总体与样本所考察问题涉及的对象全体是________,总体中每个对象都是________,抽取的部分对象组成总体的一个样本,一个样本中包含的个体数目是________容量.知识点二简单随机抽样1.简单随机抽样的意义:一般地,简单随机抽样(也称为纯随机抽样)就是从总体中不加任何分组、划类、排队等,完全随机地抽取个体.简单随机抽样是其它各种抽样形式的基础.通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法.2.简单随机抽样的分类简单随机抽样{____________________状元随笔 (1)对总体、个体、样本、样本容量的认识总体:统计中所考察对象的全体叫做总体.个体:总体中的每一个考察对象叫做个体.样本:从总体中抽取的一部分个体叫做样本.样本容量:样本的个体的数目叫做样本容量.(2)简单随机抽样必须具备的几个特点①被抽取样本的总体中的个体数N 是有限的.②抽取的样本个体数n 小于或等于总体中的个体数N.③样本中的每个个体都是逐个不放回抽取的.④每个个体入样的可能性均为n N .3.随机数表法进行简单随机抽样的步骤状元随笔 用随机数表法进行简单随机抽样的规则(1)定方向:读数的方向(向左、向右、向上或向下都可以).(2)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,若得到的号码不在编号中或已被选用,则跳过,直到选满所需号码为止.知识点三分层抽样1.分层抽样的定义一般地,如果相对于要考察的问题来说,总体可以分成有明显差别的、互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样)注意:分层抽样又称类型抽样,应用分层抽样应遵循以下要求:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则.(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等.2.分层抽样的步骤:(1)分层:按某种特征将总体分成若干部分.(2)按比例确定每层抽取个体的个数.(3)各层分别按简单随机抽样的方法抽取.(4)综合每层抽样,组成样本.状元随笔应用分层抽样法的前提条件①总体可以分层,层与层之间有明显区别,而层内个体间差异较小.②每层中所抽取的个体差异可按各层个体在总体中所占的比例抽取.③分层抽样要求对总体的情况有一定的了解,明确分层的界限和数目.基础自测1.某校期末考试后,为了分析该校高一年级1000名学生的成绩,从中抽取了100名学生的成绩单进行调查.就这个问题来说,下面说法正确的是( )A.1000名学生是总体B.每名学生是个体C.100名学生的成绩是一个个体D.样本的容量是1002.某政府机关在编人员共100人,其中副处级以上干部10人,一般干部70人,工人20人,上级部门为了了解该机关对政府机构改革的意见,要从中抽取20人,用下列哪种方法最合适( )A.抽签法 B.简单随机抽样法C.分层抽样法D.随机数表法3.某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( ) A.100B.150C.200D.2504.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法抽取一个容量为90的样本,应在这三校分别抽取学生( )A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人课堂探究·素养提升——强化创新性题型1 简单随机抽样的概念[经典例题]例1 下面的抽样方法是简单随机抽样吗?为什么?(1)从无数个个体中抽取50个个体作为样本;(2)质量监督部门从180种儿童玩具中选出18种玩具进行质量检验,在抽样过程中,从中任取一种玩具检验后再放回;(3)某社区组织100名党员研读《十九大报告》,学习十九大精神;(4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出7个号签.方法归纳简单随机抽样的四个特征跟踪训练1 下列抽样方式是否是简单随机抽样?(1)在某车间包装一种产品,在自动包装的传送带上每隔30分钟抽一包产品,检验其质量是否合格;(2)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.题型2 简单随机抽样的应用[经典例题]例2 (1)要从某汽车厂生产的30辆汽车中随机抽取3辆进行测试,请选择合适的抽样方法,写出抽样过程;(2)某车间工人加工了一批零件共40件.为了了解这批零件的质量情况,要从中抽取10件进行检验,如何采用随机数表法抽取样本,写出抽样步骤.状元随笔(1)总体中的个体数有限,可以采用简单易行的抽签法,按照抽签法的步骤进行即可.抽签法:按照抽签法的步骤:“编号,制号签,搅拌均匀,随机抽取,得号码”进行.→→方法归纳(1)抽签法的优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力又不方便.况且,如果号签搅拌不均匀,可能导致抽样不公平.(2)在随机数表法抽样的过程中要注意:①编号要求位数相同,读数时应结合编号特点进行读取,如:编号为两位,则两位、两位地读取;编号为三位,则三位、三位地读取.②第一个数字的抽取是随机的.③读数的方向是任意的,且事先定好.跟踪训练2 (1)第十三届中国(徐州)国际园林博览会于2021年9月开幕.为做好徐州园博园运营管理工作,2022年春节期间,还需要从30名大学生中随机抽取8人作为志愿者,请写出抽取样本的过程;(2)有一批机器,编号为1,2,3,…,112.请用随机数法抽取10台入样,写出抽样过程.题型3 分层抽样的概念及计算[经典例题]例3 (1)某中学有老年教师20人,中年教师65人,青年教师95人.为了调查他们的健康状况,需从他们中抽取一个容量为36的样本,则合适的抽样方法是( )A .抽签法B .简单随机抽样C .分层抽样D .随机数表法(2)某市有大型超市200家,中型超市400家,小型超市1400家.为掌握各类超市的营业情况,现按分层抽样的方法抽取一个容量为100的样本,应抽取中型超市________家.状元随笔 (1)有明显差异用分层抽样.→方法归纳(1)各部分之间有明显的差异是分层抽样的依据,至于各层内用什么方法抽样是灵活的,可用简单随机抽样,也可采用系统抽样.分层抽样中,无论哪一层的个体,被抽中的机会均等,体现了抽样的公平性.(2)分层抽样中有关抽样比的计算方法对于分层抽样中的比值问题,常利用以下关系式巧解: ①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比=样本中这两层抽取的个体数之比.对于分层抽样中求某层个体数,或某层要抽取的样本个体数,都可以通过上面两个等量关系求解.跟踪训练3 (1)某市有四所重点大学,为了解该市大学生的课外书籍阅读情况,采用下列哪种方法抽取样本最合适(四所大学图书馆的藏书有一定的差距)( )A .抽签法B .随机数表法C.简单随机法D.分层抽样法(2)某校高三年级有男生800人,女生600人,为了解该年级学生的身体健康情况,从男生中任意抽取40人,从女生中任意抽取30人进行调查.这种抽样方法是 ( ) 关键看是否有明显差异A.简单随机法B.抽签法C.随机数表法D.分层抽样法(3)某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍,为了解职工的身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为________.题型4 分层抽样的概念及应用例4 某家电视台在因特网上征集某电视节目现场参与的观众,报名的总人数为12000人,分别来自4个城区,其中东城区2400人,西城区4600人,南城区3800人,北城区1200人,从中抽取60人参加现场的节目,应当如何抽取?写出抽取过程.状元随笔由题知有明显差异,利用分层抽样抽样.(1)分多少层.(2)比例是多少.(3)每层抽多少.方法归纳(1)如果总体中的个体有差异时,就用分层抽样抽取样本,用分层抽样抽取样本时,要把性质、结构相同的个体,组成一层.(2)每层中所抽取的个体数应按各层个体数在总体中所占的比例抽取,也就是各层抽取.这样抽取能使所得到的样本结的比例都等于样本容量在总体中的比例,即抽样比=样本容量总体容量构与总体结构相同,可以提高样本对总体的代表性.跟踪训练4 在100个产品中,有一等品20个,二等品30个,三等品50个,现要抽取一个容量为30的样本,请说明抽样过程.第五章 统计与概率5.1 统计5.1.1 数据的收集新知初探·自主学习知识点一总体 个体 样本知识点二2.抽签法 随机数表法3.编号 任意 规则 编号[基础自测]1.解析:由随机抽样的基本概念可得,选D.答案:D2.解析:总体由差异明显的三部分组成,应选用分层抽样.答案:C3.解析:方法一:由题意可得70n−70=3 5001 500,解得n =100,故选A. 方法二:由题意,抽样比为703 500=150,总体容量为3500+1500=5000,故n =5000×150=100.答案:A4.解析:先求抽样比n N =903 600+5 400+1 800=1120,再各层按抽样比分别抽取,甲校抽取3600×1120=30(人),乙校抽取5400×1120=45(人),丙校抽取1800×1120=15(人),故选B. 答案:B课堂探究·素养提升例 1 【解析】 (1)不是简单随机抽样,因为简单随机抽样要求被抽取样本的总体的个数是有限的.(2)不是简单随机抽样,因为简单随机抽样要求逐个不放回地抽取.(3)不是简单随机抽样,因为这100名党员是挑选出来的,该社区每个人被抽到的可能性不同,不符合简单随机抽样中“等可能性”的要求.(4)是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.跟踪训练1 解析:由简单随机抽样的特点可知,(1)(2)均不是简单随机抽样.(1)总体个数不是有限的.(2)不符合“等可能性”的要求.例2 【解析】(1)利用抽签法,步骤如下:①将30辆汽车编号,号码是1,2, (30)②将号码分别写在一张纸条上,揉成团,制成号签;③将得到的号签放入一个不透明的袋子中,并搅拌均匀;④从袋子中依次抽取3个号签,并记录上面的编号;⑤所得号码对应的3辆汽车就是要抽取的对象.(2)抽样步骤是:第一步,先将40件零件编号,可以编号为00,01,02,…,38,39.第二步,在随机数表中任选一个数作为开始,例如从教材附表的随机数表中的第8行第9列的数0开始.为便于说明,我们将随机数表中的第6行到第10行分别摘录如下:6606574717 3407276850 3669736170 6581339885 11199291708105010805 4557182405 3530342814 8879907439 23403097328326977602 020******* 6855574818 7305385247 18623885796357332135 0532547048 9055857518 2846828709 83401256247379645753 0352964778 3580834282 6093520344 3527388435第三步,从选定的数0开始向右读下去,得一个两位数字号码02,将它取出;继续向右读,得到02,由于前面已经取出,将它去掉;继续下去,去掉重复的号码,又得到05,16,18,38,33,21,35,32,28.至此,10个样本号码已经取满,于是,所要抽取的样本号码是02,05,16,18,38,33,21,35,32,28.与这10个号码对应的零件即是抽取的样本个体.跟踪训练2 解析:(1)抽样过程如下:第一步,先将30名大学生进行编号,从1到30.第二步,将编号写在形状、大小相同的号签上.第三步,将号签放到一个不透明的盒子中搅拌均匀,然后从盒子中逐个抽取8个号签.第四步,将与号签上的编号对应的大学生抽出,即得样本.(2)方法一:第一步,将原来的编号调整为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第14行第7个数“0”,向右读.第三步,从“0”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到020,086,013,110,089,021,080,098,027,002.第四步,对应原来编号为20,86,13,110,89,21,80,98,27,2的机器便是要抽取的对象.方法二:第一步,将原来的编号调整为101,102,103, (212)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第9行第7个数“1”,向右读.第三步,从“1”开始,向右读,每次读取三位,凡不在101~212中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到173,119,170,187,186,125,140,109,184,178.第四步,对应原来编号为73,19,70,87,86,25,40,9,84,78的机器便是要抽取的对象.例3 【解析】 (1)各部分之间有明显的差异是分层抽样的依据.(2)依据题意,可得抽样比为100200+400+1 400=120,故应抽取中型超市400×120=20(家).【答案】 (1)C (2)20跟踪训练3 解析:(1)因为学校图书馆的藏书对学生课外书籍阅读影响比较大,因此采取分层抽样.(2)总体中个体差异比较明显40800=30600=120,且抽取的比例也符合分层抽样.(3)设该单位老年职工人数为x ,由题意得3x =430-160,解得x =90.则样本中的老年职工人数为90×32160=18.答案:(1)D (2)D (3)18例4 【解析】 采用分层抽样的方式抽取参加现场节目的观众,步骤如下:第一步,分层.按城区分为四层:东城区、西城区、南城区、北城区.第二步,确定抽样比.样本容量n =60,总体容量N =12000,故抽样比k =n N =6012 000=1200.第三步,按比例确定每层抽取个体数.在东城区抽取2400×1200=12(人),在西城区抽取4600×1200=23(人),在南城区抽取3800×1200=19(人),在北城区抽取1200×1200=6(人).第四步,在各层分别用简单随机抽样法抽取样本.将各城区抽取的观众合在一起组成样本.跟踪训练4 解析:先将产品按等级分成三层;第一层,一等品20个;第二层,二等品30个;第三层,三等品50个.然后确定每一层抽取的个体数,因为抽样比为30100=310,所以应在第一层中抽取产品20×310=6(个),在第二层中抽取产品30×310=9(个),在第三层中抽取产品50×3=15(个).分别给这些产品编号并贴上标签,用抽签法或随机数表法10在各层中抽取,得到一等品6个,二等品9个,三等品15个,这样就通过分层抽样得到了一个容量为30的样本.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学概率与统计知识点概率与统计是高中数学的重要内容之一,既是实际生活中数学应用的重要工具,也是学习高等数学的基础。
本文将从概率与统计的基本概念、概率计算、概率分布以及统计推断等方面进行介绍。
一、概率与统计的基本概念
概率是指事件发生的可能性大小,通常用一个介于0和1之间的数表示。
而统计则是通过对具体数据的收集、整理和分析,得出关于总体的特征和规律性的推断。
二、概率计算
1. 事件发生的概率计算:事件的概率等于该事件发生的次数除以总次数。
例如,掷一枚硬币正面朝上的概率为1/2。
2. 互斥事件的概率计算:互斥事件是指两个事件不能同时发生的情况。
对于互斥事件A和B,它们同时都不发生的概率等于各自不发生的概率相乘。
3. 独立事件的概率计算:独立事件是指两个事件的发生互不影响的情况。
对于独立事件A和B,它们同时发生的概率等于各自发生的概率相乘。
三、概率分布
1. 离散型随机变量的概率分布:离散型随机变量是指取某些特定值的概率可以被确定的随机变量。
它的概率分布可以用概率质量函数来表示。
2. 连续型随机变量的概率分布:连续型随机变量是指在某个区间内取值的概率可以被确定的随机变量。
它的概率分布可以用概率密度函数来表示。
3. 常见的概率分布:常见的概率分布有均匀分布、正态分布、指数分布等。
这些概率分布在实际问题中具有广泛的应用。
四、统计推断
统计推断是通过对样本数据的观察和分析,对总体参数进行推测和判断的方法。
常见的统计推断有点估计和区间估计。
1. 点估计:点估计是通过样本数据得到总体参数的估计值。
常见的点估计方法有最大似然估计和矩估计等。
2. 区间估计:区间估计是通过样本数据得到总体参数的估计区间。
常见的区间估计方法有置信区间和预测区间等。
总结:高三数学概率与统计是一个涵盖广泛的内容,包括概率与统计的基本概念、概率计算、概率分布以及统计推断等。
掌握这些知识点,不仅对于高考数学的考试有帮助,更为重要的是能够在实际生活中应用数学的思维方式解决问题。
因此,学好高三数学概率与统计知识,对于提高数学能力和解决实际问题具有重要意义。