2019高中数学概率练习题
2019年高考数学“概率与统计”专题复习(真题+答案)

2019年高考数学“概率与统计”专题复习(名师精选重点试题+实战真题演练+答案,建议下载保存) (总计65页,涵盖所有知识点,价值很高,可以达到事半功倍的复习效果,值得下载打印练习)1 随机事件的概率基础自测1.下列说法正确的是( )A.某事件发生的频率为P(A)=1.1B.不可能事件的概率为0,必然事件的概率为1C.小概率事件就是不可能发生的事件,大概率事件就是必然发生的事件D.某事件发生的概率是随着试验次数的变化而变化的 答案 B2.在n 次重复进行的试验中,事件A 发生的频率为n m ,当n 很大时,P(A)与n m的关系是 ( )n mB. P(A)<nm>n mD. P(A)=nm答案3.给出下列三个命题,其中正确命题有 ( )①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. 个B.1个C.2个D.3个答案4.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1 小时内断头不超过两次的概率和断头超过两次的概率分别为 , . 答案 0.97 0.035.甲、乙两人下棋,两人和棋的概率是21,乙获胜的概率是31,则乙不输的概率是 . 答案656.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=21,P (B ) =61,则出现奇数点或2点的概率之和为答案32例1 盒中仅有4只白球5只黑球,从中任意取出一只球. (1)“取出的球是黄球”是什么事件?它的概率是多少? (2)“取出的球是白球”是什么事件?它的概率是多少? (3)“取出的球是白球或黑球”是什么事件?它的概率是多少?解 (1)“取出的球是黄球”在题设条件下根本不可能发生,因此它是不可能事件,其概率为0. (2)“取出的球是白球”是随机事件,它的概率是94. (3)“取出的球是白球或黑球”在题设条件下必然要发生,因此它是必然事件,它的概率是1. 例2 某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这位射击运动员射击一次,击中10环的概率为多少?解 (1)击中10环的频率依次为0.8,0.95,0.88,0.93,0.89,0.906. (2)这位射击运动员射击一次,击中10环的概率约是0.9.例3 (12分)国家射击队的某队员射击一次,命中7~10环的概率如下表所示:求该射击队员射击一次(1)射中9环或10环的概率; (2)至少命中8环的概率; (3)命中不足8环的概率.解 记事件“射击一次,命中k 环”为A k (k ∈N ,k≤10),则事件A k 彼此互斥.2分(1)记“射击一次,射中9环或10环”为事件A ,那么当A 9,A 10之一发生时,事件A 发生,由互斥事件的加法公式得P (A )=P (A 9)+P (A 10)=0.32+0.28=0.60.5分(2)设“射击一次,至少命中8环”的事件为B ,那么当A 8,A 9,A 10之一发生时,事件B 发生.由互斥事件概率的加法公式得P (B )=P (A 8)+P (A 9)+P (A 10) =0.18+0.28+0.32=0.78.9分(3)由于事件“射击一次,命中不足8环”是事件B :“射击一次,至少命中8环”的对立事件:即B 表示事件“射击一次,命中不足8环”,根据对立事件的概率公式得 P ()=1-P (B )=1-0.78=0.22.12分1.在12件瓷器中,有10件一级品,2件二级品,从中任取3件. (1)“3件都是二级品”是什么事件? (2)“3件都是一级品”是什么事件? (3)“至少有一件是一级品”是什么事件?解 (1)因为12件瓷器中,只有2件二级品,取出3件都是二级品是不可能发生的,故是不可能事件. (2)“3件都是一级品”在题设条件下是可能发生也可能不发生的,故是随机事件.(3)“至少有一件是一级品”是必然事件,因为12件瓷器中只有2件二级品,取三件必有一级品. 2.某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门对某批产品进行了抽样检测,检查结果如下表所示:(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少?(结果保留到小数点后三位) 解 (1)依据公式p=nm,可以计算出表中乒乓球优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,抽取的球数n 不同,计算得到的频率值虽然不同,但随着抽取球数的增多,却都在常数0.950的附近摆动,所以抽取一个乒乓球检测时,质量检查为优等品的概率为0.950. 3.玻璃球盒中装有各色球12只,其中5红、4黑、2白、1绿,从中取1球. 求:(1)红或黑的概率; (2)红或黑或白的概率.解 方法一 记事件A 1:从12只球中任取1球得红球; A 2:从12只球中任取1球得黑球; A 3:从12只球中任取1球得白球; A 4:从12只球中任取1球得绿球,则 P (A 1)=125,P (A 2)=124,P (A 3)=122,P (A 4)=121. 根据题意,A 1、A 2、A 3、A 4彼此互斥, 由互斥事件概率加法公式得 (1)取出红球或黑球的概率为 P (A 1+A 2)=P (A 1)+P (A 2)=125+124=43. (2)取出红或黑或白球的概率为P (A 1+A 2+A 3)=P (A 1)+P (A 2)+P (A 3) =125+124+122=1211. 方法二 (1)取出红球或黑球的对立事件为取出白球或绿球,即A 1+A 2的对立事件为A 3+A 4, ∴取出红球或黑球的概率为P (A 1+A 2)=1-P (A 3+A 4)=1-P (A 3)-P (A 4) =1-122-121=129=43.(2)A 1+A 2+A 3的对立事件为A 4. P (A 1+A 2+A 3)=1-P (A 4)=1-121=1211.一、选择题1.已知某厂的产品合格率为90%,抽出10件产品检查,则下列说法正确的是( )合格产品少于9件 合格产品多于9件 合格产品正好是9件D.合格产品可能是9件答案2.某入伍新兵的打靶练习中,连续射击2次,则事件“至少有1次中靶”的互斥事件是( )至多有1次中靶 B.2次都中靶 次都不中靶D.只有1次中靶答案3.甲:A 1、A 2是互斥事件;乙:A 1、A 2是对立事件,那么( ).甲是乙的充分条件但不是必要条件甲是乙的必要条件但不是充分条件甲是乙的充要条件甲既不是乙的充分条件,也不是乙的必要条件答案4.将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是 ( )A.2165 B.21625C.21631D.21691答案 D5.一个口袋内装有一些大小和形状都相同的白球、黑球和红球,从中摸出一个球,摸出红球的概率是0.3,摸出白球的概率是0.5,则摸出黑球的概率是( )D.0.答案6.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )B.0.60答案 二、填空题7.中国乒乓球队甲、乙两名队员参加奥运会乒乓球女子单打比赛,甲夺得冠军的概率为73,乙夺得冠军的概率为41,那么中国队夺得女子乒乓球单打冠军的概率为 . 答案2819 8.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率是90%,则甲、乙二人下成和棋的概率为 . 答案 50% 三、解答题9.某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或9环的概率; (2)不够7环的概率.解 (1)设“射中10环”为事件A ,“射中9环”为事件B ,由于A ,B 互斥,则 P (A+B )=P (A )+P (B )=0.21+0.23=0.44. (2)设“少于7环”为事件C ,则P (C )=1-P (C )=1-(0.21+0.23+0.25+0.28)=0.03.10.某医院一天派出医生下乡医疗,派出医生人数及其概率如下:求:(1)派出医生至多2人的概率; (2)派出医生至少2人的概率. 解 记事件A :“不派出医生”, 事件B :“派出1名医生”, 事件C :“派出2名医生”, 事件D :“派出3名医生”, 事件E :“派出4名医生”, 事件F :“派出不少于5名医生”. ∵事件A ,B ,C ,D ,E ,F 彼此互斥, 且P (A )=0.1,P (B )=0.16,P (C )=0.3, P (D )=0.2,P (E )=0.2,P (F )=0.04. (1)“派出医生至多2人”的概率为P (A+B+C )=P (A )+P (B )+P (C ) =0.1+0.16+0.3=0.56.(2)“派出医生至少2人”的概率为P (C+D+E+F )=P (C )+P (D )+P (E )+P (F ) =0.3+0.2+0.2+0.04=0.74. 或1-P (A+B )=1-0.1-0.16=0.74.11.抛掷一个均匀的正方体玩具(各面分别标有数字1、2、3、4、5、6),事件A 表示“朝上一面的数是奇数”,事件B 表示“朝上一面的数不超过3”,求P (A+B ).解 方法一 因为A+B 的意义是事件A 发生或事件B 发生,所以一次试验中只要出现1、2、3、5四个可能结果之一时,A+B 就发生,而一次试验的所有可能结果为6个,所以P (A+B )=64=32. 方法二 记事件C 为“朝上一面的数为2”,则A+B=A+C ,且A 与C 互斥. 又因为P (C )=61,P (A )=21,所以P (A+B )=P (A+C )=P (A )+P (C )=21+61=32. 方法三 记事件D 为“朝上一面的数为4或6”,则事件D 发生时,事件A 和事件B 都不发生,即事件A+B 不发生.又事件A+B 发生即事件A 发生或事件B 发生时,事件D 不发生,所以事件A+B 与事件D 为对立事件.因为P (D )=62=31, 所以P (A+B )=1-P (D )=1-31=32. 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为41,得到黑球或黄球的概率是125,得到黄球或绿球的概率是21,试求得到黑球、黄球、绿球的概率各是多少? 解 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D.由于A 、B 、C 、D 为互斥事件,根据已知得到⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+++21)()(125)()(1)()()(41D P C P C P B P D P C P B P 解得⎪⎪⎪⎩⎪⎪⎪⎨⎧===31)(61)(41)(D P C P B P . ∴得到黑球、黄球、绿球的概率各是41,61,31. §2 古典概型1.从甲、乙、丙三人中任选两名代表,甲被选中的概率为( )A.21 B.31 C.32答案 C2.掷一枚骰子,观察掷出的点数,则掷出奇数点的概率为( )A.31 B.41 C.21D.32答案 C3.袋中有2个白球,2个黑球,从中任意摸出2个,则至少摸出1个黑球的概率是( )A.43 B.65 C.61 D.31答案 B4.一袋中装有大小相同,编号为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号之和不小于15的概率为 ( )A.321 B.641 C.323D.643答案 D5.掷一枚均匀的硬币两次,事件M :“一次正面朝上,一次反面朝上” ;事件N :“至少一次正面朝上” .则下列结果正确的是( )A.P(M)=31,P(N)=21B.P(M)=21,P(N)=21C.P(M)=31,P(N)=43D.P(M)=21,P(N)=43答案例1 有两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1颗正四面体玩具出现的点数,y 表示第2颗正四面体玩具出现的点数.试写出:基础自测(1)试验的基本事件;(2)事件“出现点数之和大于3”; (3)事件“出现点数相等”.解 (1)这个试验的基本事件为: (1,1),(1,2),(1,3),(1,4), (2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4), (4,1),(4,2),(4,3),(4,4).(2)事件“出现点数之和大于3”包含以下13个基本事件:(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3), (3,4),(4,1),(4,2),(4,3),(4,4). (3)事件“出现点数相等”包含以下4个基本事件: (1,1),(2,2),(3,3),(4,4).例2 甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙 两人依次各抽一题.(1)甲抽到选择题、乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?解 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24. ∴P (A )=n m =9024=154. (2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 含基本事件数为4×3= ∴由古典概型概率公式,得P (B )=9012=152, 由对立事件的性质可得 P (C )=1-P (B )=1-152=1513. 例3 (12分)同时抛掷两枚骰子.(1)求“点数之和为6”的概率; (2)求“至少有一个5点或6点”的概率. 解 同时抛掷两枚骰子,可能的结果如下表:共有36个不同的结果.6分 (1)点数之和为6的共有5个结果,所以点数之和为6的概率p=365.9分(2)方法一 从表中可以得其中至少有一个5点或6点的结果有20个,所以至少有一个5点或6点的概率p=3620=95. 12分方法二 至少有一个5点或6点的对立事件是既没有5点又没有6点,如上表既没有5点又没有6点的结果共有16个,则既没有5点又没有6点的概率p=3616=94, 所以至少有一个5点或6点的概率为1-94=95. 12分1.某口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出2只球. (1)共有多少个基本事件?(2)摸出的2只球都是白球的概率是多少?解 (1)分别记白球为1,2,3号,黑球为4,5号,从中摸出2只球,有如下基本事件(摸到1,2号球用(1,2)表示): (1,2),(1,3),(1,4),(1,5), (2,3),(2,4),(2,5),(3,4), (3,5),(4,5).因此,共有10个基本事件.(2)如下图所示,上述10个基本事件的可能性相同,且只有3个基本事件是摸到2只白球(记为事件A ), 即(1,2),(1,3),(2,3),故P (A )=103.故共有10个基本事件,摸出2只球都是白球的概率为103. 2.(2008·山东文,18)现有8名奥运会志愿者,其中志愿者A 1、A 2、A 3通晓日语,B 1、B 2、B 3通晓俄语,C 1、C 2通晓韩语,从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组. (1)求A 1被选中的概率; (2)求B 1和C 1不全被选中的概率.解 (1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件空间Ω={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2, B 2,C 1),(A 2,B 2,C 2),(A 2,B 3,C 1),(A 2,B 3,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2),(A 3,B 3,C 1),(A 3,B 3,C 2)}由18个基本事件组成.由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等 可能的.用M 表示“A 1恰被选中”这一事件,则M={(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 1,B 3,C 1),(A 1,B 3,C 2)}事件M 由6个基本事件组成,因而P (M )=186=31. (2)用N 表示“B 1、C 1不全被选中”这一事件,则其对立事件N 表示“B 1、C 1全被选中”这一事件,由于N ={(A 1,B 1,C 1),(A 2,B 1,C 1),(A 3,B 1,C 1)},事件N 有3个基本事件组成,所以P (N )=183=61,由对立事件的概率公式得 P (N )=1-P (N )=1-61=65. 3.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率: (1)A:取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个小球中任取两个的方法为(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个.(1)从袋中的6个球中任取两个,所取的两球全是白球的总数,即是从4个白球中任取两个的方法总数,共有6个,即为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=156=52. (2)从袋中的6个球中任取两个,其中1个为红球,而另1个为白球,其取法包括(1,5),(1,6), (2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8个. ∴取出的两个球1个是白球,另1个是红球的概率 P (B )=158.一、选择题1.盒中有1个黑球和9个白球,它们除颜色不同外,其他方面没有什么差别.现由10人依次摸出1个球.设第1个人摸出的1个球是黑球的概率为P 1,第10个人摸出黑球的概率是P 10,则( )10=101P 1B.P 10=91P 1 10=010=P 1答案2.采用简单随机抽样从含有n 个个体的总体中抽取一个容量为3的样本,若个体a 前2次未被抽到,第3次被抽到的概率等于个体a 未被抽到的概率的31倍,则个体a 被抽到的概率为 ( )A.21B.31C.41D.61 答案3.有一个奇数列1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.101B.103 C.51 D.53 答案4.从数字1,2,3中任取两个不同数字组成两位数,该数大于23的概率为( )A.31B.61 C.81D.41 答案5.设集合A={1,2},B={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a,b )落在直线x+y=n 上”为事件C n (2≤n≤5,n ∈N ),若事件C n 的概率最大,则n 的所 有可能值为 ( )C.2和D.3和答案6.(2008·温州模拟)若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x+y=5下方的概率是( )A.31B.41C.61D.121 答案二、填空题7.(2008·江苏,2)一个骰子连续投2次,点数和为4的概率为 . 答案121 8.(2008·上海文,8)在平面直角坐标系中,从五个点:A (0,0)、B (2,0)、C (1,1)、D (0,2)、 E (2,2)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 答案54三、解答题9.5张奖券中有2张是中奖的,首先由甲然后由乙各抽一张,求: (1)甲中奖的概率P (A ); (2)甲、乙都中奖的概率; (3)只有乙中奖的概率; (4)乙中奖的概率.解 (1)甲有5种抽法,即基本事件总数为5.中奖的抽法只有2种,即事件“甲中奖”包含的基本事件数为2,故甲中奖的概率为P 1=52. (2)甲、乙各抽一张的事件中,甲有五种抽法,则乙有4种抽法,故所有可能的抽法共5×4=20种,甲、乙都中奖的事件中包含的基本事件只有2种,故P 2=202=101. (3)由(2)知,甲、乙各抽一张奖券,共有20种抽法,只有乙中奖的事件包含“甲未中”和“乙中”两种情况,故共有3×2=6种基本事件,∴P 3=206=103. (4)由(1)可知,总的基本事件数为5,中奖的基本事件数为2,故P 4=52. 10.箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.求取出的3个全是正品的概率解 (1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有A 3b a +种方法,从a 个正品中不放回抽样3次共有A 3a种方法,可以抽出3个正品的概率p=33A A ba a +.若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有C 3b a +种方法,从a 个正品中不放回抽样3次共有C 3a 种方法,可以取出3个正品的概率p=33C C ba a +.两种方法结果一致(2)从a+b 个产品中有放回的抽取3次,每次都有a+b 种方法,所以共有(a+b)3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率p=333)(⎪⎭⎫ ⎝⎛+=+b a a b a a . 11.袋中装有黑球和白球共7个,从中任取两个球都是白球的概率为71.现有甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有1人取到白球时即终止.每个球在每一次被取出的机会是等可能的.(1)求袋中原有白球的个数; (2)求取球2次终止的概率; (3)求甲取到白球的概率.解 (1)设袋中有n 个白球,从袋中任取2个球是白球的结果数是2)1(-n n . 从袋中任取2个球的所有可能的结果数为276⨯=21. 由题意知71=212)1(-n n =42)1(-n n , ∴n (n-1)=6,解得n=3(舍去n=-2). 故袋中原有3个白球.(2)记“取球2次终止”为事件A ,则P (A )=6734⨯⨯=72. (3)记“甲取到白球”的事件为B , “第i 次取到白球”为A i ,i=1,2,3,4,5,因为甲先取,所以甲只有可能在第1次,第3次和第5次取球. 所以P (B )=P (A 1+A 3+A 5). 因此A 1,A 3,A 5两两互斥,∴P (B )=P (A 1)+P (A 3)+P (A 5)=73+567334⨯⨯⨯⨯+3456731234⨯⨯⨯⨯⨯⨯⨯⨯ =73+356+351=3522. (2008·海南、宁夏文,19)为了了解《中华人民共和国道路交通安全法》在学生中的普及情况,调查部门对某校6名学生进行问卷调查,6人得分情况如下: 5,6,7,8,9,10.把这6名学生的得分看成一个总体. (1)求该总体的平均数;(2)用简单随机抽样方法从这6名学生中抽取2名,他们的得分组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过0.5的概率. 解 (1)总体平均数为61(5+6+7+8+9+10)=7.5. (2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过0.5”. 从总体中抽取2个个体全部可能的基本结果有:(5,6),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,8),(7,9),(7,10),(8,9),(8,10),(9,10),共15个基本结果.事件A 包括的基本结果有:(5,9),(5,10),(6,8),(6,9),(6,10),(7,8),(7,9),共有7个基本结果.所以所求的概率为P (A )=157. §3 几何概型基础自测1.质点在数轴上的区间[0,2]上运动,假定质点出现在该区间各点处的概率相等,那么质点落在区间 [0,1]上的概率为( )4131C.21D.以上都不对答案2.某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为 ( )A.π2 B.π1C.32D.31答案3.某路公共汽车每5分钟发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过3分钟的概率是 ( )A.53B.54 C.52 D.51答案4.设D 是半径为R 的圆周上的一定点,在圆周上随机取一点C ,连接CD 得一弦,若A 表示“所得弦的长大于圆内接等边三角形的边长”,则P (A )= . 答案315.如图所示,在直角坐标系内,射线OT 落在30°角的终边上,任作一条射线OA , 则射线OA 落在∠yOT 内的概率为 . 答案 61例1 有一段长为10米的木棍,现要截成两段,每段不小于3米的概率有多大?解 记“剪得两段都不小于3米”为事件A ,从木棍的两端各度量出3米,这样中间就有10-3-3=4(米).在中间的4米长的木棍处剪都能满足条件, 所以P (A )=103310--=104=0.4. 例2 街道旁边有一游戏:在铺满边长为9 cm 的正方形塑料板的宽广地面上,掷一枚半径为1 cm 的小 圆板,规则如下:每掷一次交5角钱,若小圆板压在正方形的边,可重掷一次;若掷在正方形内,须再交5角钱可玩一次;若掷在或压在塑料板的顶点上,可获1元钱.试问: (1)小圆板压在塑料板的边上的概率是多少? (2)小圆板压在塑料板顶点上的概率是多少?解 (1)考虑圆心位置在中心相同且边长分别为7 cm 和9 cm 的正方形围成的区域内,所以概率为22979-=8132. (2)考虑小圆板的圆心在以塑料板顶点为圆心的41圆内,因正方形有四个顶点,所以概率为819ππ=. 例3 (12分)在1升高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10毫升,含有麦锈病 种子的概率是多少?从中随机取出30毫升,含有麦锈病种子的概率是多少? 解 1升=1 000毫升,2分记事件A :“取出10毫升种子含有这粒带麦锈病的种子”. 4分 则P (A )=000110=0.01,即取出10毫升种子含有这粒带麦锈病的种子的概率为0.01. 7分记事件B :“取30毫升种子含有带麦锈病的种子”.9分 则P (B )=000130=0.03,即取30毫升种子含有带麦锈病的种子的概率为0.03.12分 例4 在Rt △ABC 中,∠A=30°,过直角顶点C 作射线CM 交线段AB 于M ,求使|AM|>|AC|的概率. 解 设事件D“作射线CM ,使|AM|>|AC|”.在AB 上取点C′使|AC′|=|AC|,因为△ACC′是等腰三角形, 所以∠ACC′=230180-=75°, A μ=90-75=15,Ωμ=90,所以,P (D )=9015=61. 例5 甲、乙两人约定在6时到7时之间在某处会面,并约定先到者应等候另一人一刻钟,过时即可离 去.求两人能会面的概率.解 以x 轴和y 轴分别表示甲、乙两人到达约定地点的时间,则两人能够会面的充要条件是|x-y|≤15.在如图所示平面直角坐标系下,(x,y )的所有可能结果是边长为60的正方形区域,而事件A“两人能够会面”的可能结果由图中的阴影部分表示.由几何概型的概率公式得:P (A )=S S A =222604560-=600302526003-=167.所以,两人能会面的概率是167.1.如图所示,A 、B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C 、D ,问A 与C ,B 与D 之间的距离都不小于10米的概率是多少?解 记E :“A 与C ,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10(米),∴P (E )=3010=31. 2.(2008·江苏,6)在平面直角坐标系xOy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则落入E 中的概率为 .答案16π 3.如图所示,有一杯2升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解 记“小杯水中含有这个细菌”为事件A ,则事件A 的概率只与取出的水的体积有关,符合几何概型的条件.∵A μ=0.1升,Ωμ=2升, ∴由几何概型求概率的公式, 得P (A )=ΩA μμ=21.0=201=0.05. 4.在圆心角为90°的扇形AOB 中,以圆心O 为起点作射线OC ,求使得∠AOC 和∠BOC 都不小于30°的概率.解 如图所示,把圆弧 三等分,则∠AOF=∠BOE=30°,记A 为“在扇形AOB 内作一射线OC ,使∠AOC 和∠BOC 都不小于30°”,要使∠AOC 和∠BOC 都不小于30°,则OC 就落在∠EOF 内, ∴P (A )=9030=31. 5.将长为l 的棒随机折成3段,求3段构成三角形的概率.解 设A=“3段构成三角形”,x,y 分别表示其中两段的长度,则第3段的长度为l-x-y. 则试验的全部结果可构成集合Ω={(x ,y )|0<x <l,0<y <l,0<x+y <l},要使3段构成三角形,当且仅当任意两段之和大于第3段,即x+y>l-x-y ⇒x+y >2l,x+l-x-y >y⇒y <2l ,y+l-x-y >x ⇒x <2l . 故所求结果构成集合A=⎭⎬⎫⎩⎨⎧<<>+2,2,2|),(l x l y l y x y x . 由图可知,所求概率为P (A )=的面积的面积ΩA =22212l l ⎪⎭⎫ ⎝⎛∙=41.一、选择题1.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a <20的概率是( )A.31 B.21 C.103 D.107答案2.在长为10厘米的线段AB 上任取一点G ,用AG 为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )A.259 B.2516C.103D.51答案3.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.121B.83C.161D.65答案4.如图为一半径为2的扇形(其中扇形中心角为90°),在其内部随机地撒一粒黄豆,则它落在阴影部分的概率为()A.π2B.π1 C.21 D.1-π2答案5.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是 ( ) A.41 B.21 C.43 D.32答案6.已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )A.4πB.8πC.6πD.12π答案二、填空题7.已知下图所示的矩形,其长为12,宽为5.在矩形内随机地撒1 000颗黄豆,数得落在阴影部分的黄豆数为550颗,则可以估计出阴影部分的面积约为 .答案 338.在区间(0,1)中随机地取两个数,则事件“两数之和小于56”的概率为 . 答案2517 三、解答题9.射箭比赛的箭靶涂有5个彩色的分环,从外向内白色、黑色、蓝色、红色,靶心为金色, 金色靶心叫“黄心”,奥运会的比赛靶面直径是122 cm ,靶心直径2 cm,运动员在70米 外射箭,假设都能中靶,且射中靶面内任一点是等可能的,求射中“黄心”的概率. 解 记“射中黄心”为事件A ,由于中靶点随机的落在面积为π41×1222 cm 2的大圆 内,而当中靶点在面积为π41×22 cm 2的黄心时,事件A 发生,于是事件A 发生 的概率P (A )=2212242.1241⨯⨯ππ=0.01,所以射中“黄心”的概率为0.01.10.假设你家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到你家,你父亲离开家去工作的时间在早上7∶00至8∶00之间,问你父亲在离开家前能得到报纸(称为事件A )的概率是多少?解 设事件A“父亲离开家前能得到报纸”.在平面直角坐标系内,以x 和y 分别表示报纸送到和父亲离开家的时间,则父亲能得到报纸的充要条件是x≤y,而(x,y)的所有可能结果是边长为1的正方形,而能得到报纸的所有可能结果由图中阴影部分表示,这是一个几何概型问题,A μ=12-21×21×21=87,Ωμ =1, 所以P (A )=ΩμμA =87. 11.已知等腰Rt △ABC 中,∠C=90°.(1)在线段BC 上任取一点M ,求使∠CAM <30°的概率; (2)在∠CAB 内任作射线AM ,求使∠CAM <30°的概率. 解 (1)设CM=x ,则0<x <a.(不妨设BC=a ). 若∠CAM <30°,则0<x <33a , 故∠CAM <30°的概率为P (A )=的长度区间的长度区间),0(33,0a a ⎪⎪⎭⎫ ⎝⎛=33. (2)设∠CAM=θ,则0°<θ<45°. 若∠CAM <30°,则0°<θ<30°, 故∠CAM <30°的概率为 P (B )=的长度的长度)45,0()30,0( =32.设关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax+b 2=0有实根”.当a≥0,b≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a≥b. (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1), (3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.。
(2019新教材)人教A版高中数学必修第二册:第十章 概率 章末检测

第十章 概率 章末检测(时间:120分钟,满分:150分)一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.给出下列四个命题:①“三个球全部放入两个盒子,其中必有一个盒子有一个以上的球”是必然事件; ②“当x 为某一实数时,可使x 2≤0”是不可能事件; ③“明天天津市要下雨”是必然事件;④“从100个灯泡(含有10个次品)中取出5个,5个全是次品”是随机事件. 其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:选C.①④正确.2.(2019·黑龙江省大庆中学月考)袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是( )A .至少有一个白球;都是白球B .至少有一个白球;至少有一个红球C .至少有一个白球;红、黑球各一个D .恰有一个白球;一个白球一个黑球解析:选C.袋中装有红球3个、白球2个、黑球1个,从中任取2个,逐一分析所给的选项:在A 中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故A 不成立; 在B 中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故B 不成立;在C 中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故C 成立;在D 中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故D 不成立;故选C.3.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A.13B.12C.23D.56解析:选C.从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,共有6种选法.红色和紫色的花不在同一花坛的有4种选法,根据古典概型的概率计算公式,所求的概率为46=23.故选C.4.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm )分别为 162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm 之间的概率约为( )A.25B.12C.23D.13解析:选A.从已知数据可以看出,在随机抽取的20位学生中,身高在155.5~170.5cm 之间的有8人,其频率为25,故可估计在该校高二年级的所有学生中任抽取一人,其身高在155.5~170.5cm 之间的概率约为25.5.打靶时甲每打10次,可中靶8次;乙每打10次,可中靶7次.若两人同时射击一个目标,则他们都中靶的概率是( )A.35B.34C.1225D.1425解析:选D.由题意知甲中靶的概率为45,乙中靶的概率为710,两人打靶相互独立,同时中靶的概率为45×710=1425.6.一个笼子里有3只白兔,2只灰兔,现让它们一一跑出笼子,假设每一只跑出笼子的概率相同,则先跑出笼子的两只兔子中一只是白兔,另一只是灰兔的概率是( )A.35B.45C.23D.34解析:选A .设3只白兔分别为b 1,b 2,b 3,2只灰兔分别为h 1,h 2,则所有可能的情况有(b 1,h 1),(b 1,h 2),(b 2,h 1),(b 2,h 2),(b 3,h 1),(b 3,h 2),(h 1,b 1),(h 2,b 1),(h 1,b 2),(h 2,b 2),(h 1,b 3),(h 2,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 1),(b 2,b 3),(b 3,b 1),(b 3,b 2),(h 1,h 2),(h 2,h 1),共20种,其中符合一只是白兔,另一只是灰兔的情况有12种,所以所求概率为1220=35.7.任取一个三位正整数N ,则对数log 2N 是一个正整数的概率是( ) A.1225 B.3899 C.1300D.1450解析:选C.三位正整数有100~999,共900个,而满足log 2N 为正整数的N 有27,28,29,共3个,故所求事件的概率为3900=1300.8.抛掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数为奇数”为事件B ,则事件A ,B 中至少有一件发生的概率是( )A.512B.12C.712D.34解析:选D.P (A )=12,P (B )=12,P (A -)=12,P (B -)=12.A ,B 中至少有一件发生的概率为1-P (A -)·P (B -)=1-12×12=34,故选D.9.在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为( ) A.15 B.25 C.16D.18解析:选B.如图,在正六边形ABCDEF 的6个顶点中随机选择4个顶点,共有15种选法,其中构成的四边形是梯形的有ABEF ,BCDE ,ABCF ,CDEF ,ABCD ,ADEF ,共6种情况,故构成的四边形是梯形的概率为615=25.10.设两个独立事件A 和B 都不发生的概率为19,A 发生B 不发生的概率与B 发生A 不发生的概率相同,则事件A 发生的概率P (A )是( )A.29B.118C.13D.23解析:选D.由P (A B -)=P (B A -),得P (A )P (B -)=P (B )P (A -), 即P (A )[1-P (B )]=P (B )[1-P (A )], 所以P (A )=P (B ). 又P (A - B -)=19,则P (A -)=P (B -)=13.所以P (A )=23.11.如果从不包括大、小王的一堆扑克牌中随机抽取一张,那么取到红心牌(事件A )的概率为14,取到方片牌(事件B )的概率是13,则取到红色牌(事件C )的概率和取到黑色牌(事件D )的概率分别是( )A.712,512B.512,712C.12,12D.34,23解析:选A.因为C =A +B ,且A ,B 不会同时发生,即A ,B 是互斥事件,所以P (C )=P (A )+P (B )=14+13=712.又C ,D 是互斥事件,且C +D 是必然事件,所以C ,D 互为对立事件,则P (D )=1-P (C )=1-712=512.12.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( )A.110B.310C.35D.910解析:选D.记3个红球分别为a 1,a 2,a 3,2个白球分别为b 1,b 2.从3个红球、2个白球中任取3个,则所包含的结果有(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 1,b 1,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10个.由于每个结果发生的机会均等,因此这些结果的发生是等可能的.用A 表示“所取的3个球中至少有1个白球”,则其对立事件A -表示“所取的3个球中没有白球”,则事件A -包含的结果有1个:(a 1,a 2,a 3).所以P (A -)=110.故P (A )=1-P (A -)=1-110=910.二、填空题:本题共4小题,每小题5分.13.小莉与小明一起用A ,B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A 立方体朝上的数字为x ,小明掷的B 立方体朝上的数字为y ,来确定点P (x ,y ),那么他们各掷一次所确定的点P (x ,y )落在已知抛物线y =-x 2+4x 上的概率为________.解析:根据题意,两人各掷立方体一次,每人都有6种可能性,则(x ,y )的情况有36种,即P 点有36种可能,而y =-x 2+4x =-(x -2)2+4,即(x -2)2+y =4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为336=112.答案:11214.若甲、乙、丙三人随机地站成一排,则甲、乙两人相邻而站的概率为________. 解析:甲,乙,丙站成一排有(甲,乙,丙),(甲,丙,乙),(乙,甲,丙),(乙,丙,甲),(丙,甲,乙),(丙,乙,甲),共6种.甲,乙相邻而站有(甲,乙,丙),(乙,甲,丙),(丙,甲,乙),(丙,乙,甲),共4种. 所以甲,乙两人相邻而站的概率为46=23.答案:2315.袋中含有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为________.解析:因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种情况,没有得到白球的概率为110,设白球个数为x ,则黑球个数为5-x ,那么,可知白球有3个,黑球有2个,因此可知从中任意摸出2个球,得到的都是白球的概率为310.答案:31016.(2019·高考全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为____________.解析:依题意知,经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.9940=0.98.答案:0.98三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率. (1)所得的三位数大于400; (2)所得的三位数是偶数.解:1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数. (1)大于400的三位数的个数为4,所以P =46=23.(2)三位数为偶数的有156,516,共2个, 所以相应的概率为P =26=13.18.(本小题满分12分)某社区举办《“环保我参与”有奖问答比赛》活动,某场比赛中,甲、乙、丙三个家庭同时回答一道有关环保知识的问题.已知甲家庭回答正确这道题的概率是34,甲、丙两个家庭都回答错误的概率是112,乙、丙两个家庭都回答正确的概率是14.若各家庭回答是否正确互不影响.(1)求乙、丙两个家庭各自回答正确这道题的概率;(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.解:(1)记“甲回答正确这道题”“乙回答正确这道题”“丙回答正确这道题”分别为事件A ,B ,C ,则P (A )=34,且有⎩⎨⎧P (A -)·P (C -)=112,P (B )·P (C )=14.即⎩⎨⎧[1-P (A )]·[1-P (C )]=112,P (B )·P (C )=14.所以P (B )=38,P (C )=23.(2)有0个家庭回答正确的概率为P 0=P (A -B -C -)=P (A -)·P (B -)·P (C -)=14×58×13=596.有1个家庭回答正确的概率为P 1=P (A B -C -+A -B C -+A -B -C )=34×58×13+14×38×13+14×58×23=724.所以不少于2个家庭回答正确这道题的概率为P =1-P 0-P 1=1-596-724=2132.19.(本小题满分12分)(2019·河北省枣强中学期末考试)质量监督局检测某种产品的三个质量指标x ,y ,z ,用综合指标Q =x +y +z 核定该产品的等级.若Q ≤5,则核定该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:(2)在该样品的一等品中,随机抽取2件产品,设事件B 为“在取出的2件产品中,每件产品的综合指标均满足Q ≤4”,求事件B 的概率.解:(1)计算10件产品的综合指标Q ,如下表:1246910故该样本的一等品率为610=0.6,从而估计该批产品的一等品率为0.6.(2)在该样本的一等品中,随机抽取2件产品的所有可能结果为(A 1,A 2),(A 1,A 4),(A 1,A 6),(A 1,A 9),(A 1,A 10),(A 2,A 4),(A 2,A 6),(A 2,A 9),(A 2,A 10),(A 4,A 6),(A 4,A 9),(A 4,A 10),(A 6,A 9),(A 6,A 10),(A 9,A 10)共15种.在该样本的一等品中,综合指标均满足Q ≤4的产品编号分别为A 1,A 9,A 10, 则事件B 发生的所有可能结果为(A 1,A 9),(A 1,A 10),(A 9,A 10)共3种, 所以P (B )=315=15.20.(本小题满分12分)(2019·辽宁省凌源三校联考)某研究机构为了了解各年龄层对高考改革方案的关注程度,随机选取了200名年龄在[20,45]内的市民进行了调查,并将结果绘制成如图所示的频率分布直方图(第一~五组区间分别为[20,25),[25,30),[30,35),[35,40),[40,45]).(1)求选取的市民年龄在[40,45]内的人数;(2)若从第3,4组用分层随机抽样的方法选取5名市民进行座谈,再从中选取2人在座谈会中做重点发言,求做重点发言的市民中至少有一人的年龄在[35,40)内的概率.解:(1)由题意可知,年龄在[40,45]内的频率为P =0.02×5=0.1, 故年龄在[40,45]内的市民人数为200×0.1=20.(2)易知,第3组的人数,第4组人数都多于20,且频率之比为3∶2,所以用分层随机抽样的方法在第3,4两组市民抽取5名参加座谈,应从第3,4组中分别抽取3人,2人.记第3组的3名市民分别为A 1,A 2,A 3,第4组的2名市民分别为B 1,B 2,则从5名中选取2名做重点发言的所有情况为(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共有10种.其中第4组的2名B 1,B 2至少有一名被选中的有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),共有7种,所以至少有一人的年龄在[35,40)内的概率为710.21.(本小题满分12分)A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.解:(1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2.B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.据题意有:P (A 0)=13×13=19,P (A 1)=2×13×23=49,P (A 2)=23×23=49,P (B 0)=12×12=14,P (B 1)=2×12×12=12. 所求概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49.(2)所求概率P ′=1-⎝⎛⎭⎫1-493=604729. 22.(本小题满分12分)(2019·高考北京卷)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1 000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)(2)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2 000元的概率;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2 000元.结合(2)的结果,能否认为样本仅使用B的学生中本月支付金额大于2 000元的人数有变化?说明理由.解:(1)由题知,样本中仅使用A的学生有27+3=30人,仅使用B的学生有24+1=25人,A,B两种支付方式都不使用的学生有5人.故样本中,A,B两种支付方式都使用的学生有100-30-25-5=40人.估计该校学生中上个月A,B两种支付方式都使用的人数为40100×1 000=400.(2)记事件C为“从样本仅使用B的学生中随机抽取1人,该学生上个月的支付金额大于2 000元”,则P(C)=125=0.04.(3)记事件E为“从样本仅使用B的学生中随机抽查1人,该学生本月的支付金额大于2 000元”.假设样本仅使用B的学生中,本月支付金额大于2 000元的人数没有变化,则由(2)知,P(E)=0.04.答案示例1:可以认为有变化.理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月支付金额大于2 000元的人数发生了变化.所以可以认为有变化.答案示例2:无法确定有没有变化.理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生的.所以无法确定有没有变化.。
精选新版2019年高中数学单元测试试题-概率专题完整考试题库(含参考答案)

2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________第I 卷(选择题)请点击修改第I 卷的文字说明 一、选择题1.设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是 ( )A .4π B .22π- C .6π D .44π-(2012北京文理)第II 卷(非选择题)请点击修改第II 卷的文字说明 二、填空题2.设()()223f x x x x R =--∈,则在区间[],ππ-上随机取一个数x ,使()0f x <的概率为 ▲ .3.设不等式组0,022x y x y ≥≥⎧⎪≤⎨⎪≤⎩所表示的区域为A ,现在区域A 中任意丢进一个粒子,则该粒子落在直线12y x =上方的概率为____ ____.4.如图,在矩形ABCD 中,3=AB ,1=BC ,以A 为圆心,1为半径作四分之一个圆弧DE ,在圆弧DE 上任取一点P ,则直线AP 与线段BC 有公共点的概率 是 ▲ . 第5.矩形ABCD 中,6,7AB AD ==. 在矩形内任取一点P ,则π2APB ∠>的概率为 ▲ .6.在Rt △ABC 中,∠A =90°,AB =1,BC =2.在BC 边上任取一点M ,则∠AMB ≥90°的概率为 ▲ .7.连续两次掷骰子得到的点数依次为m n 、,则以点()()()0,01,1,m n -、、为顶点能构成直角三角形的概率为 ▲ .8.从集合{1,2,3,4,5}中任取两个不同元素bx ax x f b a +=2)(,作为的系数)(b a <,则这个函数在区间(—3,0)内恒为负值的概率为 。
9.如图,半径为10 cm 的圆形纸板内有一个相同圆心的半径为1 cm 的 小圆.现将半径为1 cm 的一枚硬币抛到此纸板上,使硬币整体随机 落在纸板内,则硬币落下后与小圆无公共点的概率为 .10.某初级中学共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.第10题BACM(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生, 问应在初三年级抽取多少名? (Ⅲ)已知245,245≥≥z y ,求初三年级中女生比男生多的概率.〖解〗本题主要考查概率与统计的基础知识,考查运算求解能力及应用意识.满分12分. (Ⅰ)由19.02000=x,解得380=x . (Ⅱ)初三年级人数为500)370380377373(2000=+++-=+z y , 设应在初三年级抽取m 人,则200048500=m ,解得m=12. 所以应在初三年级抽取12名.(Ⅲ)设初三年级女生比男生多的事件为A ,初三年级女生和男生数记为数对(,)y z , 由(Ⅱ)知500,(,,245,245)y z y z N y z +=∈≥≥,则基本事件总数有:(245,255),(246,254),(247,253),(248,252),(249,251),(250,250), (251,249),(252,248),(253,247),(254,246),(255,245)共11个,而事件A 包含的基本事件有:(251,249),(252,248),(253,247),(254,246),(255,245)共5个,所以5()11P A =. 11.在一个袋子中装有分别标注数字1,2,3,4,5 的五个小球,这些小球除标注的数字外完全相 同.现从中随机取出两个小球,则取出的小球上 标注的数字之和为5或7的概率是 .12.已知ABCD 是半径为2圆的内接正方形,现在圆的内部随机取一点P ,点P 落在正方形ABCD 内部的概率为 ▲ .13.从长度为2、3、5、6的四条线段中任选三条,能构成三角形的概率为 ▲ .14.一根绳子长为6米, 绳上有5个节点将绳子6等分, 现从5个节点中随机选一个将绳子剪断, 则所得的两段绳长均不小于2米的概率为 ▲ . 关键字:古典概型15.有4条线段,其长度分别为1,3,5,7.现从中任取3条,则不能..构成三角形的概率 为 ▲ . 16.给出下列命题: (1)必然事件的概率为1;(2)概率为0的事件是不可能事件;(3)若随机事件A 、B 是对立事件,则A 、B 也是互斥事件; (4)若事件A 、B 相互独立,则()()()P A B P A P B ⋅=⋅. 则所有真命题的序号为 ▲ .17.袋中有1个白球,2个黄球,先从中摸出一球,再从剩下的球中摸出一球,两次都是黄球的概率为 ▲ .18.4张卡片上分别写有数字0,1,2,3,从这4张卡片中一次随机抽取不同的2张,则取出的两张卡片上的数字之差的绝对值等于2的概率为 ▲ .19.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为 3/4 . 20.正四面体的四个表面上分别写有数字4,3,2,1,将3个这样均匀的四面体同时投掷于桌面上,与桌面接触的三个面上的数字的乘积能被3整除的概率为6437. 21.已知甲、乙、丙三人将参加某项测试,他们能达标的概率分别是8.0、6.0、5.0,则三人中至少有一人达标的概率是 ▲ .22.连续两次抛掷一枚质地均匀的硬币,则仅有一次正面朝上的概率为 ▲ .三、解答题23.(本题满分14分)设平面向量(,2),(2,),a m b n →→==其中}{,1,2,3,4m n ∈. (I )请列出有序数组(,)m n 的所有可能结果;(II )记“使得a b →→//a b →→成立的(,)m n ”为事件A ,求事件A 发生的概率.24.(2013年高考江西卷(文))小波已游戏方式决定是去打球、唱歌还是去下棋.游戏规则为以O 为起点,再从A 1,A 2,A 3,A 4,A 5,A 6(如图)这6个点中任取两点分别为终点得到两个向量,记住这两个向量的数量积为X,若X>0就去打球,若X=0就去唱歌,若X<0就去下棋.(1) 写出数量积X 的所有可能取值(2)分别求小波去下棋的概率和不.去唱歌的概率 25.(本小题满分12分)一只不透明的口袋中装有形状、大小、质地都相同的8只小球,其中3只白球,3只红球和2只黄球,现从中一次随机摸出2只球.求: (1)2只球都是红球的概率; (2)2只球不同颜色的概率.26.(本小题满分15分)某种灯泡使用寿命在1000小时以上的概率为0.2,某同学家一共用了这种灯泡4只.设这 4只灯泡在使用1000小时后,坏了的灯泡数为随机变量X . (1)求随机变量X 的概率分布; (2)求随机变量X 的数学期望和方差.27. (本小题满分15分)甲、乙、丙三个人独立地翻译同一份密码,每人译出此密码的概率依次为0.4,0.35,0.3.设随机变量X 表示译出此密码的人数,求: (1)恰好有2个人译出此密码的概率P (X =2); (2)此密码被译出的概率(1)P X ≥.28.若[]2()34,3,6f x x x x =--∈-,则对任意的[]03,6x ∈-,0()0f x ≤的概率是_________。
精选2019年高中数学单元测试试题-概率专题完整题库(含答案)

2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1. 投掷两颗骰子,得到其向上的点数分别为m ,n , 设),(n m a =→,则满足5<→a 的概率为 ▲ .2.用计算机随机产生的有序二元数组满⎩⎨⎧-1<x <1-2<y <2对每个二元数组(x,y),用计算机计算x 2+y 2的值,记“(x,y)满足x 2+y 2<l”为事件A ,则事件A 发生的概率为 ▲ .3.如图墙上挂有边长为a 的正方形木板,它的四个角的空白部分 都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 。
4.已知集合A={}⎭⎬⎫⎩⎨⎧>--=<<-042,51x x x B x x ,在集合A 中任取一个元素x ,则事件“B A x ∈”的概率是 。
5.甲、乙两人从{}0,1,2,3,4,5,6,7,8,9中各取一个数a 、b ,则“恰有3a b +≤”的概率等于 .6.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出两个小球,则取出的小球上标注的数字之和为5或7的概率是 .7.连掷两次骰子分别得到点数,m n ,向量(,)(1,1)a m n b ==-,,若ABC ∆中AB 与a 同向,CB 与b 反向,则ABC ∠是钝角的概率是 . 【解析】则ABC ∠是钝角,即向量(,)(1,1a m nb ==-,夹角为锐角,n m m n <>-∴,0,所以包含15个基本事件,又共有 36个基本事件,所以ABC ∠是钝角的概率是5128.在区间[5,5]-内随机地取出一个数a ,使得221{|20}x x ax a ∈+->的概率为 ▲ .9.甲、乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数: 由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上12,这样就可得到一个新的实数2a .对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a .当31a a >时,甲获胜,否则乙获胜.若甲获胜的概率为43,则1a 的取值范围是),24[]12,(+∞⋃-∞.10.已知实数{|125}xa b c x Z ∈∈<,,≤,则函数2()f x ax bx c =++为偶函数的 概率是 ▲ .11.右面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中 一个数字被污损,则乙的平均成绩超过甲的概率为 .12.先后投掷一颗质地均匀的骰子两次,得到其向上的点数分别为m),(n m =5<的概率为 .13.已知AB 是圆O 的一条直径,在AB 上任取一点H ,过H 作弦甲 乙98 210337 9∙8 9CD 与AB 垂直,则弦CD 的长度大于半径的概率是 ▲ .14.某团队有6人入住宾馆中的6个房间,其中的房号301与302对门,303与304对门,305与306对门,若每人随机地拿了这6个房间中的一把钥匙,则其中的甲、乙两人恰好对门的概率为_______.15.如下图,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为31a 与21a ,高为b ,向该矩形内随机投一点,则所投的点落在梯形内部的概率为___. aa ab112316.已知关于x 的一元二次函数2()41f x ax bx =-+(Ⅰ)设集合{}1,2,3P =和{}1,1,2,3,4Q =-,分别从集合P 和Q 中随机取一个数作为a 和b ,求函数()y f x =在区间[)1,+∞上是增函数的概率;(Ⅱ)设点(,)a b 是区域8000x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,记{()A y f x ==有两个零点,其中一个大于1,另一个小于}1,求事件A 发生的概率.17.齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等吗,劣于齐王的中等马,田忌的下等吗劣于齐王的下等马.现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜.若双方均不知道对方马的出场顺序,则田忌获胜的概率________18.某学校有两个食堂,甲、乙两名学生各自随机选择其中的一个食堂用餐,则他们在同一个食堂用餐的概率为19.用两种不同的颜色给图中三个矩形随机涂色,每个矩形只涂一种颜色,则相邻两个矩形涂不同颜色的概率是____。
人教B版(2019)高中数学必修第二册 第五章统计与概率5.3.4频率与概率同步习题(含答案)

5.3.4 频率与概率知识点一频率与概率1.在n次重复进行的试验中,事件A发生的频率为mn,当n很大时,P(A)与mn的关系是( )A.P(A)≈mnB.P(A)<mnC.P(A)>mnD.P(A)=mn2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:抽取球数n 5010020050010002000 优等品数m 45921944709541902优等品频率m n(2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结果保留到小数点后三位)3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:时间2016年2017年2018年2019年出生婴儿数21840230702009419982 出生男婴数11453120311029710242(2)该市男婴出生的概率约为多少?知识点二对概率的正确理解4.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%5.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋子吗?说明你的理由.知识点三用频率估计概率6.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )A.25B.12C.23D.137.在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( ) A.8.834 kg B.8.929 kgC.10 kg D.9.835 kg8.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:“满意”的概率是( )A.715B.25C.1115D.13159.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:10.某工厂为了节约用电,规定每天的用电量指标为1000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.11.对某批产品进行抽样检查,数据如下:抽查________件产品.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,统计结果如表:贫困地区到0.001);(2)求两个地区参加测试的儿童得60分以上的概率.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表:赔付金额(元)01000200030004000 车辆数500130100150120(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200 h的概率;(2)这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.15.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.:易错点一混淆概率与频率的概念把一枚质地均匀的硬币连续掷了1000次,其中有496次正面朝上,504次反面朝上,则可认为掷一次硬币正面朝上的概率为________.易错点二对用频率估计概率的方法理解不透致误已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.一、单项选择题1.从一批电视机中随机抽出10台进行质检,其中有一台次品,下列说法正确的是( )A.次品率小于10% B.次品率大于10%C.次品率等于10% D.次品率接近10%2.某人将一枚硬币连抛10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为35B.频率为35C.频率为6 D.概率接近0.63.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码12345678910 取到的次数101188610189119A.0.53 B.0.5C.0.47 D.0.374.若在同等条件下进行n次重复试验得到某个事件A发生的频率f(n),则随着n的逐渐增大,有( )A.f(n)与某个常数相等B.f(n)与某个常数的差逐渐减小C.f(n)与某个常数的差的绝对值逐渐减小D.f(n)在某个常数的附近摆动并趋于稳定5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.456.某厂生产的电器是家电下乡政府补贴的指定品牌,其产品是优等品的概率为90%,现从该厂生产的产品中任意地抽取10件进行检验,结果前9件产品中有8件是优等品,1件是非优等品,那么第10件产品是优等品的概率为( ) A.90% B.小于90%C.大于90% D.无法确定7.有下列说法:①抛掷硬币出现正面向上的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买10张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数2的概率是16,这说明一个骰子掷6次会出现一次点数2.其中不正确的说法是( )A.①②③④ B.①②④C.③④ D.③8.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3000辆帕萨特出租车,乙公司有3000辆桑塔纳出租车,100辆帕萨特出租车.交警部门应先调查哪家公司的车辆较合理?( )A.甲公司B.乙公司C.甲与乙公司D.以上都对二、多项选择题9.下列说法中,正确的有( )A.频率是反映事件发生的频繁程度,概率是反映事件发生的可能性大小B.百分率是频率,但不是概率C.频率是不能脱离试验次数n的实验值,而概率是具有确定性的不依赖于试验次数的理论值D.频率是概率的近似值,概率是频率的稳定值10.下列说法正确的是( )A.事件A的概率为P(A),必有0≤P(A)≤1B.事件A的概率P(A)=0.999,则事件A是必然事件C.用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效.现有胃溃疡的病人服用此药,则估计有明显疗效的概率约为76% D.某奖券的中奖率为50%,则某人购买此奖券10张,一定有5张中奖11.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩(取整数)分布:法正确的是( )A.估计她得90分以上(含90分)的概率约为0.067B.估计她得60~69分的概率约为0.150C.估计她得60分以上(含60分)的概率约为0.982D.估计她得59分以下(含59分)的概率约为0.10812.某超市随机选取1000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买,则下列说法正确的是( )B.估计顾客同时购买乙和丙的概率为0.2C.估计顾客在甲、乙、丙、丁中同时购买3种商品的概率为0.4D.如果顾客购买了甲,则该顾客同时购买乙、丙、丁中的丙的可能性最大三、填空题13.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20000辆汽车的数据,时间是从某年的5月1日到下一年的4月30日,共发现有600辆汽车的挡风玻璃破碎,则一辆汽车在一年内挡风玻璃破碎的概率的近似值是________.14.一个容量为20的样本,数据的分组及各组的频数如下:[10,20)2个;[20,30)3个;[30,40)x个;[40,50)5个;[50,60)4个;[60,70]2个.则x等于________;根据样本的频率估计概率,数据落在[10,50)的概率约为________.15.玲玲和倩倩是一对好朋友,她俩都想去观看某明星的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”你认为这个游戏公平吗?答:________.16.某公司有5万元资金用于投资开发项目,如果成功,一年后可获收益12%;一旦失败,一年后将丧失全部资金的50%.下表是去年200例类似项目开发的实施结果.四、解答题17.电影公司随机收集了电影的有关数据,经分类整理得到下表:(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)随机选取1部电影,估计这部电影没有获得好评的概率;(3)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化,假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)18.某中学从参加高一年级上学期期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示的频率分布直方图.观察图形的信息,回答下列问题:(1)估计这次考试的及格率(60分及以上为及格);(2)从该校高一年级随机选取一名学生,估计这名学生该次期末考试成绩在70分以上(包括70分)的概率.19.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40) 天数21636257 4(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.20.甲、乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台机床生产的零件各100件进行检测,检测结果统计如下:测试指标[85,90)[90,95)[95,100)[100,105)[105,110)甲机床81240328 乙机床7184029 6(2)甲机床生产1件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20,假设甲机床某天生产50零件,请估计甲机床该天的日利润(单位:元);(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层随机抽样的方法抽取5件,从这5件中任意抽取2件进行质量分析,求这2件都是乙机床生产的概率.5.3.4 频率与概率知识点一频率与概率1.在n次重复进行的试验中,事件A发生的频率为mn,当n很大时,P(A)与mn的关系是( )A.P(A)≈mnB.P(A)<mnC.P(A)>mnD.P(A)=mn答案 A解析根据概率的定义,当n很大时,频率是概率的近似值.2.某企业生产的乒乓球被某乒乓球训练基地指定为训练专用球.日前有关部门对某批产品进行了抽样检测,检测结果如下表所示:抽取球数n 5010020050010002000 优等品数m 45921944709541902优等品频率m n(2)从这批乒乓球产品中任取一个,估计其为优等品的概率是多少?(结果保留到小数点后三位)解(1)表中乒乓球为优等品的频率依次是0.900,0.920,0.970,0.940,0.954,0.951.(2)由(1)知,随着抽取的球数n的增加,计算得到的频率值虽然不同,但都在常数0.950的附近摆动,所以任意抽取一个乒乓球检测时,其为优等品的概率约为0.950.3.某市统计近几年新生儿出生数及其中男婴数(单位:人)如下:(2)该市男婴出生的概率约为多少?解(1)2016年男婴出生的频率为1145321840≈0.524.同理可求得2017年、2018年和2019年男婴出生的频率分别为0.521,0.512,0.513.(2)该市男婴出生的概率约为0.52.知识点二对概率的正确理解4.下列说法正确的是( )A.甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%答案 D解析A中,此概率只说明发生的可能性大小,具有随机性,并非一定是比赛5场甲胜3场;B中,此治愈率只说明发生的可能性大小,具有随机性,并非10个病人一定有1人治愈;C中,随机试验的频率可以估计概率,并不等于概率;D中,概率为90%,即可能性是90%.故选D.5.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑棋子吗?说明你的理由.解不一定.有放回地摸10次棋子相当于做10次重复试验,因为每次试验的结果都是随机的,所以摸10次棋子的结果也是随机的.可能有两次或两次以上摸到黑棋子,也可能没有一次摸到黑棋子.知识点三用频率估计概率6.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一人,估计该生的身高在155.5~170.5 cm之间的概率约为( )A.25B.12C.23D.13答案 A解析从已知数据可以看出,在随机抽取的这20名学生中,身高在155.5~170.5 cm之间的学生有8人,频率为25,故可估计在该校高二年级的所有学生中任抽一人,其身高在155.5~170.5 cm之间的概率约为2 5 .7.在检测一批相同规格共500 kg航空用耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( ) A.8.834 kg B.8.929 kgC.10 kg D.9.835 kg答案 B解析由题意可得,该批垫片中非优质品约为5280×500≈8.929 kg.8.随着互联网的普及,网上购物已逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如下表:满意情况不满意比较满意满意非常满意人数200n 21001000 “满意”的概率是( )A.715B.25C.1115D.1315答案 C解析由题意,得n=4500-200-2100-1000=1200,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意”的总人数为1200+2100=3300,所以随机调查的网上购物消费者中对网上购物“比较满意”或“满意”的频率为33004500=1115.由此估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率为1115.故选C.9.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:落在桌面的数字1234 5 频数3218151322答案0.35解析落在桌面的数字不小于4,即4,5的频数共13+22=35,所以频率为35100=0.35,所以估计落在桌面的数字不小于4的概率约为0.35.10.某工厂为了节约用电,规定每天的用电量指标为1000度,按照上个月的用电记录,在30天中有12天的用电量超过指标,若这个月(按30天计)仍没有具体的节电措施,则该月的第一天用电量超过指标的概率约是________.答案0.4解析由频率的定义可知用电量超过指标的频率为1230=0.4,由频率估计概率,知第一天用电量超过指标的概率约是0.4.11.对某批产品进行抽样检查,数据如下:抽查________件产品.答案1000解析根据题表中数据可知合格品出现的频率依次为0.94,0.92,0.96,0.95,0.95,故合格品出现的概率约为0.95,因此要从该批产品中抽到950件合格品大约需要抽查1000件产品.12.某教授为了测试贫困地区和发达地区的同龄儿童的智力出了10个智力题,每个题10分,然后做了统计,统计结果如表:贫困地区到0.001);(2)求两个地区参加测试的儿童得60分以上的概率.解(1)贫困地区的频率分别逐渐趋近于0.5和0.55.故所求概率分别为0.5和0.55.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表:(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.解(1)设A表示事件“赔付金额为3000元”,B表示事件“赔付金额为4000元”,样本车辆总数n=500+130+100+150+120=1000,以频率估计概率得P(A)=1501000=0.15,P(B)=1201000=0.12.由于投保金额为2800元,赔付金额大于投保金额对应的情形是赔付金额为3000元或4000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4000元”,由已知,样本车辆中车主为新司机的有0.1×1000=100辆,而赔付金额为4000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4000元的频率为24100=0.24,由频率估计概率,得P(C)=0.24.14.假设甲、乙两种品牌的同类产品在某地区市场上销售量相等,为了解它们的使用寿命,现从这两种品牌的产品中分别随机抽取100个进行测试,结果统计如图所示:(1)估计甲品牌产品寿命小于200 h的概率;(2)这两种品牌产品中,某个产品已使用了200 h,试估计该产品是甲品牌的概率.解(1)甲品牌产品寿命小于200 h的频率为5+20100=14,用频率估计概率,所以甲品牌产品寿命小于200 h的概率为1 4 .(2)根据抽样结果,寿命大于200 h的产品共有75+70=145个,其中甲品牌产品有75个,所以在样本中,寿命大于200 h的产品是甲品牌的频率是75145=1529,用频率估计概率,所以已使用了200 h的该产品是甲品牌的概率为15 29.15.近年来,某市为促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱,为调查居民生活垃圾分类投放情况,先随机抽取了该市三类垃圾箱总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.求:错误!解(1)由题意可知,厨余垃圾600吨,投放到“厨余垃圾”箱400吨,故厨余垃圾投放正确的概率为400600=23.(2)由题意可知,生活垃圾投放错误有200+60+20+20=300,故生活垃圾投放错误的概率为3001000=3 10.(3)由题意可知,∵a+b+c=600,∴a,b,c的平均数为200,∴s2=13[(a-200)2+(b-200)2+(c-200)2]=13(a2+b2+c2-120000),∵(a+b+c)2=a2+b2+c2+2ab+2bc+2ac≥a2+b2+c2,因此有当a=600,b=0,c =0时,有s2=80000.易错点一混淆概率与频率的概念把一枚质地均匀的硬币连续掷了1000次,其中有496次正面朝上,504次反面朝上,则可认为掷一次硬币正面朝上的概率为________.易错分析由于混淆了概率与频率的概念而致误,事实上频率是随机的,而概率是一个确定的常数,与每次试验无关.答案0.5正解通过做大量的试验可以发现,正面朝上的频率都在0.5附近摆动,故掷一次硬币,正面朝上的概率是0.5,故填0.5.易错点二对用频率估计概率的方法理解不透致误已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为________.易错分析(1)对随机数表认识不到位,不能准确找出恰有两次命中的组数;(2)对用频率估计概率的方法理解不到位,不能求出“运动员三次投篮恰有两次命中”的概率.答案1 4正解20组随机数中,恰有两次命中的有5组,用频率估计概率,因此,该运动员三次投篮恰有两次命中的概率为P=520=14.一、单项选择题1.从一批电视机中随机抽出10台进行质检,其中有一台次品,下列说法正确的是( )A.次品率小于10% B.次品率大于10%C.次品率等于10% D.次品率接近10%答案 D解析抽出的样本中次品率为110,即10%,所以总体中次品率大约为10%.2.某人将一枚硬币连抛10次,正面朝上的情形出现了6次,若用A表示正面朝上这一事件,则A的( )A.概率为35B.频率为35C.频率为6 D.概率接近0.6 答案 B解析因为抛了10次硬币,正面朝上的情形出现了6次,我们说频率为3 5,而不能说概率为35.3.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如表:卡片号码 1 2 3 4 5 6 7 8 9 10 取到的次数101188610189119A .0.53B .0.5C .0.47D .0.37答案 A解析 取到号码为奇数的次数为10+8+6+18+11=53,所以f =53100=0.53,所以估计取到号码为奇数的概率约为0.53.4.若在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),则随着n 的逐渐增大,有( )A .f (n )与某个常数相等B .f (n )与某个常数的差逐渐减小C .f (n )与某个常数的差的绝对值逐渐减小D .f (n )在某个常数的附近摆动并趋于稳定 答案 D解析 由频率和概率的关系知,在同等条件下进行n 次重复试验得到某个事件A 发生的频率f (n ),随着n 的逐渐增加,频率f (n )逐渐趋近于概率.5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A.0.09 B.0.20C.0.25 D.0.45答案 D解析由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件产品为二等品的概率为0.45.6.某厂生产的电器是家电下乡政府补贴的指定品牌,其产品是优等品的概率为90%,现从该厂生产的产品中任意地抽取10件进行检验,结果前9件产品中有8件是优等品,1件是非优等品,那么第10件产品是优等品的概率为( ) A.90% B.小于90%C.大于90% D.无法确定答案 A解析概率是一个确定的常数,在试验前已经确定,与试验次数无关.故选A.7.有下列说法:①抛掷硬币出现正面向上的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上;②如果某种彩票的中奖概率为110,那么买10张这种彩票一定能中奖;③在乒乓球、排球等比赛中,裁判通过上抛均匀塑料圆板并让运动员猜着地时是正面还是反面来决定哪一方先发球,这样做不公平;④一个骰子掷一次得到点数2的概率是16,这说明一个骰子掷6次会出现一次点数2.其中不正确的说法是( )A.①②③④ B.①②④C.③④ D.③答案 A解析概率反映的是随机性的规律,但每次试验出现的结果具有不确定性,因此①②④错误;③中抛掷均匀塑料圆板出现正面与反面的概率相等,是公平的,因此③错误.8.某市交警部门在调查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而该市有。
精选2019年高中数学单元测试试题-概率专题完整考题库(含答案)

2019年高中数学单元测试试题 概率专题(含答案)学校:__________ 姓名:__________ 班级:__________ 考号:__________一、填空题1.某人随机地将标注为,,A B C 的三个小球放入编号为1,2,3的三个盒子中,每个盒子放入一个小球,全部放完.则标注为B 的小球放入编号为奇数的盒子中的概率为 ▲ .2.两位男生,两位女生排成一排,则两位女生恰好排在相邻位置的概率是 .3.在1,2,3,4,5五条线路的车停靠的同一个车站上,张老师等候1,3,4路车的到来,按汽车经过该站的平均次数来说,2,3,4,5路车的次数是相等的,而1路车的次数是汽车各路车次数的总和,则首先到站的汽车是张老师所等候的汽车的概率为 .344.从[0,1]之间选出两个数,这两个数的平方和小于0.25的概率是5.若2510ab==,则11a b+= .6.某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,以每人被抽取的概率为0.2向该中学抽取一个容量为n 的样本,则n= ___________ 〖解〗2007.从8名女生和4名男生中选出6名组成课外学习小组,如果按性别比例分层抽样,那么组成此刻外学习小组的概率是__________。 〖解〗115 8. 从集合{}2,1,1,2,3A =--中任取两个元素m 、n (m n ≠),则方程122=+ny m x 所对应的曲线表示焦点在y 轴上的双曲线的概率是 .9.袋中装有10个木质球,6个玻璃球,玻璃球中有2个为红色,4个为蓝色,木质球中有7个为红色,3个为蓝色,现从中任取一球,则恰好取到红色木质球的概率为 ▲ . 10.在0到1之间任取两个实数,则它们的平方和大于1的概率是 ▲ .11.已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000颗黄豆,数得落在阴影部分的黄豆数为600颗,则可以估计出阴影部分的面积约为___12.已知射手甲射击一次,命中9环以上(含9环)的概率为0.5,命中8环的概率为0.2,命中7环的概率为0.1,则甲射击一次,命中6环以下(含6环) 的概率为 ▲ .13.甲、乙两人玩数学游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数学,把乙猜的数字记为b ,且,则称甲乙“心有灵犀”,现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为____14. 在棱长为2的正方体1111ABCD A B C D -中,点O 为底面ABCD 的中心,在正方体1111ABCD A B C D -内随机取一点P ,则点P 到点O 的距离大于1的概率为 ▲ .15.已知Ω={(x ,y )|x +y <6,x >0,y >0},A ={(x ,y )|x <4,y >0,x -2y >0},若向区域Ω上随机投掷一点P ,则点P 落入区域A 的概率为 .16. 在区间[-4,4],内任取一个元素x O ,若抛物线y=x 2在x=x o 处的切线的倾角为α,则3,44ππα⎡⎤∈⎢⎥⎣⎦的概率为 ▲ 。
全概率公式及其逆公式练习-2023-2024学年高二下学期数学人教A版(2019)选择性必修第三册

全概率公式及其逆公式练习1.甲袋中有5个白球、7个红球,乙袋中有4个白球、2个红球,从两个袋中任选一袋,从中任取一球,则取到的球是白球的概率为( )A .512B .23C .12D .1324(多选题)2.甲箱中有4个红球,2个白球和3个黑球,乙箱中有3个红球,3个白球和3个黑球,先从甲箱中随机取出一球放入乙箱,分别以1A ,2A 和3A 表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱取出的球是红球的事件,则下列结论正确的是( )A .事件B 与事件()1,2,3i A i =相互独立 B .()1845P A B =C .()13P B =D .()2631P A B = 3.为丰富学生的课外活动,学校羽毛球社团举行羽毛球团体赛,赛制采取5局3胜制,每局都是单打模式,每队有5名队员,比赛中每个队员至多上场一次且上场顺序是随机的,每局比赛结果互不影响,经过小组赛后,最终甲乙两队进入最后的决赛,根据前期比赛的数据统计,甲队明星队员M 对乙队的每名队员的胜率均为34,甲队其余4名队员对乙队每名队员的胜率均为12.(注:比赛结果没有平局)(1)求甲队明星队员M 在前四局比赛中不出场的前提下,甲乙两队比赛4局,甲队最终获胜的概率;(2)求甲乙两队比赛3局,甲队获得最终胜利的概率;(3)若已知甲乙两队比赛3局,甲队获得最终胜利,求甲队明星队员M 上场的概率.4.人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假(先验概率).设首次试验选到甲袋或乙袋的概率均为12(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.①求选到的袋子为甲袋的概率,①将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.5.假设有两箱零件,第一箱内装有10件,其中有2件次品;第二箱内装有20件,其中有3件次品.现从两箱中随意挑选一箱,然后从该箱中随机取1个零件.(1)求取出的零件是次品的概率;(2)已知取出的是次品,求它是从第一箱取出的概率.6.设有来自三个地区的各10名,15名和25名考生的报名表,其中女生报名表分别为3份、7份和5份,随机地取一个地区的报名表,从中先后取出两份(1)求先抽到的一份是女生报名表的概率p(2)已知后抽到的一份是男生报名表,求先抽到的一份是女生报名表的概率q7.已知有一道有四个选项的单项选择题和一道有四个选项的多项选择题,小明知道每道多项选择题均有两个或三个正确选项.但根据得分规则:全部选对的得5分,部分选对的得2分,有选错的得0分.这样,小明在做多项选择题时,可能选择一个选项,也可能选择两个或三个选项,但不会选择四个选项.(1)如果小明不知道单项选择题的正确答案,就作随机猜测.已知小明知道单项选择题的正确答案和随机概率都是12,在他做完单项选择题后,从卷面上看,在题答对的情况下,求他知道单项选择题正确答案的概率;(2)假设小明在做该道多项选择题时,基于已有的解题经验,他选择一个选项的概率为12,选择两个选项的概率为13,选择三个选项的概率为16.已知该道多项选择题只有两个正确选项,小明完全不知道四个选项的正误,只好根据自己的经验随机选择.记X表示小明做完该道多项选择题后所得的分数.求:(i)(0)P X ;(ii)X的分布列及数学期望.QQ资料群简介本资料群与公众号MST数学聚集地MathHub互联,公众号发的也会实时更新在群里。
人教版A版(2019)高中数学必修第二册:第十章 概率 综合测试(附答案与解析)

6 B. 1
13.一个袋子中有 5 个红球,4 个绿球,8 个黑球,如果随机地摸出一个球,记事件 A = 摸出黑球 ,事件
B = 摸出绿球 ,事件 C = 摸出红球 ,则 P( A) = ________; P(B UC) = ________.(本题第一空 2 分,
第二空 3 分)
14.袋子中有四个小球,分别写有“和、平、世、界”四个字,有放回地从中任取一个小球,直到“和”“平” 两个字都取到就停止,用随机模拟的方法估计恰好在第三次停止的概率.利用电脑随机产生 0 到 3 之间取整 数值的随机数,分别用 0,1,2,3 代表“和、平、世、界”这四个字,以每三个随机数为一组,表示取球
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
第十章综合测试
一、单项选择题(本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合 题目要求的) 1.从含有 10 件正品、2 件次品的 12 件产品中任意抽取 3 件,则必然事件是( ) A.3 件都是正品 B.3 件都是次品 C.至少有 1 件次品 D.至少有 1 件正品 2.下列说法正确的是( ) A.甲、乙两人比赛,甲胜的概率为 3 ,则比赛 5 场,甲胜 3 场
3 / 13
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
“第二次摸到白球”
C.袋中有 3 白、2 黑共 5 个大小相同的小球,依次不放回地摸两球,事件 M “第一次摸到白球”,事件 N “第二次摸到黑球”
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率 练习题
一.选择题 ( 每题 4分 共 40分 )
1.下列结论正确的是( C )
A. 事件A 的概率P(A)必有0<P(A)<1
B. 事件A 的概率P(A)=0.999,则事件A 是必然事件
C. 用某种药物对患有胃溃疡的500名病人治疗,结果有380人有明显的
疗效 ,现有胃溃疡的病人服用此药,则估计其明显疗效可能性为76%。
D. 某奖券中奖率为50%,则某人购买此券10张,一定有5张中奖。
2.下列说法正确的是(D )
A. 事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概
率大
B. 事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小
C. 互斥事件一定是对立事件,对立事件不一定是互斥事件
D.互斥事件不一定是对立事件,对立事件一定是互斥事件
3 。
抽查10件产品。
设事件A :至少两件次品,则 为( B )
A .至多两件次品
B 至多一件次品
C. 至多两件正品 D 至少两件次品
4.用1、2、3、4、5做成无重复数字的五位数,这些数被2整除的概率是( C )
A 51
B 41
C 52
D 5
3 5.一批零件有10个,其中有8个合格品,2个次品,每次任取一个零件装配机器,若第一次取到合格品的概率为 P 1 ,第二次才取到合格品的概率为P 2 则A
( A )
A. P 1>P 2 B P 1=P 2 C P 1<P 2 D P 1=2P 2
6. 现有5根细木棒,长度分别为1、3、5、6、9 (cm) ,从中任取三根,能搭成三角形的概率是( C ) A . 203 B 10
3 C 51 D 52 7. 有100件产品,其中有5件不合格品,从中有放回地连续抽两次,则第一次抽到不合格品,第二次抽到合格品的概率为(C )
A 2019
B 20019
C 400
19 D 40029 8 . 从整数中任取两数,其中是对立事件的是 ( C )
① 恰有一个是偶数和恰有一个是奇数
②至少有一个是奇数和两个都是奇数
③ 至少有一个是奇数和两个都是偶数
④ 至少有一个奇数和至少有一个偶数
A .①
B ②④
C ③
D ①③
9. 打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射一个目标,则甲乙两人至少有一人中靶的概率是( A )
A 0.94
B 0.93
C 0.92
D 0.95
10. 在面积为S 的△ABC 的边AB 上任取一点P,则△PBC 的面积大于4
s 的概率是(C )
A. 41 B 31 C 43 D 3
2
二 填空题 (每题5分 共 5分×4=20分 )
11 抛掷一个骰子的一次试验,事件A 表示奇数点向上,事件B 表示向上的点数不超过3,则P(A+B)= 3
2 12 袋中有5个白球,3个黑球,从中任取3个球,则至少有一个白球的概率是 56
55 13 从甲、乙、丙、丁四人中选两名代表,甲被选中的概率是 2
1 14 在区间(0,L )内任取两点,则两点间的距离小于3L 的概率
9
5 三 解答题
15.某人进行射击表演,已知击中10环的概率为0.35,击中9环的概率为0.30,击中8环的概率为0.25,现在他射击一次,问击中8环以下(不含8环)的概率是多少? 解:记=“击中10环” ,B=“击中9环” ,C=“击中8环” ,D=“击中8环以下” 则:D= ,且A 、B 、C 互斥, 所以 P(D) =P( )
=1-P(A+B+C) =1-[P(A)+P(B)+P(C)]
= 1-[0.35+0.30+0.25]=0.1
16.在一次口试中,要从5道题中随机抽出3道题进行回答,答对其中的2道题就获得优秀,答对其中的1道就获得及格,某考生会回答5道题中的2道题,试求:
(1) 他获得优秀的概率是多少? A+B+C
A+B+C
(2) 他获得及格与及格以上的概率是多大?
解:从5道题中任取3道回答,共有(1,2,3),(1,2,4),(1,2,5) (1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,4,5),(3,4,5) 10个基本事件。
(1)设A ={ 获得优秀},则随机事件A 包含 基本事件个数m=3种
;故事件A 的概率为P(A)=10
3=n m (2)设B ={获得及格与及格以上},则事件B 所包含的基本事件个数
m=9种,故事件B 的概率P(B)=10
9=n m 答:这个考生获得优秀的概率为103 ,获得及格与及格以上的概率为10
9 。
17.从1,2,3,4,5五个数字中,任意有放回地连续抽取三个数字,求下列事件的概率:
(1)三个数字完全不同;
(2)三个数字中不含1和5 ;
(3)三个数字中5恰好出现两次
解:从五个数字中,任意有放回地连续抽取三个数字,相当于完成这件事分三步,每步从5个元素中均取出一个元素,有5种不同的方法,因此共有5×5×5=125种不同的结果。
(1)三个数字完全不同相当于第一步有5种方法,第二步有4种方法,第三步有3种方法,故有5×4×3=60种,所以三个数字完全不同的概率为
P 1=25
1212560= . (2) 三个数字中不含1和5,相当于每次只能从其他三个数字中有放回地抽取出一个
数字,故共有33=27种,因此概率P 2=125
27 (3)先研究第一次5,第二次5,第三次非5的方法数,相当于第一次取5,第二次取5,第三次取非5,共有1×1×4=4种不同的方法,所以恰有两次取5的方法数为12种,所以三个数字种5恰好出现两次的概率为P 3=
125
12
18.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在平面上,求硬币不与任一条平行线相碰的概率
解:设事件A :“硬币不与任一条平行线相碰”,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M,如上图所示,这样线段OM 的长度(记作│OM │)的取值范围是[0,a] ,其长度就是几何概型定义中区域Ω的几何度量,只有当r<│OM │≤a 时硬币不与平行线相碰,其长度就是子区域A 的几何度量,所以 P(A)=
a
r a a a r =的长度的长度],0[],(
19.十七世纪意大利的赌徒们认为:两颗骰子掷出的点数和为5和与掷出的点数和为
M
9的概率是相等的,你认为他们的看法对吗?为什么?
解:抛两颗骰子的结果总数为6×6=36
设A=“点数之和为5”,则A 包含的基本事件的个数为4个,其概率为P(A)=9
1364= 设B=“点数之和为9”,则事件B 包含的基本事件的个数为4个,其概率为P(B)=91364= 所以 P(A)=P(B) 即他们的说法是正确的。