第二章 氧气顶吹转炉炼钢工艺

第二章   氧气顶吹转炉炼钢工艺
第二章   氧气顶吹转炉炼钢工艺

第二章氧气顶吹转炉炼钢工艺基本要求:了解转炉的吹炼过程;掌握氧气射流对熔池的物理化学作用;掌握顶吹转炉的各项操作制度;掌握复吹转炉的冶金特点;了解转炉自动控制。

重点与难点:顶吹转炉的各项操作制度;复吹转炉的冶金特点。

§2—1 一炉钢的吹炼过程

一.钢与铁的区别及炼钢的任务

1.钢与铁的性能比较

钢和铁都是铁碳合金,同属于黑色金属,但它们的性质有明显不同。生铁硬而脆,焊接性差。钢具有很好的物理化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛;

用途不同对钢的性能要求也不同,从而对钢的生产也提出了不同的要求。

2.钢与铁性能差别的原因:

C固熔体,碳和其它合金元素的含量不同。在钢中碳元素和铁元素形成Fe

3

随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。

钢和生铁含碳量的界限通常是:

生铁: [C]=1.7~4.5%

钢: [C]≤ 1.7%

生铁和钢的化学成分

化学成分%

材料

C Si Mn P S

炼钢生铁 3.5~4.0 0.6~1.6 0.2~0.8 0.0~0.4 0.03~0.07 碳素镇静钢0.06~1.50 0.1~0.37 0.25~0.80 ≤0.045 ≤0.05 沸腾钢0.05~0.27 ≤0.07 0.25~0.70 ≤0.045 ≤0.05

3.炼钢的基本任务:

⑴脱碳;

将铁水中的碳大部分去除,同时随着脱碳的进行,产生大量CO气泡,在CO排出过程中,搅拌熔池促进化渣,同时脱除[H]、[N]和夹杂。

⑵去除杂质(去P、S和其它杂质);

铁水中[P]、[S]含量高,而钢中[P]会造成“冷脆”,[S]造成“热脆”。通常大多数钢种对P、S含量均有严格要求,炼钢必须脱除P、S等有害杂质。

⑶去除气体及夹杂物;

在炼钢过程中通过熔池沸腾(碳氧反应、底吹惰性气体搅拌)脱除H]、[N]和非金属夹杂物。

⑷脱氧合金化;

在炼钢过程中因为脱碳反应的需要,要向钢液中供氧,就不可避免地使后期钢中含有较高的氧,氧无论是以液体形态还是以氧化物形态存在于钢中都会降低钢的质量,所以必须在冶炼后期或出钢过程中将多余的氧去除掉。

在冶炼过程中,铁水中的Si、 Mn大部分氧化掉了,为了保证成品钢中的规定成分,要向钢水中加入各种合金元素,这个过程与脱氧同时进行,称为合金化。

⑸升温(保证合适的出钢温度)。

铁水温度一般在1250~1300℃,而钢水的出钢温度一般在1650℃以上,才能顺利浇注成铸坯,因此炼钢过程也是一个升温过程。

3.完成炼钢各项任务的基本方法

⑴氧化

为了将铁水等炉料中的硅、锰、碳等元素氧化掉,可以采用“吹氧”方法,即直接喷吹氧气、或加入其它氧化剂,如铁矿石、铁皮等。

⑵造渣

为了去除炉料中的P、S等杂质,在炼钢过程中加入渣料(石灰、白云石、熔剂等),形成碱度合适,流动性良好,足够数量的炉渣,一方面完成脱除P、S的任务,同时减轻对炉衬对侵蚀。

⑶升温

转炉主要是依靠碳、硅、锰等元素氧化放出等热量,以及铁水的物理热实现升温。

⑷加入脱氧剂和合金料

通过向炉内或钢包内加入各种脱氧剂和合金料的方法,完成脱氧及合金化的任务。

二.金属成分和炉渣成分的变化规律

1.Si在吹炼前期(一般在3~4分钟内)即被基本氧化。

在吹炼初期,铁水中的[Si]和氧的亲和力大,而且[Si]氧化反应为放热反应,低温下有利于此反应的进行,因此,[Si]在吹炼初期就大量氧化。

[Si]+O

2=(SiO

2

) (氧气直接氧化)

[Si]+2[O]= (SiO

2

) (熔池内反应)

[Si]+(FeO)=(SiO

2

)+2[Fe] (界面反应)

2(FeO)+(SiO

2)=(2FeO·SiO

2

)

随着吹炼的进行石灰逐渐溶解,2FeO·SiO

2转变为2CaO·SiO

2

,即SiO

2

与CaO

牢固的结合为稳定的化合物,SiO

2

活度很低,在碱性渣中FeO的活度较高,这样不

仅使[Si]被氧化到很低程度,而且在碳剧烈氧化时,也不会被还原,即使温度超

过1530℃,[C]与[O]的亲和力也超过[Si]与[O]的亲和力,终因(CaO)与(SiO

2

结合为稳定的2CaO.SiO

2,[C]也不能还原(SiO

2

)。

硅的氧化对熔池温度,熔渣碱度和其他元素的氧化产生影响:

[Si]氧化可使熔池温度升高;

[Si]氧化后生成(SiO2),降低熔渣碱度,熔渣碱度影响脱磷,脱硫;

熔池中[C]的氧化反应只有到[%Si]<0.15时,才能激烈进行。

影响硅氧化规律的主要因素:[Si]与[O]的亲和力,熔池温度,熔渣碱度和FeO 活度。

2.Mn在吹炼前期被氧化到很低,随着吹炼进行而逐步回升(回锰现象)。

在复吹转炉中,Mn的回升趋势比顶吹转炉要快些。(原因:复吹∑(FeO)低)在吹炼初期,[Mn]也迅速氧化,但不如[Si]氧化的快。其反应式可表示为: [Mn]+[O]=(MnO) (熔池内反应)

[Mn]+{O2}=(MnO) (氧气直接氧化反应) [Mn]+(FeO)=(MnO)+[Fe] (界面反应)

(SiO

2)+(MnO)=MnO·SiO

2

锰的氧化产物是碱性氧化物,在吹炼前期形成(MnO.SiO2)。但随着吹炼的进行和渣中CaO含量的增加,会发生

(MnO·SiO

2)+2(CaO)=(2CaO·SiO

2

)+(MnO)

(MnO)呈自由状态,吹炼后期炉温升高后,(MnO)被还原,即

(MnO)+[C]=[Mn]+{CO}

或(MnO)+[Fe]=(FeO)+[Mn]

吹炼终了时,钢中的锰含量也称余锰或残锰。残锰高,可以降低钢中硫的危害,但冶炼工业纯铁,则要求残锰越低越好。

影响残锰的因素:

炉温高有利于(MnO)的还原,残锰量高;

◆碱度升高,可提高自由(MnO)浓度,残锰量增加;

◆降低熔渣中(FeO)含量,可提高残锰含量;

◆铁水中锰含量高,单渣操作,钢水残锰也会高些。

3.碳在吹炼过程中快速减少,但前期、后期脱碳速度慢,中期快

影响碳氧化速度的变化规律的主要因素有:熔池温度、熔池金属成分、熔渣中(∑FeO)和炉内搅拌强度。在吹炼的前、中、后期,这些因素是在不断发生变化,从而体现出吹炼各期不同的碳氧化速度。

吹炼前期:熔池平均温度低于1400-1500℃,[Si]、[Mn]含量高且与[O]亲和力均大于[C]-[O]的亲和力, (∑FeO)较高,但化渣、脱碳消耗的(FeO)较少,熔池搅拌、碳的氧化速度不如中期高。

吹炼中期:熔池温度高于1500℃,[Si]、[Mn]含量降低,[P]-[O]亲和力小于[C]-[O]亲和力,碳氧化消耗较多的(FeO),熔渣中(∑FeO)有所降低,熔池搅拌强烈,反应区乳化较好,结果此期的碳氧化速度高。

吹炼后期,熔池温度很高,超过1600℃,[C]含量较低, (∑FeO)增加,熔池搅拌不如中期,碳氧化速度比中期低。

转炉内碳氧反应速度变化

4.磷在吹炼前期快速降低,进入吹炼中期略有回升,而到吹炼后期再度降

低。

磷的变化规律主要表现为吹炼过程中的脱磷速度。脱磷速度的变化规律,主要受熔池温度,熔池中金属[P]含量,熔渣中(∑FeO),熔渣碱度,熔池的搅拌强度或脱碳速率的影响。

?前期不利于脱磷的因素是炉渣碱度比较低,因此,为及早形成碱度较高的炉渣,是前期脱磷的关键。

?中期不利于脱磷的因素是(∑FeO)较低,因此,如何控制渣中(∑FeO)达10%-20%,避免炉渣“返干”是中期脱磷的关键。

?后期不利于脱磷的热力学因素是熔池温度高。

5.硫在吹炼过程中是逐步降低的,中后期降低明显些。

硫的变化规律也主要表现在吹炼过程中的脱硫速度,脱硫速度变化规律的主要影响因素与脱磷的类似。不同时期,其表现是不相同。

?吹炼前期,由于温度和碱度较低,(FeO)较高,渣的流动性差,因此脱硫能力较低,脱硫速度很慢;

?吹炼中期,熔池温度逐渐升高,(FeO)比前期有所降低,碱度因大量石灰熔化而增大,熔池乳化比较好,是脱硫的最好时期;

?吹炼后期,熔池温度已升至出钢温度,(FeO)回升,比中期高,碱度高熔池搅拌不如中期,因此,脱硫速度低于或稍低于中期。

6.炉渣中的酸性氧化物(SiO

2)、( P

2

O

5

)在吹炼前期逐渐增多,随着石灰的

溶解增加,渣量增大而降低。

?吹炼一开始,由于硅的迅速氧化,使渣中(SiO2)高达20%,同时,磷

也大量氧化生成( P

2O

5

)进入炉渣。随着石灰的逐渐渣化,渣中的(CaO)含量

不断升高,当硅的氧化基本结束后,渣中(SiO

2)、 ( P

2

O

5

)的含量又有所下降。

7.吹炼过程中渣中∑(FeO)具有规律性变化:即前后期高、中期低,而

复吹转炉在吹炼后期渣中∑(FeO)比顶吹更低些。

炉渣中(FeO)的变化取决于它的来源和消耗两方面。

(FeO)的来源主要与枪位、加矿量有关,(FeO)的消耗主要与脱速度有关

枪位:枪位低时,高压氧气流股冲击熔池,熔池搅拌剧烈,渣中金属液滴增多,形成渣、金乳浊液,脱碳速度加快,消耗渣中(FeO)降低。枪位高时,脱碳速度低,渣中(FeO)增高。

矿石:渣料中加矿石多,则渣中(FeO)增高。

脱碳速度:脱碳速度高,渣中(FeO)低;脱碳速度低,渣中(FeO)高。

氧气顶吹转炉通过改变枪位可达到化渣、降碳的不同目的,这是它与其他炼钢方法相比,具有操作灵活的特点。

8.随着吹炼的进行,石灰在炉内溶解增多,渣中(CaO)逐渐增多,炉渣

碱度也随之增大。

炉渣碱度的变化规律取决于石灰的熔解、渣中(SiO

2

)和熔池温度。

吹炼初期,熔池温度不高,渣料中石灰还未大量熔化。吹炼一开始,[Si]迅速氧化,渣中(SiO2)很快提高,有时可达到30%。因此,初期炉渣碱度不高,一般为1.8-2.3,平均为2.0左右。

吹炼中期,熔池的温度比初期提高,促进大量石灰熔化,熔池中[Si]已氧化完了, SiO2来源中断。中期脱碳速度,熔池搅拌均比前期强,这些因素均有利于形成高碱度炉渣。

吹炼后期, 熔池的温度比中期进一步提高,接近出钢温度,有利于石灰渣料熔化,在中期炉渣碱度较高的基础上,吹炼后期,仍能得到高碱度,流动性良好发炉渣。

9.渣中(MgO)的变化与白云石或菱镁球加入有关。

?吹炼过程中炉渣中MgO含量的变化(30T炉):

?1—加白云石;2—未加白云石

如果加白云石或菱镁矿,还与加入的数量有关。由上图可见,未加白云石时,吹炼前半期,初期酸性渣对炉衬侵蚀较大,渣中(MgO)含量增加。而加入白云石造渣,使渣中保持一定的(MgO)含量,在冶炼过程中能减轻熔渣对炉衬的侵蚀。

10.熔池温度在吹炼过程逐步升高,尤以吹炼前期升温速度快。

熔池温度的变化与熔池的热量来源和热量消耗有关。

吹炼初期,兑入炉内的铁水温度一般为1300℃左右,铁水温度越高,带入炉内的热量就越高,[Si]、[Mn]、[C]、[P]等元素氧化放热,但加入废钢可使兑入的铁水温度降低,加入的渣料在吹炼初期大量吸热。综合作用的结果,吹炼前期终了,熔池温度可升高至1500℃左右。

吹炼中期,熔池中[C]继续大量氧化放热,[P]也继续氧化放热,均使熔池温度提高,可达1500-1550℃以上。

吹炼后期,熔池温度接近出钢温度,可达1650-1680℃左右,具体因钢种、炉子大小而异。

在整个一炉钢的吹炼过程中,熔池温度约提高400℃左右。

综上所述,顶吹氧气转炉开吹以后,熔池温度、炉渣成分金属成分相继发生变化,它们各自的变化又彼此相互影响,形成高温下多相、多组元同时进行的极其复杂的物理化学变化。

三.吹炼过程的三个阶段

1.吹炼前期

任务:化好渣、早化渣,以利P、S的去除。同时注意造渣,以减少炉渣对炉衬的侵蚀。

2.吹炼中期

任务:脱C和去S。

3.吹炼后期

任务:做好终点控制,保证温度、C、P、S含量合乎出钢要求。此外还要根据所炼钢种需要,控制好炉渣氧化性,使[O]合适以保证钢质量。

出钢过程:进行脱氧合金化操作。

四.转炉一炉钢冶炼的基本操作过程

从装料到出钢,倒渣,转炉一炉钢的冶炼过程包括装料、吹炼、脱氧出钢、溅渣护炉和倒渣几个阶段。

一炉钢的吹氧时间通常为12-18min,冶炼周期为30min左右。

顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成:

1. 上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;

2. 倾炉,加废钢、兑铁水,摇正炉体(至垂直位置);

3. 降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出

赤色烟雾,随后喷出暗红的火焰;3~5分钟/后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱);

4. 3~5分钟/后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,

约12分钟/后火焰微弱,停吹);

5. 倒炉,测温、取样,并确定补吹时间或出钢;

6. 出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。

本章的主要内容:依据原料、设备等生产条件确定合理的装料、造渣、供氧、温度、终点控制与脱氧合金化等五大操作制度。

习题:

1.炼钢的基本任务有哪些?

2.一炉钢冶炼过程中金属成分与炉渣成分有何变化规律?

3.简述转炉一炉钢冶炼的基本操作过程。

§2—2 装入制度

所谓装料,是指将炼钢所用的钢铁炉料即铁水和废钢装入炉内的工艺操作。顶吹转炉的装料制度包括确定装入量、废钢比和装料操作三方面的内容。

一.装入量的确定

转炉的装入量是指每炉装入铁水和废钢两种金属炉料的总量。

1 确定依据

确定装入量应考虑的因素主要有两个:

⑴熔池深度要合理

生产实践证明,熔池的深度H为氧气射流对熔池的最大冲击深度h的1.5~2.0倍时较为合理,既能防止氧气射流冲蚀炉底,同时又能保证氧气射流对熔池有较强的搅拌。

国内一些厂家不同容量转炉执行的熔池深度见下表:

⑵炉容比要合适

转炉的有效容积V与装入量T的比值叫做炉容比,m3/t。

目前,国内外转炉的炉容比通常为0.8~1.0 m3/t。V/T过小,意味着装得过多,吹炼中易产生喷溅,且因熔池深而搅拌差;反之,不能充分发挥转炉的生产能力,而且吹炼中氧射流易冲蚀炉底。

各转炉建成投产时,已有炉容比的设计值,即V/T的基本范围,实际生产中应根据铁水成分及冷却剂的种类等因素调整装入量,保持合适的炉容比,以获得良好的综合指标。比如,铁水的硅、磷含量较高时,冶炼中渣量大,应适当少装些,保证较大的炉容比,否则吹炼过程中容易产生喷溅;以废钢做冷却剂时,吹炼中不易喷溅,其炉容比可比以铁矿石做冷却剂时小0.1~0.2 m3/t。

⑶炉子附属设备:

应与钢包容量、浇注吊车起重能力、转炉倾动力矩大小、连铸机的操作等相

适应。

国内一些厂家不同容量转炉执行的炉容比见上表。

2 装入制度的类型

顶吹转炉的装入制度以下三种:

⑴定量装入

定义:

在整个炉役期内每炉的装入量保持不变的装料方法叫定量装入。

特点:

便于组织生产和实现吹炼过程的计算机自动控制;但吹氧操作困难,炉役前期的装入量易偏大,熔池较深,搅拌不足,而炉役后期的装入量易偏小,不仅不能发挥炉子的生产能力,且熔池较浅,氧射流易冲蚀炉底。转炉容量越小,炉役前、后期炉子的横断面积与有效容积的差别越大,这一问题也就越突出。国内外大型转炉广泛采用定量装入制度。

⑵定深装入

定义:

在一个炉役期间,随着炉衬的侵蚀炉子实际容积不断扩大而逐渐增加装入量以保证熔池深度不变的装料方法称定深装入。

特点:

熔池深度不变,吹氧操作稳定,有利于提高供氧强度并减轻喷溅,同时又能充分发挥炉子的生产能力;但其装入量和出钢量变化频繁,不仅给冶炼操作带来麻烦,而且增加了生产组织的难度,现已很少使用。

⑶分阶段定量装入

定义:

根据炉衬的侵蚀规律和炉膛的扩大程度,将一个炉役期划分成3~5个阶段,每个阶段实行定量装入,装入量逐段递增的装料方法叫做分阶段定量装入。

特点:

分阶段定量装入制度基本上发挥了转炉的生产能力,同时大体上保持了适当的熔池深度,便于吹氧操作;又保证了装入量的相对稳定,便于组织生产,因而国内中小转炉普遍采用。

二.废钢比

定义:

废钢的加入量占金属料装入量的百分比称为废钢比。

重要性:提高废钢比,可以减少铁水的用量从而有助于降低转炉的生产成本;同时可减少石灰的用量和渣量,有利于减轻吹炼中的喷溅,提高冶炼收得率;还可以缩短吹炼时间、减少氧气消耗和增加产量。

影响因素:

铁水的温度和成分、所炼钢种、冶炼中的供氧强度和枪位、转炉容量的大小和炉衬的厚薄等。

国内各厂因生产条件、管理水平及冶炼品种等不同,废钢比大多波动在10%~30%之间。具体的废钢比数值可根据本厂的实际情况通过热平衡计算求得。

三.装料操作

目前,国内的大中型转炉均采用混铁炉(转炉容量的15~20倍)供应铁水,即高炉来的铁水储存在混铁炉中,用时倒入铁水罐天车兑入(解决高炉出铁与转炉用铁不一致的矛盾,同时保证铁水的温度稳定,成分波动小);废钢则是事先按计算值装入料斗,用时天车加入。

1.铁水、废钢的装入顺序

⑴先兑铁水后装废钢

这种装入顺序可以避免废钢直接撞击炉衬,炉役后期尤其如此,但炉内留有液态残渣时,兑铁易发生喷溅。所以,兑铁水时,应炉内无渣(否则加石灰)且先慢后快,以防引起剧烈的碳氧反应,将铁水溅出炉外而酿成事故。

⑵先装废钢后兑铁水

这种装入顺序废钢直接撞击炉衬,但面前国内各厂普遍采用溅渣护炉技术,运用此法可防止兑铁水喷溅,但补炉后的第一炉钢应采用前法。

2.注意安全,防止污染

兑铁水前转炉内应无液态残渣,并喊开周围人员,以防造成人员伤害和设备事故。如果没有二次除尘设备,兑铁水时转炉倾动角度要小些,尽量使烟尘进入烟道。

3.准确控制铁水废钢比

准确控制铁水和废钢装入数量,称量设备要准确可靠,并经常校验。增加废钢比可以减少铁水量、减少渣料和氧气消耗,各厂应根据实际成本和热量情况确定合理的铁水废钢比。

习题:

1.名词解释:炉容比、定量装入分阶段定量装入

2.确定装入量时应考虑哪些因素?

3.铁水废钢的装入顺序有哪些,各有什么特点?

§2—3 供氧制度

供氧制度的主要内容:

确定合理的喷头结构、供氧强度、氧压和枪位制。

供氧是保证杂质去除速度、熔池升温速度、造渣制度、控制喷溅去除钢中气体与夹杂物的关键操作,关系到终点的控制和炉衬的寿命,对一炉钢冶炼的技术经济指标产生重要影响。

一.氧枪结构

氧枪是转炉供氧的主要设备,它是由喷头、枪身和尾部结构组成。

喷头是用导热性良好的紫铜经锻造和切割加工而成,也有用压力浇铸而成的。喷头的形状有拉瓦尔型、直筒型和螺旋型等。目前应用最多的是多孔的拉瓦尔型喷头。拉瓦尔型喷头是收缩—扩张收缩型喷孔,当出口氧压与进口氧压之比p出/p0<0.528时形成超音速射流

枪身:它由三层同心套管构成,中心管道氧气,中间管是冷却水的进水通道,外层管是出水通道。喷头与中心套管焊接在一起。

枪尾部:枪尾部接供氧管,进水管和出水管。

二.氧枪喷头

氧枪喷头是一个能量转换器。它的作用是:最大限度地把氧气的压力能转化成动能,获得超音速流股,借此向熔池供氧并搅拌金属熔池,以达到冶炼目的。

1.对氧枪喷头的要求

⑴提供冶炼所需要的供氧强度;

⑵在足够高的枪位下,氧气射流对金属熔池的冲击能量应能满足获得良好冶炼效果所要求的穿透深度和冲击面积;

⑶喷溅小,金属收得率高;

⑷枪头寿命长,炉龄高;

⑸枪头工作可靠,加工制造容易且经济。

2.拉瓦尔型喷头

是收缩—扩张型喷头,能使喷射的可压缩性流体获得超音速射流。

⑴工作原理:

高压气体流经收缩段时,气体的压力能转化为动能,使气流获得加速度,气流在喉口处速度达到音速,在扩张段内气体的压力能继续转化为动能和部分消耗在气体的膨胀上。在喷头出口处当气体压力降低到与外界压力相等时,且满足出口压力与进口压力之比 P出∕Po ﹤0.528,可获得出口马赫数为1.8~ 2.2的超音速射流。

⑵类型:

A.单孔型:

易加工,枪位高,寿命长。但化渣难,喷溅严重,供氧强度不易提高,早期小型转炉使用。

B.多孔型:

三孔(≤50T)、四孔、五孔(>50T)

提高了供氧强度和冶炼强度,可以增大冲击面积,利于化渣,操作平稳,不易喷溅。但多孔喷头端面的中心区域冷却效果较差,吹炼过程中该区域气压较低,钢液和熔渣易被吸入粘附到喷头上而被烧坏。采用中心水冷铸造喷头,可延长多孔喷头的使用寿命。

例:马钢一钢厂95T复吹转炉氧枪喷头参数

孔型出口直径中心夹角扩张角马赫数工作氧压设计流量四孔(mm)(°)(°)(MPa)(m3∕h)拉瓦尔48.5 12 3.85 2.06 0.8~1.0 ﹥7000

a.三孔喷头

我国小型转炉一般采用三孔喷头。其特点是三个孔都是拉瓦尔型喷孔,为加工方便起见,每一小拉瓦尔型喷孔从收缩段到扩张段均为直线,而非曲线过渡。国内外对其使用的结论是吹炼强度高,热效率稳定,枪龄较高。

b.四孔以上喷头

大中型转炉采用。

四孔、五孔喷头结构:

一种是中心一孔,周围平均分布三孔(四孔);或四个(五个平均分布在周

围,中心无孔)。

三.氧气射流与金属熔池之间的相互作用

1.在高速氧气流股作用下,金属熔池的运动状况

⑴形成冲击区。

氧气流股与熔池液面接触时,金属与熔渣被氧气流股挤开,形成了冲击区。在受到冲击的熔池液面上,形成一股股波浪,同时在熔池内部也产生了强烈的循环运动。流股的动能越大,对熔池的冲击力强,形成的冲击区深度就深,熔池内部的循环运动也越强烈。在冲击区内,氧气、炉渣、金属密切接触,各种化学反应迅速进行,温度高达2000~2600℃。如果冲击区接近炉底,就会使炉底过早损坏,甚至烧穿。

⑵形成许多小液滴

氧气射流的动能很大,将金属液和炉渣击碎,形成许多小液滴,小液滴的比表面积大,大大增加了金属、炉渣的反应界面,对加快熔池内化学反应速度起着重要的作用。

2.氧气射流与熔池接触后的运动状况

⑴形成反射流股

这股反射氧流对液面可以起到搅动作用和氧化作用。这股反射氧流的最外圈所包围的熔池面积,就是通常所说的“冲击面积”。

⑵射流末端破碎成许多小气泡

氧气射流的动能越大,对熔池的冲击力就越强,被熔池吸收的氧增多,产生金属液滴和氧气泡的数量也增多,乳化充分,反射氧流减少,炉内直接传氧比例大,化学反应速度加快。反之,若氧气射流的动能减小,炉内以间接传氧为主,化学反应速度比较慢。

四.枪位对吹炼过程的影响

1.枪位与熔池搅拌的关系

⑴硬吹(低枪位或高氧压的吹炼模式)

氧气射流对熔池的冲击力大,形成的冲击深度较深,冲击面积较小,产生的小液滴和气泡的数量多,气体—熔渣—金属乳化充分,炉内化学反应速度快,特别是脱碳速度加快,大量的CO气体排出,使熔池得到充分的搅动,同时降低了

熔渣中∑(FeO)含量。即枪位越低,熔池内部搅动越充分。

⑵软吹(枪位高或氧压低的吹炼模式)

氧气射流对熔池的冲击力减小,冲击深度变浅,反射流股的数量多,冲击面积增大,对熔池表面搅动有所增强,内部搅动相应减弱,脱碳速度降低,熔渣中的∑(FeO)含量增加。

综上所述,枪位在适当的范围内变动,可以调节熔池表面和内部化学反应速度,尤其是脱碳反应速度,从而起到调节熔池的搅拌作用。如果短时间内采用高低枪位交替操作,还有利于消除炉内液面上可能出现的“死角”。所以在炉役后期,成渣速度慢时,可采用高低枪位交替操作,能够消除渣料结坨,加快化渣。

2.枪位与渣中∑(FeO)含量的关系

枪位不仅影响着∑(FeO的生成速度,同时也影响到∑(FeO)的消耗速度。

⑴当枪位低到一定程度,或长时间使用某一低枪位吹炼时,熔池内脱碳速度快,∑(FeO)的消耗量多,因此渣中∑(FeO)含量减少,导致炉渣返干,进而引起金属喷溅。

⑵高枪位吹炼时,由于氧流对熔池搅拌作用减弱,熔池内的化学反应速度减慢,熔渣中∑(FeO)积累聚集,起到提高∑(FeO)含量的作用。但长时间高枪位吹炼也会引起喷溅。

3.乳化和泡沫现象

在顶吹氧气转炉吹炼过程中,特别是吹炼过程剧化的开始阶段,有时炉渣会起泡并从炉口溢出,这就是吹炼过程中发生的典型的乳化和泡沫现象。

由于氧射流对熔池的强烈冲击和CO气泡的沸腾作用,使熔池上部金属、熔渣和气体三相剧烈混合,形成了转炉内发达的乳化和泡沫状态。

乳化:是指金属液滴或气泡弥散在炉渣中,若液滴或气泡数量较少而且在炉渣中自由运动,这种现象称为渣钢乳化或渣气乳化。

若炉渣中仅有气泡,而且气泡无法自由运动,这种现象称炉渣泡沫化。

由于渣滴或气泡也能进入到金属熔体中,因此转炉中还存在金属熔体中的乳化体系。

渣钢乳化是冲击坑上沿流动的钢液被射流撕裂或金属滴所造成的。

通过对230tLD转炉乳液取样分析,发现其中金属液滴比例很大:

吹氧 6-7min 时 占45%-80%;

10-12 min 时 占40%-70%;

15-17min 时 占30%-60%。

可见,吹炼时金属和炉渣密切相混。

研究表明,金属液滴比金属熔池的脱碳、脱磷、脱锰更有效。金属液滴尺寸

愈小,脱除量愈多。而金属液滴的含硫量比金属熔池的含硫量高,金属液滴尺寸愈小,含硫量愈大。生产实践表明,冶炼中期硬吹时,由于渣内富有大量CO 气泡以及渣中氧化铁被金属液滴中的碳所还原,导致炉渣的液态部分消失而“返干”。

软吹时,由于渣中(FeO )含量增加,并且氧化位(即Fe3+/Fe2+)升高,持续时间过长就会产生大量起泡沫的乳化液,乳化的金属量非常大,生成大量气体,容易发生大喷或溢渣。因此,必须正确调整枪位和供氧量,使乳化液中是金属保持某一百分比。

4.枪位与熔池温度的关系

枪位对熔池温度的影响是通过炉内化学反应速度来体现的。

⑴采用低枪位操作,气体—熔渣—金属乳化充分,化学反应速度快,熔池

升温速度加快,吹炼时间短,热损失减少,炉温较高。

⑵枪位高,熔池搅拌力弱,反应速度缓慢,熔池升温速度缓慢,吹炼时间

延长,热损失增多,温度偏低。

五.供氧制度中的几个工艺参数

1.供氧量

定义:单位时间内供入熔池的氧气量,单位是m 3/min ,或m 3/h ,故又称氧

气流量,常用Q 表示。 计算公式:)

供氧时间()装入量()每吨金属需氧量(供氧量min /3t t m Q ?= ⑴每吨金属需氧量

它取决于铁水成分、所炼钢种的终点成分及氧气利用率等因素,通常情况

下为52~60m 3/t 。

⑵供氧时间

国内不同容量转炉的供氧时间统计如下表:

转炉容量/t 12 30 50 120

供氧时间/min ~15 ~16 ~18 ~23

供氧强度/m 3/t ·min ~4.0 ~3.6 ~3.3 ~3.0

例如:首钢30吨转炉,金属料装入量38吨,取吨料耗氧量为56 m 3/t ,吹氧时间16分钟,则其供氧量为:

56×38/16=133 m 3/min=7980m 3/h

2.供氧强度

定义:单位时间内每吨金属的耗氧量,常用I 表示,单位是m 3/t ·min 。

计算公式:供氧强度I=)

装入量()供氧量(t m min /3=)供氧时间(每吨金属耗氧量(min )/3t m 上例的供氧强度为:

I=56/16=3.5 m 3/t ·min

讨论:一定的生产条件下每吨金属的耗氧量是定值,较高的供氧强度意味

着供氧时间较短,即生产率高。但实际生产中喷头的直径一定,只有通过提高氧气的压力来实现,这样吹炼中喷溅严重且氧气的利用率较低。一般情况下,随着转炉容量的增大,H/D 减小,生产中易喷,供氧强度减小,国内不同容量转炉的供氧强度见上表。

另外,供氧强度的大小还与原料质量、操作水平等因素有关,例如国外一

些300吨转炉的供氧强度也高达4.0左右。

3.氧压

⑴工作氧压P 用:

指测定点氧压,即氧气进入氧枪前管道中的氧压,也是供氧制度中规定的

工作氧压。由测定点到喷嘴前有一定的氧压损失,根据具体情况可以测定。所以P 用>P 0。

⑵喷嘴前氧压P 0:

其选用应考虑以下因素:

A.氧气流股出口速度要达到超音速(450~530cm ∕s ),即M =1.8~2.1。

世界氧气顶吹转炉炼钢技术发展史

世界氧气顶吹转炉炼钢技术发展史 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking)由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史 空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde—Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二

次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(VonRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的

转炉炼钢设计-开题报告(终极版)

湖南工业大学 本科毕业设计(论文)开题报告 (2012届) 2011年12月19日

顶底复吹技术,工艺成熟,脱磷效果好,在后续的生产中采用多种精炼方法,其中LF、RH 、CAS—OB、VOD、VAD的应用可以很好的控制钢水的成分和温度,生产纯净钢,不锈钢等,连铸工艺能够实现连续浇铸,提高产量,降低成本,同时随着连铸技术的发展,近终型连铸,高效连铸等多种连铸技术得到应用,大大的提高了铸钢的质量,一定范围内降低了企业的成本。经现代技术和工艺生产出来的如板材,管线钢,不锈钢等的质量得到了很大的保障,市场的信誉度高,市场需求量大。 故设计建造年产310万t合格铸坯炼钢厂是可行的,也是必要的。 2.2 主要研究内容 研究内容包括设计说明书和图纸两个部分。 2.2.1 设计说明书 (1)中英文摘要、关键词 (2)绪论 (3)厂址的选择 (4)产品方案设计 (5)工艺流程设计 (6)转炉容量和座数的确定 (7)氧气转炉物料平衡和热平衡计算 (8)转炉炼钢厂主体设备设计计算(包括转炉炉型、供气及氧枪设计、精炼方法及设备、连铸设备) (9)转炉炼钢厂辅助设备设计计算(包括铁水供应系统、废钢供应系统、出钢出渣设备、烟气净化回收系统) (10)生产规模的确定及转炉车间主厂房的工艺布置和尺寸选择(包括车间主厂房的加料跨、炉子跨、精炼跨、浇注跨的布置形式及主要尺寸的设计确定)(11)劳动定员和成本核算 (12)应用专题研究 (13)结论、参考文献 2.2.2 设计图纸 (1)转炉炉型图 (2)转炉炼钢厂平面布置图 (3)转炉车间主厂房纵向剖面图 2.3 研究思路及方案 (1)根据设计内容,书写中英文摘要、关键词。 (2)查阅专业文献,结合毕业实习,收集当前转炉炼钢工艺技术、车间设

顶吹转炉

太原科技大学 课程设计说明书 设计题目: 50t 氧气顶吹转炉设计 设计人:郭晓琴 指导老师:杨晓蓉 专业:冶金工程 班级:冶金工程081401 学号: 200814070105 材料科学与工程学院 2011年12月30 日

目录 摘要................................................ 错误!未定义书签。第一章绪论................................................ 错误!未定义书签。 1.1 氧气顶吹转炉炼钢的发展概况......................... 错误!未定义书签。 1.2 氧气顶吹转炉炼钢的优点............................. 错误!未定义书签。 1.3 转炉炼钢生产技术发展趋势........................... 错误!未定义书签。第二章炉型尺寸计算........................................ 错误!未定义书签。 2.1转炉炉型及其选择.................................... 错误!未定义书签。 2.2转炉炉型尺寸计算.................................... 错误!未定义书签。 2.2.1 熔池尺寸...................................... 错误!未定义书签。 2.2.2 炉容比(容积比).............................. 错误!未定义书签。 2.2.3炉帽尺寸...................................... 错误!未定义书签。 2.2.4炉身尺寸...................................... 错误!未定义书签。 2.2.5出钢口尺寸.................................... 错误!未定义书签。第三章氧气顶吹转炉耐火材料................................ 错误!未定义书签。 3.1 炉衬的组成和材质的选择............................. 错误!未定义书签。 3.2炉衬厚度的确定...................................... 错误!未定义书签。第四章氧气顶吹转炉金属构件的确定.......................... 错误!未定义书签。 4.1炉壳组成及结构形成................................. 错误!未定义书签。 4.2炉壳钢板材质与厚度的确定 (7) 4.3支撑装置 (7) 4.3.1 托圈......................................... 错误!未定义书签。 4.3.2炉衬的组成和材质的选择....................... 错误!未定义书签。 4.3.3耳轴及其轴承................................. 错误!未定义书签。 4.4倾动机构........................................... 错误!未定义书签。 4.5高径比的核定....................................... 错误!未定义书签。参考文献.............................................................. - 12 -

转炉炼钢工艺流程

转炉炼钢工艺流程 转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高 200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 电炉.转炉系统炼钢生产工艺流程简图 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化(FeO,SiO2 , Mn0,)生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅

与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理; (2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3?5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3?5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min后火焰微弱,停吹);

氧气顶吹转炉炼钢终点碳控制的方法

氧气顶吹转炉炼钢终点碳控制的方法 终点碳控制的方法有三种,即一次拉碳法、增碳法和高拉补吹法。 一次拉碳法 按出钢要求的终点碳和终点温度进行吹炼,当达到要求时提枪。 这种方法要求终点碳和温度同时到达目标,否则需补吹或增碳。一次拉碳法要求操作技术水平高,其优点颇多,归纳如下: (1) 终点渣TFe含量低,钢水收得率高,对炉衬侵蚀量小。 (2) 钢水中有害气体少,不加增碳剂,钢水洁净。 (3) 余锰高,合金消耗少。 (4) 氧耗量小,节约增碳剂。 增碳法 是指吹炼平均含碳量≥0.08%的钢种,均吹炼到ω[C]=0.05%~0.06%提枪,按钢种规范要求加入增碳剂。增碳法所用碳粉要求纯度高,硫和灰分要很低,否则会玷污钢水。 采用这种方法的优点如下: (1)终点容易命中,比“拉碳法”省去中途倒渣、取样、校正成分及温度的补吹时间,因而生产率较高; (2)吹炼结束时炉渣Σ(FeO)含量高,化渣好,去磷率高,吹炼过程的造渣操作可以简化,有利于减少喷溅、提高供氧强度和稳定吹炼工艺; (3)热量收入较多,可以增加废钢用量。 采用“增碳法”时应严格保证增碳剂质量,推荐采用C>95%、粒度≤10毫米的沥青焦。增碳量超过0.05%时,应经过吹Ar等处理。 高拉补吹法 当冶炼中、高碳钢钢种时,终点按钢种规格稍高一些进行拉碳,待测温、取样后按分析结果与规格的差值决定补吹时间。 由于在中、高碳(ω[c]>0.40%)钢种的碳含量范围内,脱碳速度较快,火焰没有明显变化,从火花上也不易判断,终点人工一次拉碳很难准确判断,所以采用高拉补吹的办法。用高拉补吹法冶炼中、高碳钢时,根据火焰和火花的特征,参考供氧时间及氧耗量,按所炼钢种碳规格要求稍高一些来拉碳,使用结晶定碳和钢样化学分析,再按这一碳含量范围内的脱碳速度补吹一段时间,以达到要求。高拉补吹方法只适用于中、高碳钢的吹炼。根据某厂30 t 转炉吹炼的经验数据,补吹时的脱碳速度一般为0.005%/s。当生产条件变化时,其数据也有变化。

转炉炼钢工艺标准经过流程

转炉炼钢工艺流程 这种炼钢法使用的氧化剂是氧气。把空气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。 当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果空气是从炉低吹入,那就是低吹转炉。 随着制氧技术的发展,现在已普遍使用氧气顶吹转炉(也有侧吹转炉)。这种

转炉吹如的是高压工业纯氧,反应更为剧烈,能进一步提高生产效率和钢的质量。 转炉一炉钢的基本冶炼过程。顶吹转炉冶炼一炉钢的操作过程主要由以下六步组成: (1)上炉出钢、倒渣,检查炉衬和倾动设备等并进行必要的修补和修理;(2)倾炉,加废钢、兑铁水,摇正炉体(至垂直位置); (3)降枪开吹,同时加入第一批渣料(起初炉内噪声较大,从炉口冒出赤色烟雾,随后喷出暗红的火焰;3~5min后硅锰氧接近结束,碳氧反应逐渐激烈,炉口的火焰变大,亮度随之提高;同时渣料熔化,噪声减弱); (4)3~5min后加入第二批渣料继续吹炼(随吹炼进行钢中碳逐渐降低,约12min 后火焰微弱,停吹); (5)倒炉,测温、取样,并确定补吹时间或出钢; (6)出钢,同时(将计算好的合金加入钢包中)进行脱氧合金化。 上炉钢出完钢后,倒净炉渣,堵出钢口,兑铁水和加废钢,降枪供氧,开始吹炼。在送氧开吹的同时,加入第一批渣料,加入量相当于全炉总渣量的三分之二,开吹3-5分钟后,第一批渣料化好,再加入第二批渣料。如果炉内化渣不好,则许加入第三批萤石渣料。 吹炼过程中的供氧强度:

氧气底吹转炉炼铅法

金属硫化物精矿不经焙烧或烧结焙烧直接生产出金属的熔炼方法称为直接熔炼。 对硫化铅精矿来说,这种粒度仅为几十微米的浮选精矿因其微粒小,比表面积大,化学反映和熔化过程都有可能很快进行,充分利用硫化矿粒子的化学活性和氧化热,采用高效、节能、少污染的直接熔炼流程处理是合理的。传统的烧结—鼓风炉流程将氧化——还原两过程分别在两台设备中进行,存在许多难以克服的弊端。随着能源、环境污染控制以及生产效率和生产成本对冶炼过程的要求越来越严格,传统炼铅法受到多方面的严峻挑战。具体说来,传统法有如下主要缺点: (1)随着选矿技术的进步,铅精矿品位一般可以达到60%,这样精矿给正常烧结带来许多困难,导致大量的熔剂、反粉或还有炉渣的加入,将烧结炉料的含量降至40%~50%。送往熔炼的是低品位的烧结块,致使每生产1t多炉渣,设备生产能力大大降低。 (2)1t PbS精矿氧化并造渣可放出2x106kJ以上的热量,这种能量在烧结作业中几乎完全损失掉,而在鼓风炉熔炼过程中又要另外消耗大量昂贵的冶金焦。 (3)铅精矿一般含硫15%~20%,处理1t精铅矿可生产0.5t硫酸,但烧结焙烧脱硫率只有70%左右,故硫的回收率往往低于70%,还有30%左右,还有30%左右的硫进入鼓风炉烟气,回收很困难,容易给环境造成污染。 (4)流程长,尤其是烧结及其返粉制备系统,含铅物料运转量大,粉尘多,大量散发的铅蒸汽、铅粉尘严重恶化了车间劳动卫生条件,容易造成劳动者铅中毒。 近30年来,冶金工作者力图通过PbS受控氧化即按反映式PbS+O 2=Pb+SO 2 的途径来实现硫化铅精矿的直接熔炼,以简化生厂流程,降低生产成本,利用氧化反应的热能以降低能耗,产出高浓度的SO 2 烟气用于制硫,减小对环境污染。但由于直接熔炼产生大量铅蒸汽、铅粉尘,且熔炼产物不是粗铅含硫高就是炉渣含铅高,致使许多直接熔炼方法都不很成功。 冶金工作者通过Pb-S—O系化学势图的研究,找到了获得成分稳定的金属铅的操作条件,但也明确指出,直接熔炼要么产出高硫铅,要么形成高铅渣;要

炼钢工艺流程图

炼钢工艺流程 1炼钢厂简介 炼钢厂主要将铁水冶炼成钢水,再经连铸机浇铸成合格铸坯。现有5座转炉,5台连铸机,年设计生产能力为500万吨,现年生产钢坯400万吨。其中炼钢一分厂年生产能力达到240万吨;炼钢二厂年生产能力为160万吨。 2炼钢的基本任务 钢是以Fe为基体并由C、Si、Mn、P、S等元素以及微量非金属夹杂物共同组成的合金。 炼钢的基本任务包括:脱碳、脱磷、脱硫、脱氧去除有害气体和夹杂,提高温度,调整成分,炼钢过程通过供氧造渣,加合金,搅拌升温等手段完成炼钢基本任务,“四脱两去两调整”。 3氧气转炉吹炼过程 氧气顶吹转炉的吹氧时间仅仅是十分钟,在这短短的时间内要完成造渣,脱碳、脱磷、脱硫、去气,去除非金属夹杂物及升温等基本任务。 由于使用的铁水成分和所炼钢种的不同,吹炼工艺也有所区别。氧气顶吹转炉炼钢的吹炼过程,根据一炉钢吹炼过程中金属成分,炉渣成分,熔池温度的变化规律,吹炼过程大致可以分为以下3个阶段: (1)吹炼前期。(2)吹炼中期。(3)终点控制。 炼好钢必须抓住各阶段的关键,精心操作,才能达到优质、高产、低耗、长寿的目标。 装入制度 装入制度是保证转炉具有一定的金属熔池深度,确定合理的装入数量,合适的铁水废钢比例。

3.1.1装入量的确定 装入量是指转炉冶炼中每炉次装入的金属料总重量,它主要包括铁水和废钢量。目前国内外装入制度大体上有三种方式: (1)定深装入;(2)分阶段定量装入;(3)定量装入 3.2.2装入次序 目前永钢的操作顺序为,钢水倒完后进行溅渣护炉溅渣完后装入废钢,然后兑入铁水。 为了维护炉衬,减少废钢对炉衬的冲击,装料次序也可以先兑铁水,后装废钢。若采用炉渣预热废钢,则先加废钢,再倒渣,然后兑铁水。如果采用炉内留渣操作,则先加部分石灰,再装废钢,最后兑铁水。 供氧制度 制订供氧制度时应考虑喷头结构,供氧压力,供氧强度和氧枪高度控制等因素。 3.2.1氧枪喷头 转炉供氧的射流特征是通过氧枪喷头来实现的,因此,喷头结构的合理选择是转炉供氧的关键。氧枪有单孔,多孔和双流道等多种结构。永钢使用的是4孔拉瓦尔喷头形式喷枪。 3.2.2氧气压力控制 氧气压力控制受炉内介质和流股马赫数的影响。经测定,炉内介质压力一般为—,流股马赫数在—之间。因此目前在转炉上使用的工作压力为—,视各种扎容量而定。一般说来,转炉容量大,使用压力越高。 3.2.3氧气流量和供氧强度 (1)氧气流量:

50吨氧气顶吹转炉炉体设计

50吨氧气顶吹转炉炉体设计 1 氧气顶吹转炉炼钢的发展概况 氧气顶吹转炉炼钢法是20世纪50年代产生和发展起来的炼钢技术,但从起出现至今已有100多年的历史。早在1856年英国人亨利·贝塞麦就研究开发了酸性底吹转炉炼钢法,以铁水为原料,从转炉底部通入空气氧化去除杂质冶炼成钢。第一次实现了液态钢冶炼的规模生产,从此进入了现代钢铁工业生产阶段。1878年德国尼·托马斯研究发明的碱性底吹转炉炼钢法,以碱性耐火材料砌筑炉衬,吹炼过程中可加入石灰造渣,能够脱除铁水中的P、S,解决了高磷铁水冶炼技术问题。由于转炉炼钢法有生产率高、成本低、设备简单等优点,在欧洲得到迅速的发展,并成为当时主要的炼钢方法。 第二次世界大战之后,从空气中分离氧气技术的成功,提供了大量廉价的工业纯氧,使贝塞麦的氧气炼钢设想得以实现。由于氧气顶吹转炉炼钢首先在林茨和多那维茨两城投入生产,所以取这两个城市名称的第一个字母L-D(LD)作为氧气顶吹转炉炼钢法的代称。 LD炼钢法具有反应速度快,热效率高,又可使用约30%的废钢为原料;并克服了底吹转炉钢质量差,品种少的缺点;因而一经问世就显示出巨大的优越性和生命力。进入20世纪70年代以后,顶吹转炉炼钢技术趋于完善。转炉的最大公称吨位达380t;单炉生产能力达到400~500万t/a;能够冶炼全部平炉钢种,若与有关精炼技术相匹配,还可以冶炼部分电炉钢种;大型转炉炉龄在1999年达到10000炉次/炉役以上;并实现了计算机控制终点碳与出钢温度。 1951年碱性空气侧吹转炉炼钢法首先在我国唐山钢厂试验成功,并于1952年投入工业生产。1954年开始了小型氧气顶吹转炉炼钢的试验研究工作,1962年将首钢试验厂空气侧吹转炉改建成3t氧气顶吹转炉,开始了工业性试验。在试验取得成功的基础上,我国第一个氧气顶吹转炉炼钢车间(2×30t)在首钢建成,于1964年12月26日投入生产。以后,又在唐山、上海、杭州等地改建了一批3.5~5t的小型氧气顶吹转炉。1966年上钢一厂将原有的一个空气侧吹转炉炼钢车间,改建成3座30t的氧气顶吹转炉炼钢车间,并首次采用了先进的烟气净化回收系统,于当年8月投入生产,还建设了弧形连铸机与之相配套,试验和扩大了氧气顶吹转炉炼钢的品种。这些都为我国日后氧气顶吹转炉炼钢技术的发展提供了宝贵经验。此后,我国原有的一些空气侧吹转炉车间逐渐改建成中小型氧气顶吹转炉车间,并新建了一批中、大型氧气顶吹转炉车间。20世纪80年代宝钢从日本引进建成具有70年代末技术水平的300t大型转炉3座、首钢购入二手设备建成210t转炉车间;90年代宝钢又建成250t转炉车间,武钢引进250t 转炉,唐钢建成150t转炉车间,重钢和首钢又建成80t转炉炼钢车间;许多平炉车间改建成氧气顶吹转炉车间等。到1998年,我国氧气顶吹转炉共有221座,其中100t以下的转炉有188座,(50-90t的转炉有25座),100-200t的转炉有23

氧气底吹转炉炼钢

通过转炉底部的氧气喷嘴,把氧气吹入炉内熔池进行炼钢的方法。 简史?? 氧气底吹转炉始于改造托马斯转炉(见托马斯法)。西欧富有高磷铁矿资源,用它炼出的生铁含磷高达1.6%~2.0%。以这种高磷铁水为原料的传统炼钢方法即托马斯法,也即碱性空气底吹转炉法,其副产品钢渣可作磷肥。对于高磷铁水,托马斯法过去一直是综合技术经济指标较好的一种炼钢方法。直至20世纪60年代,西欧还存在年产能力约1000万t钢的托马斯炉。但作为炼钢氧化剂的空气,其中氧气仅占1/5,其余4/5的氮气不仅吸收大量热量,并使钢中氮含量增加,引起低碳钢的脆性。为此人们一直试图用纯氧代替空气,以改进钢的质量和提高热效率。但采用氧气后,化学反应区的温度很高,底吹所用氧气喷嘴很快被烧坏。1965年加拿大空气液化公司为了抑制氧气炼钢产生的大量污染环境的褐色烟尘,试验在氧枪外层通气态或液态冷却剂,取得了预期效果,并同时解决了氧枪烧损快的问题。1967年联邦德国马克西米利安冶金厂(Maximilianshttte)引进了这项技术,以丙烷为氧喷嘴冷却剂,用于改造容量为24t的托马斯炉,首先试验成功氧气底吹转炉炼钢,取名OBM 法。1970年法国文代尔一西代尔公司(Wendel—Sidelor?? Co.)的隆巴(Rombas)厂以燃料油为氧喷嘴冷却剂,也成功地将24t托马斯炉改造成氧气底吹转炉,称为LWS法。随后用氧气底吹氧枪改造的托马斯炉在西欧得到迅速推广,炉容量大多为25~70t,用于高磷铁水炼钢,脱磷仍在后吹期完成,副产品钢渣作磷肥。1971年美国钢铁公司(U.S.Steel? Corp.)引进COBM法,为了解决经济有效地吹炼低磷生铁和设备大型化问题,在该公司炼钢实验室的30t试验炉上作了系列的中间试验,增加了底部吹氧同时喷吹石灰粉的系统,吹炼低磷普通铁水可在脱碳同时完成脱磷,称为Q—BOP法。随后,在菲尔菲德(Fairfield)厂和盖里(Gary)厂分别建设了两座200tQ—BOP炉和3座235tQ—BOP炉。前者取代原有平炉,后者取代正在建设的氧气顶吹转炉。从而实现了氧气底吹转炉的大型化,并扩大了应用范围。到20世纪70年代末氧气底吹转炉年产钢能力总计约3500万t。在中国,1973年钢铁研究总院在300kg 氧气底吹试验转炉上进行了底吹氧气和石灰粉的炼钢试验。随后,该院与北京钢铁设计研究总院及有关单位合作,在唐山钢厂、首都钢铁公司、济南第二钢厂及马鞍山钢铁公司先后完成了5t氧气底吹转炉炼钢的工业性试验。同时还进行了铁水提铌、提钒的试验。后由于顶底复吹转炉的出现和发展而停止。 工艺特点?? 氧气底吹转炉所用炉衬耐火材料、原材料及基本工艺和氧气顶吹转炉相同或相似。主要金属炉料是铁水和约10%~25%的废钢。供氧压力约为0.6~1.0MPa(6~10atm)。每炉吹炼时间(吹氧时间)一般为15~20min。每炉冶炼周期(本炉出钢到下炉出钢时间)一般为30~40min。氧耗量为50~60m3/t。主要工艺特点是从转炉底部供氧。(见图1)装有氧喷嘴的转炉炉底可以拆卸、更换。氧喷嘴由同心的双层套管组成。内层为铜管或不锈钢无缝管,外层用碳素钢无缝管。内层通氧气,并可同时喷吹石灰粉。两层套管之间的间隙通冷却剂。冷却剂通常为气态或液态的碳氢化合物,如天然气、丙烷或燃料油等。依靠碳氢化合物裂解吸热,并在氧流周围形成保护气膜,以及高速气流带走热量,以降低氧喷嘴及其附近反应区的温度,达到保护氧气喷嘴、减缓烧损的目的。为了使熔池搅拌均匀,反应界面大,吹炼平稳,并避免氧喷嘴个数少、直径过大、氧流比较集中而导致氧气穿透熔池,因此采用多支氧喷嘴,分散供氧。每支氧喷嘴的内径尺寸不超过熔池深度的1/35。这个数据适用于吹氧压力约为0.5~1MPa的中、小型转炉。例如:容量为30t的转炉,熔池平均深度为700mm,据此每支氧喷嘴最大内径为20mm;氧气压力为0.8MPa;氧气含石灰粉为1~2kg/m3,则氧气流量约为130m3/h?cm2;耗氧量为60m3/t;吹炼时间最多为20min。因此可以算出:需要供氧流量为5400m3/h,所需氧喷嘴内管总横截面约为42cm2,所需氧喷嘴数为14个。大型氧气底吹转炉的氧喷嘴直径与熔池深度之比可以大于上述数据,一般不超过熔池深度的1/15。例如200~240t氧气底吹转炉所用氧喷嘴数可采用10~16个。氧喷嘴之间以及氧喷嘴与炉壁之间要有适当间距,使熔池搅拌均匀和反应平稳,并减轻对炉衬耐火材料的侵蚀。氧喷

氧气顶吹转炉炼钢

R.D.佩尔克等著,邵象华、楼盛赫等译校:《氧气顶吹转炉炼钢》,冶金工业出版社,北京,(上册)1980,(下册)1982。(R.D.Pehlke,ed., BOF Steelmaking,AIME,1974~1977.) 氧气顶吹转炉炼钢 责任编辑:苏方来源:成都钢铁网2008年06月20日 氧气顶吹转炉炼钢(oxygen top blown converter steelmaking) 由转炉顶部垂直插入的氧枪将工业纯氧吹入熔池,以氧化铁水中的碳、硅、锰、磷等元素,并发热提高熔池温度而冶炼成为钢水的转炉炼钢方法。它所用的原料是铁水加部分废钢,为了脱除磷和硫,要加入石灰和萤石等造渣材料。炉衬用镁砂或白云石等碱性耐火材料制作。所用氧气纯度在99%以上,压力为0.81~1.22MPa(即8~12atm)。 简史空气底吹转炉和平炉是氧气转炉出现以前的主要炼钢设备。炼钢是氧化熔炼过程,空气是自然界氧的主要来源。然而空气中4/5的气体是氮气,空气吹炼时,这样多的氮气在炉内穿行而过,白白带走大量的热且有部分氮溶解在铁液中,成为恶化低碳钢品质的重要原因。平炉中,氧在用于燃烧燃料之后,过剩的氧要通过渣层传入钢水,所以反应速率极慢,这也就增加了热损失。因此,直接把氧气吹入熔池炼钢,成为许多冶金学家向往的目标。早在19世纪,现代炼钢法的创始人贝塞麦(H.Bessemer)就有了纯氧炼钢的设想,但因没有大量氧气而未进行试验。20世纪20年代后期,以空气液化和分馏为基础的林德一弗兰克(Linde —Frankel)制氧技术开发成功,能够生产可供工业使用的廉价氧气,氧气炼钢又为冶金界所注意。从1929年开始,柏林工业大学的丢勒尔教授(R.Durrer)在实验室中研究吹氧炼钢,第二次世界大战开始后转到瑞士的冯?罗尔(V.Roll)公司继续进行研究。1936~1939年勒莱普(O.Lellep)在奥伯豪森(Oberhausen)进行了底吹氧炼钢的试验,由于喷嘴常损坏未能成功。1938年亚琛(Aachen)工业大学的施瓦茨(C.V.Schwarz)提出用超音速射流向下吹氧炼钢,并在实验室进行了试验,将托马斯生铁吹炼成低氮钢,但因熔池浅而损坏了炉底。1948年丢勒尔(R.Durrer)等在冯?罗尔(V onRoll)公司建成2.5t的焦油白云石衬的试验转炉,以450的斜度将水冷喷嘴插入铁水吹氧炼钢,无论贝塞麦生铁或托马斯生铁都能成功炼成优质钢水,而且认识到喷嘴垂直向下时,最有利于喷嘴和炉衬的寿命。这样就最后完成了转炉吹氧炼钢的实验室试验。从实验室研究向工业化试验的进一步发展是由奥地利的沃埃施特(VOEST)公司完成的。第二次世界大战后奥地利面临重建钢铁工业的需要,该国缺少废钢使得平炉或电炉炼钢法缺乏竞争力。沃埃施特公司注意到丢勒尔的试验,决心开发一个具有竞争力的新的炼钢方法。1949年5月在奥地利累欧本(Leoben)开了一次氧气炼钢的讨论会,决定冯?罗尔、曼内斯曼(Mannesmann)、阿尔派(ALPINE)和沃埃施特4个公司协作,在沃埃施特的林茨(Linz)钢厂作进一步的试验。1949年6月在林茨建成2t顶吹氧试验转炉,由苏埃斯(T.Suess)和豪特曼(H.Hauttmann)负责,在丢勒尔参与下,成功地解决了合适的氧气压力、流量和喷嘴与熔池面距离等工艺操作问题。之后迅速建立15t试验转炉,广泛研究新方法所冶炼钢的品质。由于钢的质量很好而且炼钢工艺的效率很高,1949年末该公司决定在林茨投资建设世界第一个氧气顶吹转炉工厂。并命名该炼钢法为LD法。林茨的30tLD转炉工厂于1952年11月投产。翌年春季第2个30tLD转炉工厂在奥地利多纳维兹([)onawitz)建成投产。1950年由苏埃斯申请得到专利权。推动炼钢工业再次大变革的氧气顶吹转炉炼钢法登上了历史舞台。该法问世后,数十年内迅速取代了平炉炼钢而成为世界上最主要的炼钢方法。在北美,美国是平炉炼钢大国,有平炉熔池吹氧的经验。美国又是第二次世界大战的最大战胜国,工业基础雄厚。在得知转炉氧气炼钢的信息后,美国麦克劳斯(McLouth)公司和加拿大多法斯柯(DOFASCO)公司于1954年各迅速建成一个35t氧气顶吹转炉车间并投产。随后

炼钢工艺流程

【导读】:转炉炼钢是把氧气鼓入熔融的生铁里,使杂质硅、锰等氧化。在氧化的过程中放出大量的热量(含1%的硅可使生铁的温度升高200摄氏度),可使炉内达到足够高的温度。因此转炉炼钢不需要另外使用燃料。炼钢的基本任务是脱碳、脱磷、脱硫、脱氧,去除有害气体和非金属夹杂物,提高温度和调整成分。归纳为:“四脱”(碳、氧、磷和硫),“二去”(去气和去夹杂),“二调整”(成分和温度)。采用的主要技术手段为:供氧,造渣,升温,加脱氧剂和合金化操作。本专题将详细介绍转炉炼钢生产的工艺流程,主要工艺设备的工作原理以及控制要求等信息。由于时间的仓促和编辑水平有限,专题中难免出现遗漏或错误的地方,欢迎大家补充指正。 转炉冶炼目的:将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。 【相关信息】钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成Fe3C固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。 转炉冶炼原理简介: 转炉炼钢是在转炉里进行。转炉的外形就像个梨,内壁有耐火砖,炉侧有许多小孔(风口),压缩空气从这些小孔里吹炉内,又叫做侧吹转炉。开始时,转炉处于水平,向内注入1300摄氏度的液态生铁,并加入一定量的生石灰,然后鼓入空气并转动转炉使它直立起来。这时液态生铁表面剧烈的反应,使铁、硅、锰氧化 (FeO,SiO2 , MnO,) 生成炉渣,利用熔化的钢铁和炉渣的对流作用,使反应遍及整个炉内。几分钟后,当钢液中只剩下少量的硅与锰时,碳开始氧化,生成一氧化碳(放热)使钢液剧烈沸腾。炉口由于溢出的一氧化炭的燃烧而出现巨大的火焰。最后,磷也发生氧化并进一步生成磷酸亚铁。磷酸亚铁再跟生石灰反应生成稳定的磷酸钙和硫化钙,一起成为炉渣。当磷与硫逐渐减少,火焰退落,炉口出现四氧化三铁的褐色蒸汽时,表明钢已炼成。这时应立即停止鼓风,并把转炉转到水平位置,把钢水倾至钢水包里,再加脱氧剂进行脱氧。整个过程只需15分钟左右。如果氧气是从炉底吹入,那就是底吹转炉;氧气从顶部吹入,就是顶吹转炉。 转炉冶炼工艺流程简介:

浅论底吹氧枪

浅论底吹氧枪 高长春袁培新陈汉荣 摘要:本文较系统的论述有色金属氧气底吹熔炼氧枪基本原理,介绍氧枪设计计算方法,提出延长氧枪使用寿命的技术措施。 关键词:氧气底吹熔炼,氧枪结构、材质、气力学参数,氧枪蚀损机理。 有色金属氧气底吹熔炼在国内外已有二十多年历史。近几年国内氧气底吹炼铅工艺发展迅速,预计到2010年用该工艺生产粗铅将超过100万吨/年,占全国总产量的40%;氧气底吹炼铜工艺也在起步,发展前景看好。氧枪是氧气底吹熔炼工艺中的核心技术,这种技术已比较成熟,但氧枪使用寿命仍然是关键问题。本文围绕延长氧枪使用寿命问题,就氧枪基本原理,主要技术参数计算方法等方面作粗浅分析论述,以期起到抛砖引玉的作用。 1、氧枪和底吹熔池运动 氧气底吹熔炼熔池的运动是喷入氧气和其他气体的结果。气体射流由喷嘴喷出后,沿射流的纵轴向熔池面伸展,这时射流四周的熔池沿射流束的径向流来。射流束的流速愈大,熔池流向射流束的速度亦愈大。射流带动熔池向上运动,熔池衰减射流的能量,减缓射流的运动,互相运动的同时发生物理化学反应,射流则逐渐扩大。但主射流仍保持着“气柱”或“气舌”的形状,直到达到一定高度后,方在主射流的顶部发生气—液交混,而形成气泡带向熔池面伸展。气体到达熔池面时便逸出,熔池则再向下流动形成回流,形成熔池熔液不断循环流动。这个不断循环流动的过程,便是氧气和其他气体不断地把能量传送给熔池的过程;这个不断循环流动的过程,造成底吹熔炼有别于顶吹或侧吹熔炼过程的反应特性和流动特性,使熔池得到充分搅拌,具有更为优越的传质、传热功能,喷入氧气得到极高的利用率。水力学模型实验和底吹熔炼生产实践发现,喷咀喷出气体的压力和喷枪结构选择不当,会出现严重的“气泡后座”现象、严重的喷溅现象、严重的熔池振荡现象,甚至气流射穿熔池。 底吹气体传送给熔池的能量,有气体的动量、冲量、功能和膨胀功。动量、

氧气顶吹转炉炉体设计

氧气顶吹转炉炉体设计

目录 一转炉系统设备.............................................................................................................- 1 - 1.1 炉型.....................................................................................................................- 1 - 1.1.1 转炉炉型概念.............................................................................................- 1 - 1.1.2 合理的炉型要求.........................................................................................- 1 - 1.1.3 转炉的基本炉型.........................................................................................- 2 - 1.1.3.1 筒球型.................................................................................................- 2 - 1.1.3.2 锥球型.................................................................................................- 2 - 1.1.3.3 截锥型.................................................................................................- 2 - 1.2 转炉炉型主要参数确定.....................................................................................- 3 - 1.2.1 转炉的公称容量.........................................................................................- 3 - 1.2.2 炉容比.........................................................................................................- 3 - 1.2.2.1 铁水比、铁水成分.............................................................................- 3 - 1.2.2.2 供氧强度.............................................................................................- 3 - 1.2.2.3 冷却剂的种类.....................................................................................- 4 - 1.2.3 高径比.........................................................................................................- 4 - 1.3 炉型主要尺寸的确定.........................................................................................- 4 - 1.3.1 筒球型氧气顶吹转炉的主要尺寸.............................................................- 4 - 1.3.1.1 熔池直径D..........................................................................................- 5 - 1.4 炉壳.....................................................................................................................- 6 - 1.4.1 炉壳的作用.................................................................................................- 6 - 1.4.2 炉壳的组成.................................................................................................- 6 - 1.4. 2.1 炉帽.....................................................................................................- 6 - 1.4. 2.2 炉身.....................................................................................................- 8 - 1.4. 2.3 炉底.....................................................................................................- 8 - 1.4. 2.4 制作及要求.........................................................................................- 8 - 1.5 炉体支撑系统.....................................................................................................- 9 - 1.5.1 托圈与耳轴.................................................................................................- 9 - 1.5.1.1 托圈与耳轴的作用、结构.................................................................- 9 - 1.5.1.2 托圈与耳轴的连接...........................................................................- 10 - 1.5.2 炉体与托圈...............................................................................................- 10 - 1.5.3 耳轴轴承座...............................................................................................- 13 - 1.6 转炉倾动机构...................................................................................................- 14 - 1.6.1 工作特点...................................................................................................- 14 - 1.6.1.1 减速比大...........................................................................................- 14 - 1.6.1.2 倾动力矩大.......................................................................................- 14 - 1.6.1.3 启动制动频繁,承受的动载荷大...................................................- 14 - 1.6.1.4 工作条件恶劣...................................................................................- 15 - 1.6.2 结构要求...................................................................................................- 15 - 1.6. 2.1 满足工艺需要...................................................................................- 15 - 1.6. 2.2 具有两种以上倾动速度...................................................................- 15 - 1.6. 2.3 安全可靠运转...................................................................................- 15 - 1.6. 2.4 良好的适应性...................................................................................- 15 - 1.6. 2.5 结构紧凑效率高...............................................................................- 15 -

相关文档
最新文档