新编高等数学第二章
大学高等数学教材第二章

大学高等数学教材第二章第二章引言本章将介绍大学高等数学教材的第二章,重点讨论与引言有关的内容。
通过本章的学习,学生们将深入理解高等数学的基本概念与原理。
本章分为三个部分,分别是基本定义与概念、数学证明与推理、数学模型与应用。
在每个部分中,我们将详细探究各个主题以帮助学生们更好地理解和运用所学知识。
第一部分基本定义与概念在这一部分,我们将介绍大学高等数学中的一些基本定义与概念。
这些定义和概念作为学习高等数学的基石,对于后续知识的学习和应用至关重要。
我们将重点讨论数学中的集合概念、函数与极限的定义以及相关性质。
通过对这些概念的深入了解,学生们将为后续章节的学习打下坚实的基础。
第二部分数学证明与推理数学证明与推理是高等数学中的重要部分。
在这一部分,我们将学习如何进行严谨的数学证明,包括直接证明、间接证明和数学归纳法等。
数学证明和推理让我们可以利用已有的数学知识来推导和证明新的数学命题。
通过学习这些技巧,学生们将培养逻辑思维和分析问题的能力。
第三部分数学模型与应用在这一部分,我们将介绍数学模型与应用。
数学模型是将实际问题抽象化为数学问题的重要工具。
通过对数学模型的建立和求解,我们可以解决各种实际问题,如物理问题、经济问题等。
本部分主要讨论微分方程和积分方程,以及它们在实际问题中的应用。
通过学习这些内容,学生们将了解数学在现实生活中的重要性和应用领域。
总结大学高等数学教材的第二章通过引入基本定义与概念、数学证明与推理、数学模型与应用等内容,为学生们打下扎实的数学基础,并提供了一种抽象化问题、推导解决方案的思维方式。
通过学习和掌握这些内容,学生们将能够更好地应用数学知识解决实际问题,为将来的学习和职业发展打下坚实的基础。
大家要认真学习,积极思考,相信通过努力和实践,每个人都能够在高等数学中取得优异的成绩!。
高数(高等教育出版社)第一版,第二章习题详解参考

第二章习题解答参考习题2-11.设f (x )=8 x,试按定义求 f (1) .解2.设f1xf 1lim8 1x 8.f (1)= lim8x 0x x0x2bx c ,其中 a, b, c 为常数.按定义求 f (x ) .f (x )= ax解f xf x x f x= limxx022a x xb x xc ax cbx limxx02 ax x a x2 b x2 ax b .limxx03.证明(sin x ) = cos x .证设 f x sin x ,则 f x x f x sin x x sin x 2 cosx x x sin222 cos xsinxf x x f x x2f x lim 2limx x x0x0sin xx2lim cos x cos x,2x2x0所以(sin x ) = cos x .4.下列说法可否作为 f ( x )在 x 0可导的定义?f (x0 h ) f ( x 0h )( 1)limh 存在;h 0解不能.因为从极限式中不能判断 f x0存在,也不能判断lim f ( xh ) f (x)存在.h0h例如 f x x 在x0 点不可导,但lim f (0h ) f (0 h)h hlim0h 0h h0h却存在.( 2)lim f (x 0h)f (x)和lim f (x0h )f(x)存在且相等;h0h h 0h解可以.因为 lim f (x0h ) f ( x0 )f x0,hh0lim f ( x0h ) f ( x0 ) f ( x0h ) f ( x0)f x0,根据导数存在的充要h lim hh 0h0条件,可知 f x存在.5.求下列函数的导数:( 1)y x 5;(2)y1;(3)x232( 4)y log1x;(5)y x x;(6)3x 5解(1)y 5 x 5 1 5 x 4;y x37x ;y lg x .(2)(3)(4)1131y x 22;x2 2 x x221522 x2 7x;y x 722x 777y11;1x ln 3x ln3(5)(6)2511512y x 32x66x 66;56x 1y.x ln 106.已知物体的运动规律为s t 3(米),求这物体在 t2 (秒)时的速度.解因为 s t3, v ds3t 2,所以 t 2 时,v 2 3 2212 .dt7.如果 f ( x )为偶函数,且 f (0)存在,证明 f (0)=0.证因为 f(0)=lim f x f 0,而 f ( x ) 为偶函数,故 f (x ) f ( x) ,x0x所以 f (0)limf x f0f xf 0,0lim f (0)x x x 0x所以 f (0)=0.8.抛物线y x 2在哪一点的切线平行于直线y 4 x 5 ?在哪一点的切线垂直于直线 2 x 6 y50 ?解由 y x2,可得 y 2 x ,若切点为x0 , x 02,则依题设 2 x 0 4 ,即 x0 2时,切线平行于直线11 ,即 x03y 4 x 5 ; 2 x0时,切线垂直于直线322 x 6 y 50;所以抛物线切线垂直于直线y x2 在点 2 , 4 的切线平行于直线y 4 x 5 ?在点3,9的242 x 6 y 50 .9.在抛物线y x 2上取横坐标为x1 1 及 x2 3 的两点,作过这两点的割线,问该抛物线上哪一点的切线平行于这条割线?解由题设可知 y 2 x,所取的两点为 1,1, 3, 9 ,连接两点的直线斜率为 k 4 ,依题设,应有 2 x 4 ,即 x 2 ,所以所求点为2, 4.10. 如果y f x在点4, 3处的切线过点0, 2 ,求 f4.解依题设,曲线在点4, 3处的切线为 y3f4x 4 ,满足 2 3 f404,从而f 41.411.讨论下列函数在x0 处的连续性与可导性:x21x0,(1)y3 x ;(2)ysin,x0 ,x0.解( 1)因为lim 3 x0y0 ,所以 y 3 x在 x0 点连续,x03x1,所以 y3 x 在 x0 点不可导;而 limx lim2x 0xx 321(2)因为 limx 2 s in 1y 0 ,所以 yx sin x,x0, 在 x0 点连续,xx0 ,x0.211x sin12,x 0,又 limx0 ,所以 yx sinx 在 x0 点可导.lim x sinx 0 xxx0 ,x 0.12.设 f (x )=sin x , x 0在 x0 处可导,求 a, b 的值.axb , x 0解因为 f (x )=sin x , x0 处可导, axb , x在 x所以 lim f ( x)f0 ,且 ff,x 0又 limf ( x )0 , limf ( x )b , fb ,故 b0 , f0 ,x 0x从而 f 0lim fxf 0 lim sin x1 ,xxxx 0flimf xf 0limaxa ,所以 a1 .xxx 0x 0213.已知 f ( x)x , x 0,求 f (0), f(0) 和 f (0).x, x2f ( x)f 0x 2解因为 f ( x) x , x ,所以 f (0)limlim0 ,x, xxxx 0x 0f (0)f ( x)f 0 limx 1 ,所以 f(0) 不存在.limxxxx14.设函数 f ( x)=x 3 ,x 0 ,求 f (x ) .3xx ,解 当 x 0 时, f ( x )3 x 2 ,当 x 0 时, f ( x)3 x 2 ,当 x0 时, f (0)limf xf 0limx 3 0 ,xxxx 0f (0)lim f xf 0limx 3 0 ,所以 f(0)0 ,xxxx 02 所以 f(x )=3 x , x 0 .3 x 2 , x 015.设所给的函数可导,证明:(1)奇函数的导函数是偶函数;偶函数的导函数是奇函数;(2)周期函数的导函数仍是周期函数.证 (1)设 f x 为奇函数,则 fxfx ,而 ff xh f x,xlimhh 0fxlim fx hfxf x hf xhlimhhhf xhf xf x hfxx,limhlimhfhh 0所以 fx为偶函数;相似地,若 f x 为偶函数,则 fx f x,于是f xlimfxh fxfxhf xhlimhhh0lim f xhf xfx,所以 fx为奇函数.hh0(2)设 fx为周期函数,则存在 T ,使 f x Tf x,则fx Tf x Thf x Tf x hf xfx ,limhlimhhh所以 fx也是以 T 为周期的周期函数.16.设有一根细棒,取棒的一端作为原点,棒上任意点的坐标为x .于是分布在区间 [0, x ] 上细棒的质量 m 是 x 的函数 mm ( x ) .应怎样确定细棒在点 x 0 处的线密度(对于均匀细棒来说,单位长度细棒的质量叫这细棒的线密度)?解 设在 x 0 处的线密度为 x 0,给 x 0 以 x 的增量,则在区间 [ x 0 , x 0x ] 上细棒的平均线密度为m x 0x m x 0,x故x 0m x 0x m x 0mx 0 .limxx 017.证明: 双曲线 xy a 2 上任一点处的切线与两坐标轴构成的三角形的面积都等于 2 a 2 .222证由 xya 2可得 y a , x 0 ,于是 ya2 , x 0 ,若切点为x 0 ,a ,x 0xx则该点处的切线为ya 2a 2 xx 0 ,它与两坐标轴的交点分别为2 x 0 , 0,x 0x 02220, 2 a,所以所求三角形的面积为 S 12 x 02a2 a 2 .x 02x 018.设函数 f (x ) 在 x 0 处可导,试讨论函数 | f (x ) | 在 x 0 处的可导性.解因为函数 f(x ) 在 x0 处可导,所以 limf ( x)f 0f0 存在,xx而 fx 0 limf ( x)fxx,故x(1)若f ( 0 )f ( x)f 0f0 可知:f ( x ) f,其中xxxl i mx f,x,从而 f ( x )此时 fxlim x flimx f,x 0xxxx 0因此 | f ( x) | 在 x 0 点的左导数为f 0,右导数为 f,所以 |f ( x) | 在 x0 处可导的充要条件是 f 00 ;( 2)若 f (0)0 ,设 f (0)0 ,则 lim f ( x)f 00 ,由保号性定理,0 ,x当 x U 0,时, f x0 ,此时有 ff ( x)f 0f ( x )f 0x x 0limxlimxf,相似地,x 0x若 f (0)0 ,则 limf ( x)f 00 ,由保号性定理,0 ,当 xU 0,时,xf ( x)f 0f ( x )f 0f x0 ,此时有 fxx 0limxlimxf;xx 0总之,若 f ( x) 在 x 0处可导,则当 f (0)0 时, | f (x ) | 在 x 0 处可导;当f (0) 0时,| f (x ) | 在 x 0处可导的充要条件是 f 00 .习题2-21.求下列函数的导数:(1) (3) (5)(7)y 3cos2 x ;( 2) y 3 x4cos2 x ; (4) 2e y 3e4 x1 ;( 6) y1;( 8)xln xy4sin(3 t1) ;y( x 1) 5 ;yx;21x y(x 2x1)( x 1) 3 ;2ln x x 3(9) yx 3 e x sin x ;( 10) y 2 .3ln x x解( 1) y3 sin 2 x 2 x3 sin2 x 2 6 sin2 x;( 2) y 4 cos(3 t1) 3t 1 12 cos(3 t1) ;( 3)( 4)y 2e 3 x 3 x4 sin 2 x 2 x 6e 3 x 8 sin 2 x ;y5( x 1) 4 x1 5( x1)4 ;( 5) ( 6)( 7)y3e 4 x 4 x12e 4 x ;1 2x2 xxx 21y2 1;221 x1 21 xxln x1xln xxlnx 1yx;222xln xxln xxln x( 8) y32x 1) 3( x 2222 x 2;2 x 1 ( x 1)( x1)( x 1) 5 x( 9) y2x3 x3x 2xx sin xx cos x;3 x e sin x x e sin xx e cos x x e3sin x2 23ln x233 2 xx 3 xx2ln x xx x 9 x 4 ln x x42 ( 10)y3 x2 xx 2 223ln x3ln xx 22.证明:( 1) (cot x)csc 2 x;( ) (csc x )csc xcot x.2证(1)(cot x )cos x sin x sin x2cos x cos x csc2x ;sin x sin x(2)(csc x)1cos x1cos xcsc x cot x .2sin x sin xsin x sin x3.证明:( 1)(arccos x )1;(2)(arccot x)1.221x1 x证(1)设y arccos x ,则其反函数为 x cos y , y2,2,由于 x sin y ,由反函数求导法则,arccos x111;sin y12y12cos x(2)设y arc cot x ,则其反函数为 x cot y , y0,,由于 x csc 2y ,由反函数求导法则,arccos x111.csc212y12y cot x4.求下列函数在给定点处的导数:2(1)y 2 cos x 3 sin x ,求y xπ ;(2)y32x,求 f (2) .4x3解(1)因为y 2 sin x 3 cos x ,所以y xπ4ππ522 sin3 cos;442212 x22 x,所以 y2 2 210 .(2)因为y232x 223x3x33233 5.写出曲线y 2 x1与 x 轴交点处的切线方程.2 x解令 y0 ,得曲线 y 2 x1与 x 轴交点为1, 0和1, 0,2 x22而 y21,所以 y1 4 ,222 x所以所求切线有两条,方程分别为y 4 x 2 , y 4 x2.6.求下列函数的导数:( 1)y(2 x 23) 5;(2)y sin (5 2 x 2 ) ;( 3) ( 5) ( 7)( 9)y e 3 x 22 x 1 ;(4) y sin ( x 2 ) ;y cos 2 x ; (6) y a 2x 2 ;y arctane x ;(8) y ( arccos x ) 2 ; yln sin x ;(10) ylog a (x 31) .解 (1) y5 (2 x 23) 4 (2 x 2 3)20 x (2 x 2 3)4;( 2) ycos(5 2 x 2 ) (52 x 2 )4 x cos(5 2 x 2 ) ;( 3) y e 3 x 23 x 26 x 2 e 3 x22 x 12 x 12 x 1;( 4) y cos( x 2 ) ( x 2 ) 2 x cos( x2) ;( 5) y 2 cos x cos x2 cos x sin xsin 2 x;( 6) y1222 xx;2 a 2x 2a x2 a 2 x 2a 2x 21x( 7) y2exe2 x;e x11 e( 8)( 9)y2(arccos x)(arccos x)2(arccos x)12 arccos x ;122x1 xy1 cos x cot x ;sin xxsin xsin12( 10) y33 x.3 1) ln a ( x 1)( x 31) ln a ( x7.求下列函数的导数:(1)(3)(5)(7)(9)yarccos (1 2 x) ; ( 2) y y1ln x ; (4) y1ln xysin n x cos nx ; ( 6) yy e arctan x;(8) yy1 x 1 x ; (10)1 x1 xarcsin 1 ;x ln (xx 2a 2 ) ;1 sin2 x ; 1 sin 2 xln ln ( ln x) ;y arccot1 tan x .2 2解( 1) y121;(1 2 x )221 (12 x)x 1 x1 (12 x )( 2)( 3)y1 1 x 1x ;1x2x 222111xxx2x1 1ln x 1 lnx1x x2y22;1 ln xx 1 ln x12 x122122( 4) yx2 x a ;2 2xa2xx22 2xaxaxa( 5) yn sin n1xsin xcos nxsin n xsin nx nxn1cos x cos nxsin x sin nxn sin n 1 x cos n 1x;n sin x( 6) y11 sin2 x1sin 2 x1 sin2 x2sin 2 x112 cos 2 x 1sin 2 x1 sin2 x 2 cos 2 x1 sin2 x1sin 2 x 22sin 2 x112 cos 2 x2 cos 2 x; 1 sin 2 x 1sin 2 x 1 sin 2 xcos 2 x 1sin 2 x( 7) ( 8)( 9)arctan xarctan xarctanx1 y ee1 xx1 ln ( ln x)1 1y x ) ln ( ln x) ln xln ( lnln xarctanxe;2 1 xx1;x ln x ln ( ln x)111 x1x1x112 1 x 2 1 x1 x2 1 x 2 1 xy21 x1x1 x 1 x21 x1 x 121x2;221 x 1 x1 x 1 x1 x 1 x( 10)y11x41 2 x x1x2tan22sec2 122x2 tan24tan222xsec21.2x4tanx1223 cos28.设f ( x )1cos x ,x0,求 f x.ln (1 x )x cos x ,x0sin x,x0解当 x0 时, f (x )1cos x x sin x ,x0,1x2x x当 x 0 时,f(0)1cos x0lim 2 sin2lim sin x sin20 ,lim x x2xx0x0x02ln1x x cos x01f (0)lim ln1x cos x ln e 10 ,lim x xx0x0sin x ,x0所以 f00,从而 f(x )1cos x x sin x, x .1x0 9.求函数y( sin x ) cos x 的导函数.解法 1因为y( sin x ) cos x e cos x ln sin x ,所以 y e cos x lnsin x cos x ln sin x sin xcos xsin x ln sin x cos xcosxsin xsin x sin x ln sin x2x .cos xcossin x解法 2对数求导法,由 y( sin x) cos x,得 ln y cos x ln ( sin x ) ,两边同时对 x 求导,得ysin x ln sin x cos xcos x,y sin x所以 y sin x sin x ln sin x cos2x.cos xsin x10.设f(x )sin x , (x )x3,求 f [(x )] , f[(x )] , { f [(x )]}.解 因为 f (x )sin x , ( x) x 3 ,所以 f ( x)cos x ,(x ) 3 x2,所以 f [( x)] f 3 x 2 sin 3 x 2 ,f [( x )]cos( x )cos x 3,{ f [ ( x)]} sin x 3 cos x 3 x 3 3 x 2 cos x 3 .11.设 f ( x) 存在,求下列函数的导数:( 1) f n (cos x ) ; ( 2) cos n [ f ( x)] .解(1) nn 1(cos x)f (cos x )n 1f (cos x)nf nf(cos x ) f (cos x) cos xn sin xfn 1(cos x ) f (cos x ) ;(2) cos n [ f (x)]n cos n 1 [ f ( x)] cos [ f (x )]n cos n 1 [ f (x)] sin [ f ( x)] f xn 1[ f (x )] fx .n sin [ f ( x)] cos12. 求曲线 f x 2 sin x sin2所有具有水平切线的点.x解 因为 fx2 cos x 2 sin x cos x ,令 fx0 ,得 cos x 1sin x0 ,于是 cos x 0 ,或 sin x1 ,推得 x k, k Z ,或 x 2k3Z ,2, k2所以所求的点为2 k, 3 ,2k3 1 ,其中 k Z .,22习题2-31.求下列函数的二阶导数:(1)(3)ye3 x 5;(2) y 2x ln x ;(4) sinye t sin t;y tan x ;(5) yln( x4 x 2 ) ;( ) y (1 x 2 ) arctan x.6解 ( 1) y 3e 3 x 5 , y9e 3 x 5 ;(2) yetsin t e t cos t e t cos t sin t,yetsin te tsin t cos t2etcos tcos t ;2(3) y2 sin x cos x ln xsin 2 x 1ln xsin 2 xsin x ,xxsin 2 x2sin x cos xx sin2y ln x 2 cos 2 x xxx22 sin 2 x22 x ln xsin x ;x 2 cosx 2(4)(5)22 sec x sec x tan x2ysec x , y2 sec x tan x ;112 x1y,x4 22 4x 24 2xx13xy4x 222 x;2423x(6) y2 x arctan x1 , y2 arctan xx.21x2. y x 3 e x,求 y ( 5 )(0).解设 u x 3 , v e x,则 u3 x 2 , u 6 x , u6 , u n 0, n 4 ; v ne x , n N ,代入莱布尼兹公式,得y ( 5 )u 5 v5 u 4 v 10 u v10 u v5u v 4uv 510 6e x10 6 xe x5 3 x 2e xx 3 e x ,所以(5 )60.y (0)3. yx 2 e 2 x ,求 y ( 20 ) .解 设 ux 2 , v e 2 x , 则 u2 x , u2 , u n0,n 3 ; v n2 n e 2 x , n N,20181920代入莱布尼兹公式,得y ( 20 )C 20k u nkv kC 202C 201 C 200 u vu vuvk 0190 2 218 e 2 x C 201 2 x 219 e 2 x C 200 x 2 2 20 e 2 x2 20 e 2 x95 20 xx 2 .4.试从dx1导出:( 1)d 2 xy3;(2)d 3 x3( y ) 2y y.2( y ) d y 35dy yd y( y )解因为d x1,所以 d 2 x d 1 d 1 dx y 1y 3,d yy2dy ydx ydyy2yd yy3dydy dxd x3dyy 3dx3dydyy322yy y 3 yy13 yy y.6y5yy5.证明:函数 y C 1e xC 2 ex( ,C 1 , C 2 是常数)满足关系式 y2y 0 .解 因为 y C 1 e xC 2 ex,所以所以xxxx2x2xyC 1 eC 2eC 1eC 2 e, yC 1 e C 2 e,y2y2C 1e x 2C 2 ex2C 1 e x C 2 ex0 .6. 求常数 的值,使得函数 ye x 满足方程 y5 y6 y.解 因为 ye x ,所以 y ex, y2ex,代入方程 y5 y6 y 0 , 得256 e x0 ,因为 e x0,xR ,所以256,解得 1 6 , 21 .7. 设 fxsin xa , g xb sin xc cos x ,求常数 b, c 的值,使得f 0g 0,且 f 0g0 .解 因为 fxsin x a, g xb sin xc cos x ,所以 f x cos x a, g xb cos xc sin x ,所以由 f 0g 0, f 0g 0,可得 c sin a ,且 bcos a .8.求下列函数的 n 阶导数.(1) y x na 1 x n 1 a 2 x n 2a n 1 x a n ( a 1 , a 2 , a n 是常数);(2) y xe x ;(3) ysin 2 x ; (4) yx 2 16.5 x解(1) yn 1n 1 a 1 xn 2n 3a n 1 ,nxn 2 a 2 xn 2n 3n 4a ,根据幂函数的导数公式特点:每求导一次,幂函数降一次幂,故y n n ! .(2)y e x xe x e x x 1 , y e x x 1 e x e x x 2,yxx2x xx 3 ,由此可见,每求一次导数,增加一个e x,e e e所以n xx n, n N;y e(3)y sin 2 x1cos 2 x11cos 2 x,222y 2 sin x cos x sin 2 x cos 2 x2,y 2 cos 2 x 2 cos 2 x22,y 2 2sin 2 x 2 2cos 2 x32,42 3cos 2 x23 cos 2 x4,y2所以n2n1 cos 2 x n, n N .y2(4)因为y111,x 2 5 x6x3x2而1x32112x3,x3,x331123x34x3,1n可见,123n x n 11nx3n1x33n !,1n同理,123n x n11nx2n1x22n !,所以n n n1n1n 11.y 1 n ! x 3x 2 1 n !x3n 1xn 12习题2-41.求由下列方程所确定的隐函数的导数d y :d x(1) x y e xy0 ; (2) 2 x 2 y xy 2 y 30 ;(3) e xyy ln xsin 2 x ;( ) xya( a 0 的常数).4解( 1)将方程两边同时对 x 求导,得dydydy ye xyxy,变形得:1;1ey x0 dx1xydx dxxe(2)将方程两边同时对 x 求导,得2dyy2dy2dy 0,2 2 xy xx 2 y3 ydxdx dx变形整理得:dy224 xy y 2;dx2 x 2 xy3 y(3)将方程两边同时对 x 求导,得e xyy xdydyln xy 2 cos 2 x ,dxdxx变形整理得:dy2 x cos 2 xyxy exy;dxx ln x 2xyx e(4)将方程两边同时对 x 求导,得11dy ,2 x2y dx变形整理得:dyy, x.dxx2.求曲线 x 2 y 52 xy0 在点 (1,1) 处的切线方程.解将方程两边同时对 x 求导,得: 2 x5 y 4 dy2 yx dy0 ,dx dx将 x1 , y 1 代入,解得:dy1,10 ,dx所以曲线在点 (1,1) 处的切线方程为: y1 .3.已知 y sinx cos( xy )0 ,求隐函数 yy x 在点 0, π的导数值.2解将方程两边同时对 x 求导,得:dyy cos xsin( x y ) dy ,sin x1dxdx将 x0 , y2 代入,解得: dy1.dx0,222 4.求下列方程所确定的隐函数的二阶导数 d y .dx 2(1) y tan( x y ) ; (2) y 1x e y ;(3) y lny xy ;(4) arctany ln x 2 y 2 .x解(1)将方程两边同时对 x 求导,得:dysec 2 ( xy ) 1dy,dxdx解得dycsc 2 ( xy ) ,dxd 2dy再求导,得:y2 csc( xy)csc( xy ) cot xy,21dxdx将 dy2csc 2( xy) 代入,整理得:d y2 csc 2 ( x y) cot3 xy ;dxdx 2(2)将方程两边同时对 x 求导,得:dye yx e y dy,dxdxe y dy1 xe ye ye yx e y dy解得:dyy,再求导,得: d 2 y dxdxe y 2y2,dx1xedx1xedy y22 y2 xe y2 y3 y将 e代入,整理化简得:d yeey2y 33;dx1 xedx12 yxe(3)将方程两边同时对 x 求导,得:dyln ydy 1 dy , dxdxdx1 dy解得:dy1d 2 yy dx 2 ,,再求导,得: 2dxln y dxln y将 dyd 2 y13;1代入,整理化简得:2ydx ln ydx ln ydyxy2 x 2 ydy(4)将方程两边同时对 x 求导,得:1dx1 dx,y 2222y 21xxx1dy x yx y 1dy解得:dy x y,再求导,得:d 2 ydxdx,dxx ydx 22x y222将 dyx y代入,整理化简得:dy 2 xy.3dxxydx 2xy5.用对数求导法求下列函数的导数:(1) y(sinx) cos x ;(2) y(tan 2 x ) x;x x(3) y;(4) y (2 x 1) x (3 x 1) x 1 .1 x解 ( 1)两边取自然对数,得: ln ycos x ln(sin x ) ,两边同时对 x 求导,得:1 dysin x ln sin xcos x cos x ,y dxsin x整理化简得:dy(sin x) cos xsin x ln sin xcos x cot x ;dx(2)两边取自然对数,得: ln y x ln(tan2 x ) ,两边同时对 x 求导,得:1dy ln(tan 2 x )xsec 2 2 x2tan 2 x ,y dx整理化简得:dy(tan 2 x) xln(tan 2 x)4 x ;dxsin 4 x(3)两边取自然对数,得: lny x lnx x ln xln1 x,1x两边同时对 x 求导,得:1dy ln x ln 1 xx 1 1 1 y dxxxx整理化简得:dyx ln x x1 1;dx1 x1 x(4)两边取自然对数, 得: ln yln(2 x1)1x1ln(3 x1)1 x1 ,ln 4 ln28两边同时对 x 求导,得:1 dy2 1 131)81, y dx 2 x 2 x 4(3 x x 1整理化简得:dy(2 x1) x(3 x1) x 12 1 1 31) 8 11dx2 x 2 x 4(3 x x 6.求下列参数方程所确定的函数的导数d y : d x2 atxa cos btb sin atxt21 ( a 为常数).(1)( a , b 为常数); (2)2ya sin btb cos ata (1 )ty1t2解(1)因为dxab sinbtab cosat ,dyab cosbtab sinat,dtdt所以d yab cos btab sin atcos btsin at;d xab sin btab cos atsinbtcos at2 a 1 t22 at 2t2(2)因为dx2 a 1 t,22dt1212ttdy2at 1 2a (1 2) 2 t4 atttdt221 t 21 2t所以dy1 2 t 2 t .dxt 2 t 2 17.求曲线x tet1 在 t0 处的切线方程与法线方程.t 2 )ey (2 t t解 因为 dxe tte t , dy2 2 t e t(2 t t 2 )e t ,dtdt所以dy2 t 2 , dyt 02 ,又 x t 0 1, y t 0dx1 tdx故所求切线为: y2 x 1,法线为:y1 x 1 . 28 . 已 知曲 线 x2n在 ttm t0 时过原点,且在该点处的切线与ype t2e2 x3 y5 0 平行,求常数 m , n, p .解 因为 dxm ,dyp e t ,故dyt2 tp e ,dtdtdx2t m由题设可知: x tn0 , yt 0p2e0 ,dyt 0p 2 ,dxm3所以所求常数为: n0 , p2e, m3e .注:此题的书后答案有误.29.求下列参数方程所确定的函数的二阶导数 dy :d x 2(1)x1 t 2;(2)xe t cos t ;y tt 3yte sin tx ln 12xf ( t )t;(4)( f(t ) 存在且不为零).(3)y tf ( t )f (t )yt arctan t( 1)因为dx2 t ,dy,所以dy13 t 21 3t , 解13t 2dt dtdx2 t2t221 322于是 d yd13t dt2t 21 3t;2dt2 t2dx2 t3dx4t(2)因为dxe tcos te tsin t ,dye t sin t e t cos t ,dtdt所以dye t sin te t cos tsin t cos t ,于是dxt cos t tsin tcos tsin te ed 2 yd sin tcos tdt cos tsin 2sin t2 1tcos t2dtcos tsin tdxcos tsin 2tcos ttsin tdxte e2;e tcos tsin t 311dx2tdy1dy12t1,1t(3)因为 dtt 2dt1t 2 ,所以dx2 t2 ,1 t 221221于是 d yt;22 t4 tdx1 t 2(4)因为dxf( t ) ,dyf ( t ) tf ( t )f (t ) tf (t ),所以dyt ,dtdtdx于是 d 2 y1.2f (t )dx10.将水注入深 8 米、上顶直径 8 米的正圆锥形容器中,注水速率为4 吨/分钟.当水深为 5 米时,其表面上升的速率为多少?解 如图所示,设在 t 时刻容器中水面的高度为h t(米),此时水面的半径为 rt(米),则依题意应有1 r 2t h t4 t ,而h tr t , 384所以 1h 3 t4t ,两边同时对时间 t 求导,12可得1h2t dh4 ,当 h t5 时,可求得dh16 , 4dt dt2516 所以当水深为 5 米时,其表面上升的速率为m m in .2511.汽车 A 以 50 公里 / 小时的速度向西行驶,汽车 B 以 6 0 公里 / 小时的速度向北行驶,两辆车都朝着两条路的交叉口行驶. 当汽车 A 距离交叉路口 0.3 公里,汽车 B 距离交叉路口 0.4 公里时,两辆车以什么速率接近?解 如图所示,设在 t 时刻,汽车 A 距离交叉路口x t ,汽车 B 距离交叉路口 y t ,则两车之间的直线距离为 st x 2y 2t t ,两边同时对时间 t 求导,可得x tdxy dytdxdydsdtdt60 ,,依题意可知 50 ,dt2y 2dtdtx t t故当 x t0.3 , y t0.4 时,ds 0.350 0.4 6078 ,即当汽车 A 距离交叉dt0.32 20.4路口 0.3 公里,汽车 B 距离交叉路口 0.4 公里时,两辆车以78 km / h 的速率接近.12.一个路灯安装在 1 5 英尺高的柱子上, 一个身高为6 英尺的人从柱子下以5 英尺/秒的速度沿直线走离柱子,当他距离柱子4 0 英尺时,他身影的顶端以多快的速率移动?解 如图所示,设在 t 时刻,此人离灯柱的水平距离为x t,身影的顶端离灯柱的水平距离为y t,则依题意有:dx,6y tx t5,515,可见y tx tdt y t3两边同时对时间 t 求导,得dy5dx25 ,dt3dt3所以他身影的顶端以25 feet / s 的速率移动,与他离灯柱的水平3距离无关,只与他的前进速度、身高、灯柱高有关.习题2-51.函数y x2,求当 x 1 ,而 x0.1 , 0.01 时,y 与 d y 之差是多少?解当 x 1 , x0.1 时,y20.21, d y 2 x x0.2 ,1.11所以y dy0.01;当x 1 ,x0.01时, y 1.01 210.0201, d y 2 x x0.02 ,所以y dy0.0001;2.求函数y x2x 在 x 3 处, x等于 0.1 , 0.01时的增量与微分.解因为 y x 2x ,所以dy 2 x1x ,当 x 3 , x0.1 时,2 3.1230.71, dy0.7;y 3.13当 x 3 , x0.01 时,y 3.012 3.0120.0701, dy0.07 .333.函数y x 3x ,求自变量x由 2变到 1.99时在 x 2 处的微分.解因为y3x ,所以 dy21x ,x 3 x当 x2, x0.01 时, dy3210.010.11 .24.求下列函数的微分(1)(3)(5)y x 2 x 2 1 x3x 4;( 2)3yx;( 4)1 x2y3ln cos x;( 6)y xe x2;y tan 2 (1x 2 ) ;y e ax sin bx .23解(1)dy 1 4 x x 4 x dx ;x 2x 22x 2x 2x 2 2;( 2) dy e dx xe dxe dx xe2 x dx e1 2 x dx22221 x dx xd 1 x1 x dx x2 x dx( 3) dy1 xdx ;2221 2121 2xxx( 4) dy2 tan(12) d tan(1 x22 tan(1x 222) d (12x )) sec (1x x )4 x tan(12) sec 22;x (1 x ) dx( 5) dy 3 ln cos x ln 3dln cos x3 ln cos x ln 31 d cos xcos xln cos x3ln 3 tan xdx ;( 6) dyaxax sin bxaxcos bx d bxaxa sin bxb cos bxdx .e d e e5.将适当的函数填入下列括号内,使等式成立:(1) d( ) sintd t ;( 2) d()(3) d ( )x;( 4) d ( )d x1 x2(5) d ( ) x 2( 6) d ()xe d x ;23 xd x ;secd x;x 2a 2ln xd x .x解(1)1 cost;( )1tan 3 x ;( ) 1x 2;233(4) 1arctanx ;(5) 1e x ;(6) 1l n 2 x .2aa 226.某扩音器的插头为圆柱形,其截面半径r 为 0.15 厘米,长度 L 为 4 厘米,为了提高它的导电性能,要在圆柱的侧面镀一层厚度为 0.001 厘米的铜,问每个插头约需要多少克纯铜?(铜的密度为8.9 克/ 立方厘米,3.1416 )解因为圆柱形的扩音器插头的体积为Vr2L ,侧面镀层的体积约为VdV2 rLr ,当 r 0.15 , r 0.001L4时, V32 3.1416 0.15 4 0.0013.7699210 ,,故所需铜的重量约为 m3.769921030.03355克.8.97.设有一凸透镜,镜面是半径为R 的球面,镜面的口径为 2h ,若 h 比 R 小h 2 得多,试证明透镜的厚度 D.2 R解如下图所示,镜面半径 R 、镜面口径 2h 、透镜厚度 D 之间有关系:h 222,化简得: h22RDD20 ,R DR2R4R 2 4 h 2h 得: DR R 12R2 2,若 h 比 R 小得多,则1 h 21h 2,22 R 2R222故DRR1hR R 1h h .R 22 R 22 R8.利用微分求下列函数值的近似值(1);(2);(3); ( 4) e 1.01 ;( )26 ;( ) 3 .996cos 59tan 46lg 1156解 (1) cos 59coscoscossin6013 18033180130.5151 ;2 2180( 2) tan 46 tan 0tantan245141804sec18041 21801.0349;( 3) lg 11 lg 10 1lg 10111.0434;10 ln 10( 4) e1.01e1 0.01ee 0.01 2.7455;( 5) 2625 1251 15.1 ;22512(6) 3 996310004310001000349.9867 .39.当 | x | 较小时,证明下列近似公式:( 1) sin x x ; (2) (1x )1x ; ( 3) ln(1 x ) x .解 (1)设 fx sin x ,则 fxcos x ,当 | x | 较小时, fxsin xsin 0 cos 0 xx ,所以 sin x x ;( 2)设 f x(1 x) ,则 fx1(1 x )当 | x | 较小时, f x(1 x ) f 1f 1 x1x ,所以 (1x )1x ;(3)设 f x ln(1 x) ,则 fx1,1x当 | x | 较小时, f xln(1 x ) f 1 f 1 x x ,所以 ln(1x )x .习题2-61. 一飞机在离地面 2000 米的高度,以 200 公里 / 小时的速度飞临某目标之上空,以便进行航空摄影.试求飞机飞至该目标上方时摄影机转动的速度.解 如右图示意,A 为摄影目标,B 为其正上方的点,设 t 时刻飞机离 B 点的水平距离为 x t ,摄影机镜头 C 与 A 点连线与飞机的水平飞行方向成夹角,则co tx t , xtx200000t ,两边同时对时间20003600t 求 导 , 可 得 csc 2d1 dx t1, 即dt 2000 dt36d 1,当飞机飞至该目标上方时,,dtsin2362代入解得:d1 360 5rad / s .dt36 22. 一架飞机着陆的路径如图 2-11 所示,并且满足下列条件:(ⅰ)降落点为原点, 飞机开始降落时水平距离为 l ,飞行高度为h .(ⅱ)在整个降落过程中, 飞行员必须使飞机保持恒定的水平速度 v .(ⅲ)垂直方向的加速度的绝对值不能超过常数 k (必须比重力加速度小很多) .3图 2-11( 1) 求一个三次多项式 P x2ax bxcx d ,通过在开始降落和着陆的点对P x 和 P x施加一定的条件限制,使它满足条件。
(word完整版)高等数学(上册)第二章教案

第二章、一元函数微分学及其应用教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。
2、熟练掌握导数的四则运算法则和复合函数的求导法则,熟练掌握基本初等函数的导数公式,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3、 了解高阶导数的概念,会求某些简单函数的n 阶导数。
4、 会求分段函数的导数。
5、 会求隐函数和由参数方程确定的函数的一阶、二阶导数,会求反函数的导数。
教学重点:1、导数和微分的概念与微分的关系;2、导数的四则运算法则和复合函数的求导法则;3、基本初等函数的导数公式;4、高阶导数;6、 隐函数和由参数方程确定的函数的导数。
教学难点:1、复合函数的求导法则;2、分段函数的导数;3、反函数的导数4、隐函数和由参数方程确定的导数。
所需学时:24学时(包括:22学时讲授与2学时习题)第一节:导数的概念及其基本求导公式1、引入(切线与割线)在学习到数的概念之前,我们先来讨论一下物理学中变速直线运动的瞬时速度的问题。
例:设一质点沿x 轴运动时,其位置x 是时间t 的函数,y=f (x ),求质点在t 0的瞬时速度?我们知道时间从t 0有增量△t 时,质点的位置有增量,这就是质点在时间段△t 的位移。
因此,在此段时间内质点的平均速度为:.若质点是匀速运动的则这就是在t 0的瞬时速度,若质点是非匀速直线运动,则这还不是质点在t 0时的瞬时速度。
我们认为当时间段△t 无限地接近于0时,此平均速度会无限地接近于质点t 0时的瞬时速度,为此就产生了导数的定义,如下: 2、导数的定义定义:设函数y=f (x )在点x 0的某一邻域内有定义,当自变量x 在x 0处有增量△x(x+△x 也在该邻域内)时,相应地函数有增量,若△y 与△x 之比当△x→0时极限存在,则称这个极限值为y=f (x )在x 0处的导数。
大一高等数学教材第二章

大一高等数学教材第二章第二章:函数与极限概述:在大一的高等数学教材中,第二章节主要介绍了函数与极限的概念、性质和应用。
函数和极限是数学中非常重要的概念,在数学和其他科学领域中都有广泛的应用。
通过学习这一章,学生将能够理解函数的本质,掌握函数的基本性质和图像,以及运用极限来解决各种数学问题。
1. 函数的基本概念1.1 函数的定义函数是一种特殊的关系,将一个集合的元素映射到另一个集合的元素上。
具体而言,一个函数是由两个集合A和B以及一个对应关系f所组成的三元有序对(A, B, f)。
其中,A称为定义域,B称为值域,f将A中的元素映射到B中的元素。
1.2 函数的性质函数可以通过多种方式来描述和表示,包括函数图像、显式表达式、隐式表达式等。
此外,函数还具有诸如奇偶性、单调性、周期性等数学性质。
2. 极限的概念与性质2.1 极限的定义极限是函数与数列中的重要概念之一,用于描述序列或函数在某一点或无穷远处的趋势。
对于一个函数f(x),当自变量x趋近于某个值a 时,函数f(x)的极限可以通过数列或函数的趋近性来定义。
2.2 极限的性质极限具有多种性质,包括唯一性、有界性、保序性等。
这些性质使极限在数学中具有广泛的应用,尤其是在微积分和数学分析中。
3. 函数的连续性和可导性3.1 函数的连续性连续性是函数中的重要概念,描述了函数在某一点上的平滑性和无间断性。
在第二章中,学生将学习如何判断函数在某一点上是否连续,并掌握连续函数的性质和图像。
3.2 函数的可导性可导性是函数在某一点上的斜率概念,用于描述函数的变化率。
学生将学习如何判断函数在某一点上是否可导,并通过导数和微分来进行求解和应用。
4. 函数的曲线图与应用4.1 函数的曲线图通过绘制函数的曲线图,可以直观地了解函数的性质、特点和变化趋势。
学生将学习如何绘制函数的曲线图,并通过曲线图分析函数的特性。
4.2 函数的应用函数与极限在数学以及其他科学领域中有广泛的应用。
大一高数课件第二章2-2-1共19页PPT资料

x
y 3 ( 1 2 x 2 3 5 x lo 0 .1 x g1 x 5 x l5 n lo 0 .1 x g 1 x 5 xx l1 0 n .1 )
(3 )[u v ( (x x ) )] u (x )v (x v )2 (x u )(x )v (x ) (v (x ) 0 ).
3x2 y
(1 x 2 )2
18
5 、 ( a ) x ( b ) a ( x ) b (ln a a b ) . bxa b x
三 、 ( b , b 2 4 ac ) . 四 、 2 x 2a y 2 4 a0 和 2 x y 2 0 .
谢谢!
ch2x
例6 设 f(x ) ln 1 x ,( x ),x x 0 0,求 f(x ).
解 当x0时, f(x)(x)1,
当x0时,
f(x)ln1(x)
1
1
x
,
f(0) lx i0m f(0xx )f(0)
当x0时, f(0)lx im 0(0 x x)0 1,
f (0)lx i0 m ln 1[(0 xx) ]0 1,
x1
2 3
x2
2 3
切点为 2, 4 6
3 9
2, 4 6 3 9
所求切线方程为
y
4
6 9
和
y
4 6 9
练习题
一、 填空题:
1、 设 y x sin x ,则 y= __________.
2、 设 y 3a x e x 2 ,则 dy =__________.
x
dx
3、 设 y e x ( x 2 3x 1),则 dy = __________. dx x0
大一高数课件第二章 2-1-1

不存在
函数y f ( x )在x 0点不可导.
o
x
四、导数的几何意义
1.几何意义
f ( x0 )表 示 曲 线y f ( x )上 点 M ( x0 , f ( x0 ))处 切 线 的 斜 率 ,即 f ( x0 ) tan , (为 倾 角 )
y
y f ( x)
T
3 2
3 y x 3 2
1 2
x4
y8
( 4, 8 )点的切线与y 3 x 1 平行
五、可导与连续的关系
定理
证
函数在一点可导,则函数在该点必连续.
y f ( x 0 ) x
y f ( x 0 ) x 0 x lim
设函数 f ( x )在点 x0可导,
k y
பைடு நூலகம்
1 x 2
4.
切线方程为 法线方程为
1 y 2 4( x ), 2
即 4 x y 4 0.
即 2 x 8 y 15 0.
1 1 y 2 ( x ), 4 2
例8 曲线 y x 上哪一点的切线与 3 x 1 平行? y 解
都是描述物质运动的工具 (从微观上研究函数)
牛顿(1642 – 1727)
伟大的英国数学家,物理学家,天文学家和自然 科学家. 他在数学上的卓越贡献是创立了微积分.
1665年他提出正 流数(微分)术,次年又提出反流数 (积分)术,并于1671年完成《流数术与无穷级数》一书(1736年出版). 他还著有《自然哲学的数学原理》和《广义算术》等 .
切线的斜率
f ( x0 x ) f ( x0 ) k lim x 0 x
新编高等数学第二版教材答案
新编高等数学第二版教材答案第一章:函数和极限1. 函数的概念和性质2. 极限的概念和性质3. 极限的运算法则4. 无穷大与无穷小量5. 函数的连续性6. 一元函数的导数和微分第二章:一元函数的微分学1. 导数的定义和性质2. 导数的几何意义和物理意义3. 微分的概念和性质4. 微分中值定理5. 函数的高阶导数6. 复合函数的导数第三章:一元函数的积分学1. 不定积分和定积分的概念2. 基本积分公式3. 定积分性质和计算方法4. 牛顿-莱布尼茨公式5. 定积分的几何意义和物理意义6. 定积分和不定积分的关系第四章:一元函数的应用1. 曲线的切线和法线2. 函数的单调性和凹凸性3. 函数的极值和最值4. 弧长和曲线的曲率5. 定积分的应用:面积和体积计算6. 微分方程的应用第五章:数列和级数1. 数列的概念和性质2. 数列的极限和收敛性3. 数列极限的运算法则4. 单调数列的性质5. 级数的概念和性质6. 常见级数的收敛性判别第六章:无穷级数1. 可数无穷集合和不可数无穷集合2. 数列极限存在准则3. 函数项级数的收敛性4. 幂级数的收敛性5. 傅里叶级数的收敛性6. 项级数的运算性质和收敛域第七章:多元函数的微分学1. 多元函数的极限和连续性2. 偏导数和全微分3. 多元复合函数的导数4. 隐函数的导数5. 方向导数和梯度6. 条件极值和拉格朗日乘子法第八章:多元函数的积分学1. 二重积分和三重积分的概念2. 二重积分和三重积分的性质3. 二重积分和三重积分的计算方法4. 广义积分的概念和性质5. 广义积分的收敛性判别6. 曲线积分和曲面积分第九章:多元函数的应用1. 向量场及其运算2. 向量场的散度和旋度3. 曲线、曲面的方程4. 曲线积分和曲面积分的应用5. 散度定理和高斯公式6. 斯托克斯公式及其应用第十章:常微分方程1. 方程的解和初值问题2. 一阶线性微分方程3. 二阶线性常系数齐次微分方程4. 二阶线性非齐次微分方程5. 微分方程的应用6. 线性微分方程组该教材答案包含了新编高等数学第二版教材中各个章节的题目答案,以方便学生们辅助学习和复习。
《高等数学第二章》课件
高阶导数及其应用
高阶导数的 定义
解释高阶导数的概 念和计算方法,以 及与一阶导数的关 系。
阶乘
讨论阶乘的定义和 性质,以及在高阶 导数中的应用。
幂指函数的 导数
给出幂指函数的导 数计算公式和性质。
洛必达法则 及其应用
介绍洛必达法则的 原理和应用方法, 解决极限的问题。
极限的定义
清晰地定义函数的极限,包括左极限和右极限。
极限的性质
介绍极限的性质,如极限的唯一性和四则运算法则。
连续性
连续函数的概念
解释连续函数的定义和性质,以及在实际问 题中的应用。
连续函数的性质
讨论连续函数的重要性质,如介值定理和最 值定理。
导数
导数的定义
给出导数的几何和 代数定义,以及导 数的计算法则。
导数的性质
介绍导数的性质, 如导数的唯一性和 四则运算法则。
导数的计算
探讨不同类型函数 的导数计算方法, 如幂函数、三角函 数和复合函数的求 导法则。
几何意义和 物理意义
解释导数在几何和 物理中的意义和应 用。
微分学基本公式
函数的四则运算及其微分
给出函数的加减乘除法则,并给出微分的法 则。
复合函数的微分
《高等数学第二章》PPT 课件
欢迎大家来到《高等数学第二章》课件。本课将介绍函数的基本概念、常用 函数、极限、连续性、导数、微分学基本公式、高阶导数及其应用,以及函 数的图形与曲率。让我们一起探索数学的魅力吧!
导言
概述
介绍《高等数学第二章》的重要性和内容 概览。
常用符号说明
解释常见的数学符号的意义和用法。
常用函数
幂函数、指数函 数、对数函数
北邮新编高等数学教材答案
北邮新编高等数学教材答案第一章:导数和微分1.求下列函数的导数:(1) f(x) = x^3 + 2x^2 - 3x + 1(2) f(x) = sin(x) + cos(x)(3) f(x) = e^x / (1 + e^x)第二章:定积分1.计算下列定积分:(1) ∫(0 to π) sin(x) dx(2) ∫(-∞ to ∞) e^(-x^2) dx(3) ∫(1 to 2) ln(x) dx第三章:多元函数微分学1.求下列函数的偏导数:(1) f(x, y) = x^2 + y^2 - xy(2) f(x, y) = e^x sin(y)第四章:多元函数的极限与连续性1.计算下列函数的极限:(1) lim (x, y)→(0, 0) (x^2 + y^2) / sqrt(x^2 + y^2)(2) lim (x, y)→(1, 1) (x^2 + y^2) / (x + y - 2)第五章:一阶常微分方程1.求解下列一阶常微分方程:(1) dy/dx + y = x(2) dy/dx = y/x第六章:多元函数的极值与条件极值1.求函数 f(x, y) = x^2 + xy + y^2 在D={(x,y)|x^2 + y^2 ≤ 4} 上的极值。
第七章:重积分1.计算下列二重积分:(1) ∬(D) x^2 + y^2 dA, D = { (x, y) | x^2 + y^2 ≤ 1 }(2) ∬(D) e^(-x^2-y^2) dA, D = { (x, y) | x^2 + y^2 ≤ 2, x ≥ 0, y ≥ 0 }第八章:二阶常微分方程1.求解二阶常微分方程:(1) d^2y/dx^2 + 2dy/dx + 2y = 0(2) d^2y/dx^2 + 4dy/dx + 4y = sin(x)第九章:无穷级数1.求下列级数的和:(1) ∑(n=1 to ∞) 2^n / 3^n(2) ∑(n=0 to ∞) n/(n^2+4)第十章:傅里叶级数与傅里叶变换1.求函数 f(x) = x 在[-π, π] 上的傅里叶级数展开式。
高等数学第二章课后习题答案
第二章 导数与微分1. ()().1,102-'=f x x f 试按定义求设200200(1)(1)10(1)10'(1)lim lim1020lim lim(1020)20x x x x f x f x f x xx x x x∆→∆→∆→∆→-+∆--∆---==∆∆∆-∆==∆-=-∆2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。
⑴ ()()=∆-∆-→∆xx f x x f x 000lim(0'()f x -); ⑵ ()=→∆xx f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()=--+→hh x f h x f h 000lim(02'()f x ).3. 求下列函数的导数:⑴ ='=y x y ,4则34x ⑵ ='=y x y ,32则1323x -⑶ ='=y xy ,1则3212x -- ⑷ ='=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点⎪⎭⎫⎝⎛=πx y'sin ,'()32y x y π=-=-所以切线方程为1()223y x π-=--2(1)03y +-+=班级 姓名学号法线方程为1)23y x π-=-化简得3)0x π+-= 5. 讨论函数⎪⎩⎪⎨⎧=≠=0 001sin 2x x xx y 在0=x 处的连续性和可导性. 20(0)01lim sin 0(0)()x f x f x→===因为有界量乘以无穷小 所以函数在0x =处连续因为 20001s i n(0)(0)1l i m l i m l i ms i n 0x x x x f x f x x x xx∆→∆→∆→∆+∆-==∆=∆∆∆ 所以函数在0x =处可导.6. 已知()()()()是否存在?又及求 0 ,0 0 ,0 2f f f x x x x x f '''⎩⎨⎧<-≥=-+ 2'00(0)(0)(0)lim lim 0h h f h f h f hh +→+→++-==='00(0)(0)(0)limlim 1h h f h f hf hh -→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在7. ()(). , 0 0sin x f x x x x x f '⎩⎨⎧≥<=求已知当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;班级 姓名学号当0x =时'00(0)(0)(0)limlim 1h h f h f hf hh +→→+-===++ '00(0)(0)sin (0)limlim 1h h f h f h f h h-→-→+-===- '(0)1f ∴=综上,cos ,0'()1,0x x f x x <⎧=⎨≥⎩8. 求下列函数的导数:(1);54323-+-=x x x y (2);1227445+-+=x xx y 2222222232242222csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23(3)(3ln )(2ln )(2)'(3ln )(94)ln 32(3ln )x x x x xy x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=+-+-=+++-++=+-+-+=+ 2'364y x x =-+652'20282y x x x ---=--+ (3);3253xx e x y +-= (4);1sec tan 2-+=x x y2'152ln 23x x y x e =-+ 2'2s e c s e c t a ny x x x =+班级 姓名学号(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=123'ln10ln 2y x x x =-+ '422y x =--(7);ln x xy =(8);cos ln 2x x x y = 21ln 'x xx y x-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 21ln x x-= 22l n c o s c o s l n s i n x x x x x x x x =+- (9);1csc 22xxy +=2222csc cot (1)2csc 2'(1)x x x x xy x -+-=+ 2222(1)csc cot 4csc (1)x x x x xx -+-=+ (10).ln 3ln 223x x x x y ++=2232223(3)(3ln )(2ln )(2)'(3ln )x x x x x x x x y x x ++-++=+ 4222(94)ln 32(3ln )x x x x x xx x -+-+=+ 9. 已知. ,cos 21sin 4πϕϕρϕϕϕρ=+=d d 求因为1s i n c o s s i n2d d ρϕϕϕϕϕ=+-班级 姓名学号所以4222422284d d πϕρπϕ==+-=+10. .1轴交点处的切线方程与写出曲线x xx y -= 令0y =,得11x x ==-或 因为2'1y x -=+, 所以 11'2,'2x x y y ==-==曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.2 收敛数列的性质
定理2.1 (极限的唯一性)收敛数列{an}的极限是唯一的. 定理2.2 (收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界.
推论2.1 有界数列未必收敛,无界数列必定发散. 例如,数列(-1)n是有界数列,但它是发散的;数列2n 是无 界数列,且它是发散的.
即 由函数f(x)在x=1处极限存在的充要条件可知,
例
【例2-4】设函数 证明
,证明:当x→0时,f(x)的极限不存在. 因为 ,所以 不存在.
2.2 函数的极限
2.2.2极限的四则运算法则 定理2.3(极限四则运算法则)设在自变量x的同一变 化过程中,极限limf(x)及limg(x)都存在,则有
第 二 章
极限与连续
2.1 数列的极限
目录
2.2 函数的极限
2.3 两个重要极限 2.4 函数的连续性 2.5 应用示例 2.6 数学实验二
2.1 数列的极限
2.1.1数列极限的定义
在中学,我们已经学过数列的概念.按一定顺序排列的 无穷多个数x1,x2,…xn,…
极限的概念是由求实际问题的精
确解答而产生的.我国古代数学 家刘徽于公元263年创立了“割
例
解 做出函数y=2x的图像(见图2-6),可以看出 故limx→∞2x不存在.
2.2 函数的极限
2.当x→x0时,函数f(x)的极限
先从图像上考察两个函数f(x)=x+2与f(x)=(x2-4)/(x-2),如图2-7所示.
微课:当x→x0时, 函数f(x)的极限
图 2-7
从图2-7中不难看出,当x无限接近于2时,f(x)=x+2无限趋近于4,f(x)=x2-4x-2也无限趋近
【法则(1)和法则(2)均可推广到有限个函数的情形,并 有如下推论. 推论2.2 推论2.3 lim[Cf(x)]=Climf(x)(C为常数). lim[f(x)]n=[limf(x)]n(n为正整数).
微课:利用极限的四 则运算简单的极限
注意“lim”是自变量变化过程中的简记形式,它可以是数列{xn}中的n→∞,也可 以是函数f(x)中的x→x0(包括x→x+0或x→x-0),x→∞(包括x→+∞或x→-∞) 等.
例
解 当x→0时,sinx~x,所以
注意:在求极限的过程中,一个无穷小量可以用与其等价的无 穷小量代替,但只能代替乘积中的项,不能代替和差中的项.
2.2 函数的极限
2.无穷大
1)无穷大的定义 定义2.6在x的某一变化 例如,当x→1时,1/(x-1)的绝对值无限增大,故1/ (x-1)是当x→1时的无穷大,即 x→0+时的负无穷大,即 . ;当
为便于观察,我们在平面直角坐标系中做出以上4个数列的图形,分别如图2-1~图2-4
所示(为了便于展示效果,图形中横纵坐标轴取值比例特意采取不同标准).
图 2-1
图 2-2
2.1 数列的极限
图 2-3
图 2-4
从图2-1中可以看出,当n无限增大时,数列通项xn=1/2n的值无限趋于0. 从图2-2中可以看出,当n无限增大时,数列通项xn=n+(-1)n/n的值无限趋于1.
2.2 函数的极限
例
【例2-7】求下列函数的极限
解 (1)当x→∞时,分子分母的极限均不存在,为无穷大,不能直接应用运算法则.将分 子分母同除以x的最高次幂x5,得 (2)分子分母同除以x的最高次幂x3,得
2.2 函数的极限
(3)分子分母同除以x的最高次幂x4,得
由于分子极限为1,分母极限为0,所以 一般地,当a0≠0,b0≠0,m,n为非负整数时,有
2.2 函数的极限
【例2-5】求极限 解
一般地,若f(x)为多项式函数,则对任 意x0∈(-∞,+∞),都有
例
2.2 函数的极限
【例2-6】求下列极限
例
解 (1)因为 因子x-3≠0,即
,所以
(2)当x→3时分子和分母的极限均为零,但可约去公
一般地,设P(x),Q(x)都是多项式函数,则称P(x)/Q(x)为有理分式函数.有如下结论:
于4.但函数f(x)=x+2和f(x)=(x2-4)/(x-2)是两个不同的函数,f(x)=x+2在x=2处有定义,而
f(x)= (x2-4)/(x-2)在x=2处无定义.这就是说,极限是否存在与其在x=2处是否有定义无关.
2.2 函数的极限
一般地,我们有以下定义: 定义2.4 设函数f(x)在点x0的附近有定义,如果当x→x0时,函数f(x)无限趋近于一个确定的 常数A,那么A就叫作函数f(x)当x→x0时的极限,记作
在上述x→x0时函数f(x)的极限中,x既是从x0的左侧趋于x0的,又是从x0的右 侧趋于x0的.但有时只需考虑x仅从x0的左侧趋于x0(记作x→x-0)的情形,或 x仅从x0的右侧趋于x0(记作x→x+0)的情形.于是,就引进了左右极限的概念.
2.2 函数的极限
(1) 当自变量x小于x0而无限趋近于x0时,如果函数f(x)的对 应值无限趋近于一个确定的数A,那么A就叫作函数f(x)当
例
【例2-10】 当x→0时,对无穷小x2与x进行比较. 解 因为 ,所以当x→0时,x2是比x高阶的无穷小,即x2=o(x)(x→0).2. Nhomakorabea 函数的极限
定理2.5 设α ~α ′,β~β′,且limβ′/α ′存在,则limβ/α =limβ′/α ′ 定理2.5表明,求两个无穷小之比的极限时,分子及分母都可用等价无穷小 来代替.因此,如果用来代替的无穷小选取适当,则可使计算简化. 【例2-11】 求
为数列{xn}的极限,或称数列{xn}收敛于A,记为 有极限,则称该数列发散. 若数列{xn}没
由上面的定义可知,数列{1/2n}的极限为0,即
1,即
;数列{n+(-1)n/n } 的极限为
.
; 数列{(-1)n+1}与{2n}的极限都不是趋于某个确定的常数,故都是发散
的,且数列{(-1)n+1}的极限无法用极限形式给出,数列{2n}的极限可表示为
2.2 函数的极限
定义2.3 类似地,如果当x→+∞(或x→-∞)时,函数f(x)无限趋近 于一个确定的常数A,那么A就叫作函数f(x)当x→+∞(或x→-∞)时 的极限,记作
同理观察图2-5,可以看出 不难证明, 存在的充分必要条件是
存在且相等,即
图 2-6
【例2-2】讨论当x→∞时,函数y=2x的极限.
注意:(1)运用极限法则时,必须注意只有各项极限都存在(对商,还要求分母的极限不为零) 才能使用极限的四则运算法则. (2)若所求极限呈现“0/0”“∞/∞”“∞-∞”等形式不能直接应用极限法则,必须先对 原式进行恒等变形(约分、通分、有理化、变量代换、分子与分母同除以分子与分母的最高 次幂),然后再利用极限法则求极限.
从图2-3中可以看出,当n无限增大时,数列通项xn=(-1)n+1的值在1与-1之间振荡.
从图2-4中可以看出,当n无限增大时,数列通项xn=2n的值趋于+∞. 将数列的上述变化趋势用数学语言表示,就得到了数列极限的定义.
2.1 数列的极限
定义2.1 对于数列{xn},如果当n无限增大时,通项xn无限接近于某个确定的常数A,则称A
函数fx=1x-1当x→∞时,f(x)趋近于零.
,x→+∞)下仍然成立.
2.2 函数的极限
例
【例2-8】 求 解
【例2-9】 计算 解 此例说明无穷多个无穷小之和不一定是无穷小.
2.2 函数的极限
3)无穷小量阶的比较 无穷小量虽然都是趋近于零的变量,但不同的无穷小趋近于零的速度却不一定相同,
有时可能相差很大.观察两个无穷小比值的极限: 在x→0的过程中,x2→0比x→0“快些”,而sinx→0与x→0“快慢相仿”.
数列是定义在正整数集上的函数,数列极限研究的是当自变量n→∞时,
一般项xn=f(n)的极限值. 而对于定义在区间上函数f(x)的极限,我们主 要研究当自变量x→∞和x→x0两种变化趋势下,函数f(x)的极限.
2.2 函数的极限
1. 当x→∞时,函数f(x)的极限
考察函数f(x)=1x当x→∞时的变化趋势.由图2-5可以看出,当x的绝对
由此,我们定义如下: 此例说明无穷多个无穷小之和不一定是无穷小. 设α 、β是同一变化过程中的无穷小量,则: 如果limβ/α =0,就说β是比α 高阶的无穷小,记作β=o(α ); 如果limβ/α =c≠0,就说β是和α 同阶的无穷小; 如果limβ/α =1,就说β与α 是等价无穷小,记作α ~β.
2.1 数列的极限
例
【例2-1】 观察下列数列当n→∞时的极限. (1)xn=n/n+1; (2)xn=1/2n; (3)xn=2n+1;(4)xn=(-1)n.
应当注意,在一个变量前加上记号
“lim”,表示对这个变量进行取极限
运算,若变量的极限存在,则其所反映 的就不再是这个变量本身而是它的极限,
微课:无穷小 与无穷大
2.2 函数的极限
定理2.4 的充分 必要条件是
2)无穷小的性质
性质2.1 有限个无穷小的代数和仍为无穷小. 性质2.2 有界函数与无穷小的乘积是无穷小
推论2.4 常数与无穷小的乘积也是无穷小. 定理2.4中的自变量x的变化
过程在其他任何一种情形 (x→x-0,x→x+0,x→∞,x→-∞ 推论2.5 有限个无穷小的乘积仍是无穷小.考 察函数fx=2x-4当x→2时,f(x)趋近于零,
2.2 函数的极限
2.2.3无穷小量与无穷大量 1.无穷小
1)无穷小的定义
考察函数fx=2x-4当x→2时,f(x)趋近于零,函数fx=1x-1当x→∞时,f(x)趋近于零. 定义2.5 若在x的某一变化趋势下,函数fx的极限为零,则 称函数fx为x的这种变化趋势下的无穷小,简称无穷小.