江苏省苏州市昆山市2020年中考数学一模试卷(含解析)
江苏省苏州市昆山市2020年中考数学一模试卷(含解析)

如果您喜欢这份文档,欢迎下载!1江苏省苏州市昆山市2020年中考数学一模试卷一、选择题(每题3分,共30分,答案直接填在答题卡相应位置上)分,答案直接填在答题卡相应位置上) 1.(3分)下列计算正确的是(分)下列计算正确的是( ) A .x 4•x 4=x 16B .(a 3)2•a 4=a 9C .(ab 2)3÷(﹣ab )2=﹣ab 4D .(a 6)2÷(a 4)3=12.(3分)下列关于x 的方程中一定有实数根的是(的方程中一定有实数根的是( ) A .x 2﹣x +2+2==0B .x 2+x ﹣2=0C .x 2+x +2+2==0D .x 2+1+1==03.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为(用科学记数法表示为( ) A .7.67.6××10﹣9B .7.67.6××10﹣8C .7.67.6××109D .7.67.6××1084.(3分)一组数据3,4,x ,6,8的平均数是5,则这组数据的中位数是(,则这组数据的中位数是( ) A .4B .5C .6D .75.(3分)如图,点A 、B 、C 都在⊙O 上,若∠ACB =2020°,则∠°,则∠AOB =(=( )A .2020°°B .4040°°C .5050°°D .8080°°6.(3分)已知点P (m ,n )在一次函数y =2x ﹣3的图象上,且m +n >0,则m 的取值范围(的取值范围( ) A .m >1B .m >2C .m <1D .m >﹣>﹣1 17.(3分)若x =3n+1+1,,y =3×9n﹣2,则用x 的代数式表示y 是(是( ) A .y =3(x ﹣1)2﹣2 B .y =3x 2﹣2 C .y =x 3﹣2D .y =(x ﹣1)2﹣28.(3分)已知关于x 的分式方程﹣2=的解为正数,则k 的取值范围为(的取值范围为( )A .﹣.﹣22<k <0B .k >﹣>﹣22且k ≠﹣≠﹣1 1 1C C .k >﹣>﹣2 2D .k <2且k ≠19.(3分)已知关于x 的二次函数y =x 2﹣2x +c 的图象上有两点A (x 1,y 1),B (x 2,y 2),若x 1<1<x 2且x 1+x 2=2,则y 1与y 2的大小关系是(的大小关系是( )A .y 1<y 2B .y 1>y 2C .y 1=y 2D .不能确定.不能确定1010..(3分)如图,在菱形ABCD 中,AB =6,∠DAB =6060°,°,AE 分别交BC 、BD 于点E 、F ,若CE =2,连接CF .以下结论:①∠BAF =∠BCF ;②点E 到AB 的距离是2;③S △CDF :S △BEF =9:4;④tan tan∠∠DCF =.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题(每题3分,共24分,答案直接填在答题卡相应位置上)分,答案直接填在答题卡相应位置上) 1111..(3分)若式子在实数范围内有意义,则x 的取值范围是的取值范围是. 1212..(3分)分解因式:x 3﹣x = . 1313..(3分)底面周长为8πcm ,母线长为5cm 的圆锥的侧面积为的圆锥的侧面积为cm 2. 1414..(3分)已知2+是关于x 的方程x 2﹣4x +m =0的一个根,则m = . 1515..(3分)设a =,b =2+,c =,则a 、b 、c 从小到大的顺序是从小到大的顺序是. 1616..(3分)如图,在边长为6的菱形ABCD 中,∠DAB =6060°,以点°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是,则图中阴影部分的面积是.1717..(3分)如图,点A 、B 在反比例函数y =(k ≠0)的图象上,过点A 、B 作x 轴的垂线,垂足分别为M .N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,四边形AMNB 的面积为6,k 的值为的值为.1818..(3分)如图,点P 是正方形ABCD 的对角线BD 上的一个动点(不与B 、D 重合),连结AP ,过点B 作直线AP 的垂线,垂足为H ,连结DH .若正方形的边长为4,则线段DH 长度的最小值是长度的最小值是.三、解答题(共76分)分) 1919..(4分)(1)计算:(π)0+() ﹣2+﹣9tan309tan30°;°;°;(2)解方程:+1+1==.2020..(5分)先化简,再求值:,其中a 是方程x 2﹣x =6的根.的根.2121..(5分)解不等式组:,并写出该不等式组的整数解.,并写出该不等式组的整数解.2222..(7分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE 的高度,他们在这棵古树的正前方一平房顶A 点处测得古树顶端D 的仰角为3030°,在这棵古树的正前方°,在这棵古树的正前方C 处,测得古树顶端D 的仰角为6060°,在°,在A 点处测得C 点的俯角为3030°.已知°.已知BC 为4米,且B 、C 、E 三点在同一条直线上.三点在同一条直线上. (1)求平房AB 的高度;的高度;(2)请求出古树DE 的高度(根据以上条件求解时测角器的高度忽略不计)的高度(根据以上条件求解时测角器的高度忽略不计)2323..(6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.名学生进行了调查.调查结果如图所示,调查结果如图所示,调查结果如图所示,请你根据图中的信息回答问题.请你根据图中的信息回答问题.(其中社区服务占14%14%,社会调查占,社会调查占16%16%))(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人? (2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?万名初中学生,请你估计参加科技活动的学生约有多少名?2424..(6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛. (1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.2525..(8分)如图,在平面直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B 、C 的横坐标都是3,且BC =2,点D 在AC 上,若反比例函数y =(x >0)的图象经过点B 、D .且AO :BC =3:2.(1)求点D 坐标;坐标;(2)将△AOD 沿着OD 折叠,设顶点A 的对称点为A ′,试判断点A ′是否恰好落在直线BD 上,为什么?上,为什么?2626..(7分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.件. (1)当x =12时,小丽购买的这种服装的单价为时,小丽购买的这种服装的单价为; (2)小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?元.请问她购买了多少件这种服装?2727..(11分)如图,在直角梯形ABCD 中,AB ∥CD ,∠C =9090°,以°,以AD 为直径的⊙O 与BC 相切于点E ,交CD 于点F ,连接DE .(1)证明:DE 平分∠ADC ;(2)已知AD =4,设CD 的长为x (2<x <4). ①当x =2.5时,求弦DE 的长度;的长度;②当x 为何值时,DF •FC 的值最大?最大值是多少?的值最大?最大值是多少?2828..(13分)如图,二次函数y =ax 2+bx +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴负半轴交于B ,与正半轴交于点C (8,0),且∠BAC =9090°.°.°. (1)求该二次函数解析式;)求该二次函数解析式;(2)若N 是线段BC 上一动点,作NE ∥AC ,交AB 于点E ,连结AN ,当△ANE 面积最大时,求点N 的坐标;的坐标; (3)若点P 为x 轴上方的抛物线上的一个动点,连接PA 、PC ,设所得△PAC 的面积为S .问:是否存在一个S 的值,使得相应的点P 有且只有2个?若有,求出这个S 的值,并求此时点P 的横坐标;若不存在,请说明理由.请说明理由.2020年江苏省苏州市昆山市三校联考中考数学一模试卷年江苏省苏州市昆山市三校联考中考数学一模试卷参考答案与试题解析参考答案与试题解析一、选择题(每题3分,共30分,答案直接填在答题卡相应位置上)分,答案直接填在答题卡相应位置上) 1.【解答】解:A 、x 4×x 4=x 8,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;B 、(a 3)2•a 4=a 10,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;C 、(ab 2)3÷(﹣ab )2=ab 4,原式计算错误,故本选项错误;,原式计算错误,故本选项错误;D 、(a 6)2÷(a 4)3=1,计算正确,故本选项正确;,计算正确,故本选项正确;故选:D .2.【解答】解:A 、△=、△=11﹣8=﹣=﹣77<0,所以没有实数解,故本选项错误;,所以没有实数解,故本选项错误;B 、△=、△=1+81+81+8==9>0,所以有实数解,故本选项正确;,所以有实数解,故本选项正确;C 、△=、△=11﹣8=﹣=﹣77<0,原方程没有实数解;,原方程没有实数解; 故本选项错误;故本选项错误;D 、△=、△=00﹣4=﹣=﹣44<0,原方程有实数解,故本选项正确.,原方程有实数解,故本选项正确.故选:B .3.【解答】解:将0.000000076用科学记数法表示为7.67.6××10﹣8, 故选:B .4.【解答】解:(3+4+x +6+8+6+8)÷)÷)÷55=5,解得x =4,将该组数据按从小到大的顺序排列3,4,4,6,8,中间的一个数是4,这组数据的中位数为4, 故选:A .5.【解答】解:∵∠ACB =2020°,°,°, ∴∠AOB =2∠ACB =4040°.°.°. 故选:B .6.【解答】解:∵点P (m ,n )在一次函数y =2x ﹣3的图象上,的图象上, ∴n =2m ﹣3.∵m +n >0,即m +2m ﹣3>0, 解得:m >1. 故选:A .7.【解答】解:∵x =3n +1+1,,y =3×9n ﹣2=3×32n ﹣2,∴y =3(x ﹣1)2﹣2. 故选:A . 8.【解答】解:∵=2,∴=2,∴x =2+k , ∵该分式方程有解,∵该分式方程有解, ∴2+k ≠1, ∴k ≠﹣≠﹣11, ∵x >0, ∴2+k >0, ∴k >﹣>﹣22,∴k >﹣>﹣22且k ≠﹣≠﹣11, 故选:B .9.【解答】解:二次函数的对称轴为直线x =﹣=1,∵x 1<1<x 2且x 1+x 2=2, ∴点A 、B 关于对称轴对称,关于对称轴对称, ∴y 1=y 2. 故选:C .1010..【解答】解:∵四边形ABCD 是菱形,是菱形, ∴BA =BC ,∠ABD =∠CBD , 在△ABF 和△CBF 中,中,,∴△ABF ≌△CBF ,∴∠BAF =∠BCF ,①正确;,①正确; 作EG ⊥AB 交AB 的延长线于G ,∵AD ∥BC ,∠DAB =6060°,°,°, ∴∠EBG =6060°,°,°, ∴EG =EB ×sin sin∠∠EGB =2,②正确;,②正确;∵AB =6,CE =2, ∴S △BEF =2S △CEF , ∵AD ∥BC , ∴==,∴S △CFD =S △CFB ,∴S △CDF :S △BEF =9:4,③正确;,③正确; 作FH ⊥CD 于H , 则DH =DF =,FH ═, ∴tan tan∠∠DCF ==,④错误,,④错误,故选:B .二、填空题(每题3分,共24分,答案直接填在答题卡相应位置上)分,答案直接填在答题卡相应位置上) 1111..【解答】解:由题意得:x +2+2≥≥0且x ≠0, 解得:x ≥﹣≥﹣22且x ≠0, 故答案为:x ≥﹣≥﹣22且x ≠0. 1212..【解答】解:x 3﹣x , =x (x 2﹣1), =x (x +1+1))(x ﹣1). 故答案为:x (x +1+1))(x ﹣1). 1313..【解答】解:侧面积是:×8π×π×55=2020ππcm 2.故答案是:故答案是:202020π.π.π. 1414..【解答】解:把x =2+代入方程得(代入方程得(2+2+)2﹣4(2+)+m =0,解得m =1. 故答案为1. 1515..【解答】解:c ===+;∵2=>,∴b >c , 又∵a 2=()2=7,c 2=(+)2=5+2,且>1,∴a 2<c 2, ∴a <c , ∴a <c <b . 故答案为a <c <b .1616..【解答】解:∵四边形ABCD 是菱形,∠DAB =6060°,°,°, ∴AD =AB =6,∠ADC =180180°﹣°﹣°﹣606060°=°=°=120120120°,°,°, ∵DF 是菱形的高,是菱形的高, ∴DF ⊥AB ,∴DF =AD •sin60sin60°=°=°=66×=3,∴图中阴影部分的面积=菱形ABCD 的面积﹣扇形DEFG 的面积=的面积=66×3﹣=18﹣9π.π.故答案为:故答案为:1818﹣9π.π.1717..【解答】解:设OM =a ,则OM =MN =NC =a , ∵点A 、B 在反比例函数y =的图象上,AM ⊥OC 、BN ⊥OC ,∴AM =,BN =,∵S △AOC =S △AOM +S 四边形AMNB +S △BNC , ∴×3a ×=k +6+×a ×,解得,k =8,故答案为:故答案为:88.1818..【解答】解:如图,取AB 的中点O ,连接OH 、OD ,则OH =AO =AB =2,在Rt Rt△△AOD 中,OD ===2,根据三角形的三边关系,OH +DH >OD , ∴当O 、D 、H 三点共线时,DH 的长度最小,的长度最小,DH 的最小值=OD ﹣OH =2﹣2.故答案为:故答案为:22﹣2.三、解答题(共76分)分) 1919..【解答】解:(1)原式=)原式=1+9+31+9+3﹣9×=1010;;(2)去分母得:﹣)去分母得:﹣22x +x 2﹣3x =2x ﹣6,即x 2﹣7x +6+6==0, 解得:x =1或x =6,经检验x =1和x =6都为分式方程的解.都为分式方程的解. 2020..【解答】解:原式====.∵a 是方程x 2﹣x =6的根,的根, ∴a 2﹣a =6,∴原式=.2121..【解答】解:,解不等式①得,x <﹣<﹣33, 解不等式②得,x ≥﹣≥﹣55,所以,不等式组的解集是﹣所以,不等式组的解集是﹣55≤x <﹣<﹣33, 所以,不等式组的整数解为﹣所以,不等式组的整数解为﹣55、﹣、﹣44.2222..【解答】解:(1)在Rt △ABC 中,∵BC =4m ,∠ACB =3030°,°,°, ∴tan30tan30°=°=,∴AB =m .(2)在Rt Rt△△ACB 中,易知AC =2AB =m ,在Rt Rt△△ACD 中,∵∠ACD =9090°,∠°,∠DAC =6060°,°,°, ∴CD =AC =8,在Rt Rt△△CDE 中,中,sin60sin60sin60°=°=,∴DE =4m .2323..【解答】解:(1)480+420+150480+420+150==10501050(人)(人). 10501050×(×(×(11﹣60%60%﹣﹣16%16%﹣﹣14%14%)=)=)=105105105(人)(人). 故参加综合实践活动的1050人,科技活动的有105人.人.(2)(3000030000÷÷15001500)×)×)×105010501050××10%10%==21002100(人)(人).故有2100人参加科技活动.人参加科技活动. 2424..【解答】解:(1)方法一)方法一 画树状图得:画树状图得:方法二方法二 列表得:列表得:甲 乙 丙 丁 甲 /甲、乙甲、乙甲、丙甲、丙甲、丁甲、丁乙 乙、甲乙、甲 / 乙、丙乙、丙 乙、丁乙、丁 丙 丙、甲丙、甲 丙、乙丙、乙 / 丙、丁丙、丁 丁丁、甲丁、甲丁、乙丁、乙丁、丙丁、丙/∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,种, ∴恰好选中甲、乙两位同学的概率为:=;(2)∵一共有3种等可能性的结果,其中恰好选中乙同学的有1种,种, ∴恰好选中乙同学的概率为:.2525..【解答】解:(1)∵AO :BC =3:2,BC =2, ∴OA =3,∵点B 、C 的横坐标都是3, ∴BC ∥AO , ∴B (3,1), ∵点B 在反比例函数y =(x >0)的图象上,)的图象上,∴1=,解得k =3,∵AC ∥x 轴,轴, ∴设点D (t ,3), ∴3t =3,解得t =1, ∴D (1,3);(2)结论:点A ′不在直线BD 上.上.理由:过点A ′作EF ∥OA 交AC 于E ,交x 轴于F ,连接OA ′(如图所示), ∵AC ∥x 轴,轴,∴∠A ′ED =∠A ′FO =9090°,°,°, ∵∠OA ′D =9090°,°,°, ∴∠A ′DE =∠OA ′F , ∴△DEA ′∽△A ′FO , 设A ′(m ,n ), ∴=,又∵在Rt Rt△△A ′FO 中,m 2+n 2=9, ∴m =,n =,即A ′(,),∵经过点D (1,3),点B (3,1)的直线函数关系式为y =﹣x +4+4,, ∴当x =时,y =﹣+4+4==≠,∴点A ′不在直线BD 上.上.2626..【解答】解:(1)8080﹣(﹣(﹣(121212﹣﹣1010)×)×)×22=76元.元. (2)设小丽购买了x 件这种服装,由题意得件这种服装,由题意得 x [80[80﹣﹣2(x ﹣1010))]=1200解得:x 1=2020,,x 2=30当x =20时,时,808080﹣﹣2(2020﹣﹣1010)=)=)=60 60当x =30时,时,808080﹣﹣2(3030﹣﹣1010)=)=)=404040<<5050(不符合题意,舍去)(不符合题意,舍去)(不符合题意,舍去) 答:小丽购买了20件这种服装.件这种服装. 2727..【解答】(1)证明:如图,连接OE .∴BC 是⊙O 的切线,的切线, ∴OE ⊥BC ,∵AB ∥CD ,∠C =9090°,°,°, ∴∠B =9090°,°,°, ∴AB ⊥BC ,CD ⊥BC , ∴AB ∥OE ∥CD , ∴∠OED =∠CDE , ∵OD =OE , ∴∠OED =∠ODE , ∴∠ODE =∠CDE , ∴ED 平分∠ADC .(2)①连接AF 交OE 于H . ∵AB ∥OE ∥CD ,AO =OD , ∴BE =EC , ∴OE =(AB +CD ),∵OE =2,CD =2.52.5,,∴AB =1.51.5,, ∵AD 是⊙O 的直径,的直径, ∴∠AFD =9090°,°,°, ∵∠B =∠C =9°,°, ∴四边形ABCF 是矩形,是矩形, ∴AF ∥BC , ∵OE ⊥BC , ∴OE ⊥AF ,∴AH =FH ,AB =CF =HE =1.51.5,, ∴OH =OE ﹣EH =0.50.5,, ∴AH ===,∴AH =FH =CE =,∴DE ===.②设AB =CF =m , ∵OE =(AB +CD ),∴x +m =4, ∴m =4﹣x ,∴DF •CF =((4﹣x )(2x ﹣4)=﹣)=﹣22x 2+12x ﹣1616=﹣=﹣=﹣22(x ﹣3)2+2+2,, ∵﹣∵﹣22<0,∴x =3时,DF •CF 的值最大,最大值为2. 2828..【解答】解:(1)∵∠BAC =9090°,∠°,∠AOC =9090°,°,°, ∴由射影定理可得出:OA 2=OB •OC , 由题意知:OA =4,OC =8, ∴42=OB •8, ∴OB =2,∴B(﹣(﹣22,0),将A、B、C三点坐标代入即得:三点坐标代入即得:,解得:,∴抛物线解析式为:y=﹣x2+x+4+4;;(2)设N(n,0),则BN=n+2+2,,BA=1010,, ∵NE∥AC,∴△BNE∽△BAC,∴=()2,∵S△BAC=×1010××4=2020,,∴=()2,S△BEN=(n+2+2))2,∵S△BAN=×(n+2+2)×)×)×44=2n+4+4,,∴S△ANE=(=(22n+4+4)﹣)﹣(n+2+2))2=﹣(n﹣3)2+5+5,, ∵a=﹣,∴当n=3时,最大值S△ANE=5,此时N的坐标为:(3,0);(3)设直线AC对应的函数解析式为:y=kx+b,则,解得:,∴直线AC 对应的函数解析式为:y =﹣x +4+4,, 如图,过P 作PH ⊥OC ,垂足为H ,交直线AC 于点Q ; 设P (m ,﹣m 2+m +4+4)),则Q (m ,﹣m +4+4)). ①当0<m <8时,时,PQ =(﹣m 2+m +4+4)﹣(﹣)﹣(﹣m +4+4)=﹣)=﹣m 2+2m ,S =S △APQ +S △CPQ =×8×(﹣m 2+2m )=﹣(m ﹣4)2+16+16,,∴0<S ≤1616;;②当﹣②当﹣22≤m <0时,时,PQ =(﹣m +4+4)﹣(﹣)﹣(﹣m 2+m +4+4)=)=m 2﹣2m ,S =S △CPQ ﹣S △APQ =×8×(m 2﹣2m )=(m ﹣4)2﹣1616,,∴0<S <2020;;∴当0<S <16时,时,00<m <8中有m 两个值,﹣两个值,﹣22≤m <0中m 有一个值,此时有三个;有一个值,此时有三个; 当1616<<S <20时,﹣时,﹣22≤m <0中m 只有一个值;只有一个值; 当S =16时,m =4或m =4﹣4这两个.这两个.故当S =16时,相应的点P 有且只有两个.有且只有两个.。
2020年江苏省苏州市昆山市中考数学一模试卷(无解析-版)

1.12020B.−2B.3−π2C.2−π2D.π2019-2020学年第二学期初三阶段性测试(一)数学一、选择题(本大题共10小题,每小题3分,共30分)2020的绝对值是2019.05A.112020C.-2020D.20202.港珠澳大桥长55千米,工程项目总投资额1269亿元,用科学记数法表示1269亿为()A.1269×108B.1.269×108C.1.269×108D.1.269×10113.长沙某抗战纪念馆馆长联系某中学,选择18名青少年志愿者在同日参与活动,年龄如表所示:这18名志愿者年龄的众数和中位数分别是()年龄(单位:岁)人数123135146154A.13,14B.14,14C.14,13D.14,154.如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.△5.如图,在ABC中,∠A=90°,AB=AC=2,⊙A与BC相切于点D,与AB,AC分别相交于点E,F,则阴影部分的面积是()A.π36.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为10m,DE的长度为5m,则树AB的高度是()m.A.10B.15C.15√3D.15√3−5,(第5题)(第6题)8.已知t为正整数,关于x的不等式组{3−x>−57.已知点M(m,2018),N(n,2018)是二次函数y=ax2+bx+2017图象上的两个不同的点,则当x=m+n时,其函数值y=()A.2019B.2018C.2017D.20162x+5的整数解的个数不可能为()x+3<t x2A.16B.17C.18D.199.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4√5B.6√3C.2√30D.20√3310.已知⊙O的半径为2,A为圆内一定点,AO=1.P为圆上一动点,以AP为边作等腰△APG,AP=PG,∠APG=120°,OG的最大值为()A.1+√3B.1+2√3C.2+√3D.2√3−1(第9题)(第10题)二、填空题(本大题共8题,每小题3分,共24分)11.分解因式:81﹣9n2=___________.12.若√x−1有意义,则x的取值范围.2−x13.若a是方程x2+x−1=0的一个根,则代数式﹣2a2﹣2a+2020的值是__________.14.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.(第14题)(第15题)15.如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为度.16.一个圆锥的侧面展开图半径为16cm,圆心角270°的扇形,则这个圆锥的底面半径是cm.20.(本题满分5分)解不等式组,并写出该不等式组的所有整数解.{)2x ,其中x=√3.17.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D 在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k的值为.18△.如图,已知在ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC为邻边作▱MCNB,连接MN,则MN的最小值为.(第17题)(第18题)三、解答题(本大题共10小题,共76分,解答时应写出文字说明、证明过程或演算步骤.19.(本题满分5分)计算:(−1)2016+2sin60°−|1−√3|+π0x−3(2x−1)≤421+3x>2x−12x−2 21.(本题满分6分)先化简再求值:x2+2x ÷x2−4x+4−1x2−422.(本题满分6分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.( ( 23.(本题满分 8 分)为了解某校九年级男生 1000 米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为 D 、C 、B 、A 四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a =,b = ,c = ;(2)扇形统计图中表示 C 等次的扇形所对的圆心角的度数为度;(3)学校决定从 A 等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生 1000 米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.24. 本题满分 8 分)如图,在等腰 Rt △ABC 中,∠C =90°,AC =4,矩形 DEFG 的顶点 D 、G 分别在 AC 、BC 上,边 EF 在 AB 上.(△1)求证: AED ∽△DCG ;(2)若矩形 DEFG 的面积为 4,求 AE 的长.25. 本题满分 8 分)如图,在平面直角坐标系 xOy 中,菱形 ABCD 的对角线 AC 与 BD 交于点 P (﹣1,2),AB ⊥x 轴于点 E ,正比例函数 y =mx 的图像与反比例函数 y =(1)求 m ,n 的值与点 A 的坐标;(2)求 sin ∠CDB 的值.的图像相交于 A ,P 两点.26.(本题满分10分)如图,AB为⊙O的直径,C,D为圆上的两点,OC∥BD,弦AD,BC相交于点E.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)若BD=6,AB=10,求DE的半径;27.(本题满分10分)在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.(1)梯形ABCD的面积等于;(2)如图1,动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.当PQ∥AB时,P点离开D点多少时间?(3)如图2,点K是线段AD上的点,M、N为边BC上的点,BM=CN=5,连接AN、DM,分别交BK、CK 于点E、F,记△ADG和△BKC重叠部分的面积为S,求S的最大值。
精品模拟2020年江苏省苏州市中考数学模拟试卷一解析版

2020年江苏省苏州市中考数学模拟试卷一一.选择题(共10小题,满分30分,每小题3分)1.计算(﹣1)﹣2018+(﹣1)2017所得的结果是()A.﹣1B.0C.1D.﹣22.下列各式中正确的是()A.|5|=5B.﹣|5|=|﹣5|C.|﹣5|=﹣5D.|﹣1.3|<03.下列说法错误的是()A.必然发生的事件发生的概率为1B.不可能发生的事件发生的概率为0C.随机事件发生的概率大于0且小于1D.概率很小的事件不可能发生4.在平面直角坐标系中,点(1,﹣2)关于原点对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(2,﹣1)D.(2,1)5.关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,则a的值可以是()A.0B.﹣1C.﹣2D.﹣36.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.7.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y28.关于x的方程=+1无解,则m的值是()A.0B.0或1C.1D.29.在平面直角坐标系中,抛物线y2与直线y1均过原点,直线经过抛物线的顶点(2,4),则下列说法:①当0<x<2时,y2>y1;②y2随x的增大而增大的取值范围是x<2;③使得y2大于4的x值不存在;④若y2=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个10.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t (分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了30分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有320米其中正确的结论有()A.1 个B.2 个C.3 个D.4 个二.填空题(共8小题,满分24分,每小题3分)11.近似数 3.60×105精确到位.12.分解因式:4m2﹣16n2=.13.已知x1,x2是一元二次方程x2﹣2x﹣5=0的两个实数根,则x12+x22+3x1x2=.14.在函数y=中,自变量x的取值范围是.15.已知一组数据﹣3,x,﹣2,3,1,6的众数为3,则这组数据的中位数为.16.y=kx﹣6的图象与x,y轴交于B、A两点,与的图象交于C点,CD⊥x轴于D点,如果△CDB的面积:△AOB的面积=1:9,则k=.17.若不等式组有解,则m的取值范围是.18.抛物线y=2x 2+8x+m与x轴只有一个交点,则m=.三.解答题(共10小题,满分76分)19.(6分)计算:(﹣1)2+(π﹣3.14)0﹣|﹣2|20.(6分)解不等式组:21.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.22.(6分)已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.23.(7分)某校开展了为期一周的“敬老爱亲”社会活动,为了解情况,学生会随机调查了部分学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组,A:0.5≤x<1,B:1≤x<1.5,C:1.5≤x<2,D:2≤x<2.5,E:2.5≤x<3,制作成两幅不完整的统计图(如图).请根据图中提供的信息,解答下列问题:(1)学生会随机调查了名学生;(2)补全频数分布直方图;(3)若全校有1800名学生,估计该校在这次活动中做家务的时间不少于 2.5小时的学生有多少人?24.(8分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B (﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.25.(8分)一个不透明的口袋中装有4个分别标有数1,2,3,4的小球,它们的形状、大小完全相同,小红先从口袋里随机摸出一个小球记下数为x,小颖在剩下的3个球中随机摸出一个小球记下数为y,这样确定了点P的坐标(x,y).(1)小红摸出标有数3的小球的概率是.(2)请你用列表法或画树状图法表示出由x,y确定的点P(x,y)所有可能的结果.(3)求点P(x,y)在函数y=﹣x+5图象上的概率.26.(9分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?27.(10分)已知一次函数y=kx+b的图象与x轴、y轴分别交于点A(﹣2,0)、B(0,4),直线l经过点B,并且与直线AB垂直.点P在直线l上,且△ABP是等腰直角三角形.(1)求直线AB的解析式;(2)求点P的坐标;(3)点Q(a,b)在第二象限,且S△QAB=S△PAB.①用含a的代数式表示b;②若QA=QB,求点Q的坐标.28.(10分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】直接利用负指数幂的性质化简进而得出答案.【解答】解:原式=1﹣1=0.故选:B.【点评】此题主要考查了负整数指数幂的性质,正确化简各数是解题关键.2.【分析】根据绝对值的意义对各选项进行判断.【解答】解:A、|5|=5,所以A选项的计算正确;B、﹣|5|=﹣5,|﹣5|=5,所以B选项的计算错误;C、|﹣5|=5,所以C选项的计算错误;D、|﹣1.3|=1.3>0,所以D选项的判断错误.故选:A.【点评】本题考查了有理数大小比较:两个负数,绝对值大的其值反而小.也考查了绝对值的意义.3.【分析】利用概率的意义分别回答即可得到答案.【解答】解:A、必然发生的事件发生的概率为1,正确;B、不可能发生的事件发生的概率为0,正确;C、随机事件发生的概率大于0且小于1,正确;D、概率很小的事件也有可能发生,故错误,故选:D.【点评】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义,概率大的事件不一定发生,概率小的事件不一定发生.4.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),记忆方法是结合平面直角坐标系的图形记忆.【解答】解:点(1,﹣2)关于原点对称的点的坐标是(﹣1,2),故选:B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.5.【分析】由方程根的情况,根据根的判别式可得到关于a的不等式,可求得a的取值范围,则可求得答案.【解答】解:∵关于x的一元二次方程ax2+3x﹣2=0有两个不相等的实数根,∴△>0且a≠0,即32﹣4a×(﹣2)>0且a≠0,解得a>﹣1且a≠0,故选:B.【点评】本题主要考查根的判别式,掌握方程根的情况与根的判别式的关系是解题的关键.6.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.7.【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.【解答】解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.8.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x2﹣2x+1=mx﹣2m+x2﹣3x+2,整理得:(m﹣1)x=2m﹣1,由分式方程无解,得到m﹣1=0且2m﹣1≠0,即m=1;当m≠1时,=1或=2,解得:m=0.故选:B.【点评】此题考查了分式方程的解,分式方程无解即为最简公分母为0.9.【分析】根据图象得出函数解析式为y=a(x﹣2)2+4,再把c=0代入即可得出解析式,根据二次函数的性质得出答案.【解答】解:设抛物线解析式为y=a(x﹣2)2+4,∵抛物线与直线均过原点,∴a(0﹣2)2+4=0,∴a=﹣1,∴y=﹣(x﹣2)2+4,∴由图象得当0<x<2时,y2>y1,故①正确;y2随x的增大而增大的取值范围是x<2,故②正确;∵抛物线的顶点(2,4),使得y2大于4的x值不存在,故③正确;把y=2代入y=﹣(x﹣2)2+4,得若y2=2,则x=2﹣或x=2+,故④不正确.其中正确的有3个,故选:C.【点评】本题考查了二次函数图象上点的坐标特征,掌握二次函数的性质是解题的关键.10.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②正确,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:B.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.二.填空题(共8小题,满分24分,每小题3分)11.【分析】近似数精确到哪一位,应当看末位数字实际在哪一位.【解答】解:因为0所在的数位是千位,所以 3.60×105精确到千位.故答案是:千.【点评】本题主要考查科学记数法和有效数字,对于用科学记表示的数,有效数字的计算方法,与精确到哪一位是需要识记的内容,经常会出错.12.【分析】原式提取4后,利用平方差公式分解即可.【解答】解:原式=4(m+2n)(m﹣2n).故答案为:4(m+2n)(m﹣2n)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.【分析】根据根与系数的关系得到x1+x2=﹣,x1x2=﹣2,把x12+x22+3x1x2变形为(x1+x2)2+x1x2,然后利用整体代入的方法计算;【解答】解:根据题意得x1+x2=2,x1x2=﹣5,x12+x22+3x1x2=(x1+x2)2+x1x2=22+(﹣5)=﹣1.故答案为﹣1.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.14.【分析】根据被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:在函数y=中,1﹣x>0,即x<1,故答案为:x<1.【点评】本题考查函数自变量的取值范围,解题的关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.15.【分析】先根据众数定义求出x,再把这组数据从小到大排列,找出正中间的那个数就是中位数.【解答】解:∵数据﹣3,x,﹣2,3,1,6的众数为3,∴3出现的次数是2次,∴x=3,数据重新排列是:﹣3,﹣2、1、3、3、6,所以中位数是(1+3)÷2=2.故答案为:2.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.【分析】由于△CDB 的面积:△AOB 的面积=1:9,且两三角形相似,则=,C (,2)代入直线y =kx ﹣6求得k 值.【解答】解:由题意得:△CDB 的面积:△AOB 的面积=1:9,且两三角形相似,则=,又A (0,﹣6),则C (,2),代入直线y =kx ﹣6,可得:k =4.故答案为:4.【点评】本题考查了反比例函数系数k 的几何意义,这里相似三角形的相似比是解决问题的突破口.17.【分析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.【解答】解:由不等式1<x ≤2,要使x >m 与1<x ≤2有解,如下图只有m <2时,1<x ≤2与x >m 有公共部分,∴m <2.【点评】本题考查逆向思维,给出不等式来判断是否存在解得问题,是一道好题.18.【分析】利用判别式的意义得到82﹣4×2×m =0,然后解关于m 的方程即可.【解答】解:∵抛物线y =2x 2+8x+m 与x 轴只有一个交点,∴△=82﹣4×2×m =0,∴m =8.故答案为8.【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx+c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.△=b 2﹣4ac 决定抛物线与x 轴的交点个数(△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点).三.解答题(共10小题,满分76分)19.【分析】原式利用乘方的意义,零指数幂法则,以及绝对值的代数意义计算即可求出值.【解答】解:原式=1+1﹣2+=.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:,∵解不等式①得:x≤﹣1,解不等式②得:x>﹣7,∴原不等式组的解集为﹣7<x≤﹣1.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.21.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)?=?=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.22.【分析】把A与B代入A﹣2B中,去括号合并得到最简结果,由结果不含有x2项和y项求出m 与n的值,代入原式计算即可得到结果.【解答】解:∵A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,∴A﹣2B=2x2﹣xy+my﹣8+2nx2﹣2xy﹣2y﹣14=(2+2n)x2﹣3xy+(m﹣2)y﹣22,由结果不含有x2项和y项,得到2+2n=0,m﹣2=0,则原式=1﹣2=﹣1.【点评】此题考查了整式的加减,熟练掌握去括号法则与合并同类项法则是解本题的关键.23.【分析】(1)根据D组人数及其所占百分比即可得出总人数;(2)总人数乘以C组的百分比求得C组人数,总人数减去其余各组人数求得B人数人数即可补全条形图;(3)总人数乘以样本中E组人数所占比例可得.【解答】解:(1)学生会调查的学生人数为10÷20%=50(人),故答案为:50;(2)∵1.5≤x<2的人数为50×40%=20人,∴1≤x<1.5的人数为50﹣(3+20+10+4)=13人,补全图形如下:(3)1800×=144(人),答:估计该校在这次活动中做家务的时间不少于 2.5小时的学生有144人.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.25.【分析】(1)根据概率公式求解;(2)利用树状图展示所有12种等可能的结果数;(3)利用一次函数图象上点的坐标特征得到在函数y=﹣x+5的图象上的结果数,然后根据概率公式求解.【解答】解:(1)小红摸出标有数3的小球的概率是;故答案为;(2)画树状图为:由列表或画树状图可知,P点的坐标可能是(1,2)(1,3)(1,4)(2,1)(2,3),(2,4)(3,1)(3,2)(3,4)(4,1)(4,2)(4,3)共12种情况,(3)共有12种可能的结果,其中在函数y=﹣x+5的图象上的有4种,即(1,4)(2,3)(3,2)(4,1)所以点P(x,y)在函数y=﹣x+5图象上的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了一次函数图象上点的坐标特征.26.【分析】(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值,即可确定销售单价应控制在什么范围内.【解答】解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.【点评】本题考查二次函数的实际应用.建立数学建模题,借助二次函数解决实际问题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出函数关系式和方程,再求解.27.【分析】(1)把A(﹣2,0),B(0,4)代入y=kx+b,根据待定系数法即可求得;(2)作PC⊥y轴于C,证得△ABO≌△BPC,从而得出AO=BC=2,BO=PC=4,根据图象即可求得点P的坐标;(3)①由题意可知Q点在经过P1点且垂直于直线l的直线上,得到点Q所在的直线平行于直线AB,设点Q所在的直线为y=2x+n,代入P1(﹣4,6),求得n的值,即可求得点Q所在的直线为y=2x+14,代入Q(a,b)即可得到b=2a+14;②由QA=QB,根据勾股定理得出(a+2)2+b2=a2+(b﹣4)2,进一步得到(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,解方程即可求得a的值,从而求得Q点的坐标.【解答】解:(1)把A(﹣2,0),B(0,4)代入y=kx+b中得:,解得:,则直线AB解析式为y=2x+4;(2)如图1所示:作PC⊥y轴于C,∵直线l经过点B,并且与直线AB垂直.∴∠ABO+∠PBC=90°,∵∠ABO+∠BAO=90°,∴∠BAO=∠PBC,∵△ABP是等腰直角三角形,∴AB=PB,在△ABO和△BPC中,∴△ABO≌△BPC(AAS),∴AO=BC=2,BO=PC=4,∴点P的坐标(﹣4,6)或(4,2);(3)①∵点Q(a,b)在第二象限,且S△QAB=S△PAB.∴Q点在经过P1点且垂直于直线l的直线上,∴点Q所在的直线平行于直线AB,∵直线AB解析式为y=2x+4,∴设点Q所在的直线为y=2x+n,∵P1(﹣4,6),∴6=2×(﹣4)+n,解得n=14,∴点Q所在的直线为y=2x+14,∵点Q(a,b),∴b=2a+14;A(﹣2,0),B(0,4)②∵QA=QB,∴(a+2)2+b2=a2+(b﹣4)2,∵b=2a+14,∴(a+2)2+(2a+14)2=a2+(2a+14﹣4)2,整理得,10a=﹣50,解得a=﹣5,b=4,∴Q的坐标(﹣5,4).【点评】本题是一次函数的综合题,考查了待定系数法求一次函数的解析式,等腰三角形的性质,三角形全等的判定和性质,两直线平行的性质等.28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用待定系数法和韦达定理可求得a=x2﹣x1,t=﹣2,即可得出直线QH过定点(0,﹣2).【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,∴y2﹣y1=a(x1+x2),即k(x2﹣x1)=ka,∴a=x2﹣x1,∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。
2019-2020苏州市数学中考一模试题附答案

2019-2020苏州市数学中考一模试题附答案一、选择题1.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4B.5C.6D.72.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A.1B.2C.3D.45.如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.如图,在△ABC 中,∠ACB=90°, ∠ABC=60°, BD 平分∠ABC ,P 点是BD 的中点,若AD=6, 则CP 的长为( )A .3.5B .3C .4D .4.5 7.方程21(2)304m x mx ---+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠8.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是( )A .1B .2C .3D .49.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C .24 D .0.310.an30°的值为( )A .B .C .D .11.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .12.下列由阴影构成的图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .二、填空题13.如图,DE 为△ABC 的中位线,点F 在DE 上,且∠AFB =90°,若AB =5,BC =8,则EF 的长为______.14.分解因式:x 3﹣4xy 2=_____.15.计算:2cos45°﹣(π+1)0111()42-=______. 16.已知圆锥的底面圆半径为3cm ,高为4cm ,则圆锥的侧面积是________cm 2.17.不等式组3241112x x x x ≤-⎧⎪⎨--<+⎪⎩的整数解是x= . 18.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .19.正六边形的边长为8cm ,则它的面积为____cm 2.20.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表: 中位数 众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.24.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人.25.将A B C D(1)A在甲组的概率是多少?,都在甲组的概率是多少?(2)A B【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】设这个多边形的边数为n,根据多边形的内角和定理得到(n﹣2)×180°=720°,然后解方程即可.【详解】设这个多边形的边数为n,由多边形的内角和是720°,根据多边形的内角和定理得(n-2)180°=720°.解得n=6.故选C.【点睛】本题主要考查多边形的内角和定理,熟练掌握多边形的内角和定理是解答本题的关键. 2.D解析:D【解析】【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【详解】∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.3.C解析:C【解析】【分析】根据平行四边形性质和折叠性质得∠BAC=∠ACD=∠B′AC=12∠1,再根据三角形内角和定理可得.【详解】∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°;故选C .【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.4.B解析:B【解析】【分析】由图像可知a >0,对称轴x=-2b a=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断.【详解】 解:∵抛物线开口向上,∴a >0,∵抛物线的对称轴为直线x =﹣2b a=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点为(﹣1,0),∵x =﹣1时,y =0,∴a ﹣b +c =0,所以②错误;∵b =﹣2a ,∴2a +b =0,所以③错误;∵抛物线与x 轴有2个交点,∴△=b 2﹣4ac >0,所以④正确.故选B .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义. 5.C解析:C【解析】【分析】根据主视图是从正面看到的图形,进而得出答案.【详解】主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线,画法正确的是:.故选C .【点睛】本题考查了三视图的知识,关键是找准主视图所看的方向.6.B解析:B【解析】【分析】【详解】解:∵∠ACB =90°,∠ABC =60°,∴∠A =30°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =30°, ∴∠A =∠ABD ,∴BD =AD =6, ∵在Rt △BCD 中,P 点是BD 的中点,∴CP =12BD =3. 故选B . 7.B解析:B【解析】【分析】根据一元二次方程的定义、二次根式有意义的条件和判别式的意义得到20m -≠,30m -≥,(()2134204mm ∆=----⨯≥,然后解不等式组即可. 【详解】解:根据题意得 20m -≠,30m -≥,(()2134204m m ∆=----⨯≥,解得m≤52且m≠2.故选B.8.C解析:C【解析】【详解】①∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x==﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.9.B解析:B【解析】【分析】【详解】A.18=32,与3不是同类二次根式,故此选项错误;B.13=33,与3,是同类二次根式,故此选项正确;C.24=26,与3不是同类二次根式,故此选项错误;D.0.3=310=3010,与3不是同类二次根式,故此选项错误;故选B.10.D解析:D【解析】【分析】直接利用特殊角的三角函数值求解即可.【详解】tan30°=,故选:D.【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.11.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.12.B解析:B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是中心对称图形,不是轴对称图形,故该选项不符合题意,B、是中心对称图形,也是轴对称图形,故该选项符合题意,C、不是中心对称图形,是轴对称图形,故该选项不符合题意,D、是中心对称图形,不是轴对称图形,故该选项不符合题意.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折沿对称轴叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.二、填空题13.5【解析】【分析】【详解】试题解析:∵∠AFB=90°D为AB的中点∴DF=AB=25∵DE为△ABC的中位线∴DE=BC=4∴EF=DE-DF=15故答案为15【点睛】直角三角形斜边上的中线性质:解析:5【解析】【分析】【详解】试题解析:∵∠AFB=90°,D为AB的中点,∴DF=12AB=2.5,∵DE为△ABC的中位线,∴DE=12BC=4,∴EF=DE-DF=1.5,故答案为1.5.【点睛】直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.14.x(x+2y)(x﹣2y)【解析】分析:原式提取x再利用平方差公式分解即可详解:原式=x(x2-4y2)=x(x+2y)(x-2y)故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式解析:x(x+2y)(x﹣2y)【解析】分析:原式提取x,再利用平方差公式分解即可.详解:原式=x(x2-4y2)=x(x+2y)(x-2y),故答案为x(x+2y)(x-2y)点睛:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.【解析】解:原式==故答案为:32.【解析】解:原式=121222⨯-++3232.16.15π【解析】【分析】设圆锥母线长为l根据勾股定理求出母线长再根据圆锥侧面积公式即可得出答案【详解】设圆锥母线长为l∵r=3h=4∴母线l=∴S侧=×2πr×5=×2π×3×5=15π故答案为15π解析:15π【解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,∵r=3,h=4,∴母线5=,∴S侧=12×2πr×5=12×2π×3×5=15π,故答案为15π.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17.﹣4【解析】【分析】先求出不等式组的解集再得出不等式组的整数解即可【详解】解:∵解不等式①得:x≤﹣4解不等式②得:x>﹣5∴不等式组的解集为﹣5<x≤﹣4∴不等式组的整数解为x=﹣4故答案为﹣4【解析:﹣4.【解析】【分析】先求出不等式组的解集,再得出不等式组的整数解即可.【详解】解:3241112x xxx≤-⎧⎪⎨--<+⎪⎩①②,∵解不等式①得:x≤﹣4,解不等式②得:x>﹣5,∴不等式组的解集为﹣5<x≤﹣4,∴不等式组的整数解为x=﹣4,故答案为﹣4.【点睛】本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的性质求出不等式组的解集是解此题的关键.18.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE•tan60°=cm∴S△OCD【解析】【分析】【详解】如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;∵此多边形是正六边形,∴∠COD=60°;∵OC=OD,∴△COD是等边三角形,∴OE=CE•tan60°=82=,∴S△OCD=12CD•OE=12×8×43=163cm2.∴S正六边形=6S△OCD=6×163=963cm2.考点:正多边形和圆20.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下: -2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB 与CD 的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A =∠F AB ,根据等腰三角形的判定与性质,可得∠DAF =∠DF A ,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD .∵BE ∥DF ,BE =DF ,∴四边形BFDE 是平行四边形.∵DE ⊥AB ,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=22+=22FC FB+=5,34∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:1200090001501.5x x+=解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.25.(1)12(2)16【解析】解:所有可能出现的结果如下:甲组乙组结果AB CD(AB CD,)AC BD(AC BD,)(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162, A B ,都在甲组的概率=16。
江苏2020届中考数学一模试题(含答案解析)

江苏2020届中考数学一模试题一、单选题1.截至今年一季度末,江苏省企业养老保险参保人数达850万,则参保人数用科学记数法表示为 A .8.50×106 B .8.50×105 C .0.850×106 D .8.50×1072.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有x 个人,这个物品价格是y 元.则可列方程组为( ) A .83,74x y x y =+⎧⎨=-⎩ B .83,74x y x y =-⎧⎨=+⎩ C .84,73x y x y =+⎧⎨=-⎩ D .84,73x y x y =-⎧⎨=+⎩3.如图,在Rt △ABC 中,∠A =30°,DE 垂直平分AB ,垂足为点E ,交AC 于D 点,连接BD ,若AD =4,则DC 的值为( )A .1B .1.5C .2D .34.已知a b ,是不为0的有理数,且a a b b a b =-=>,,,那么用数轴上的点来表示a b ,,正确的应该是哪一个( )A .B .C .D .5.如图,某同学用圆规BOA 画一个半径为4cm 的圆,测得此时90O ∠=︒,为了画一个半径更大的同心圆,固定A 端不动,将B 端向左移至B '处,此时测得120O '∠=︒,则BB '的长为( )A .4B 2-C .D .26.如图,OABC 是边长为1的正方形,OC 与x 轴正半轴的夹角为15°,点B 在抛物线y=ax 2的图象上,则a 的值为( )A .23-B .3-C .2-D .12- 7.如图,已知A 为反比例函数k y x=(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( )A .2B .-2C .4D .-48.将等边三角形ABC 放置在如图的平面直角坐标系中,已知其边长为2,现将该三角形绕点C 按顺时针方向旋转90°,则旋转后点A 的对应点A’的坐标为( )A .(1+,1)B .(﹣1,1-)C .(﹣1,-1)D .(2,)9.如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD =D .AG 平分CAD ∠ 10.若整数a 既使关于x 的分式方程13x x --﹣2(3)a x x --=1的解为非负数,又使不等式组3024385x a x x+⎧+>⎪⎨⎪-+>⎩有解,且至多有5个整数解,则满足条件的a 的和为( ) A .﹣5 B .﹣3 C .3 D .211.若:3:4a b =,且14a b +=,则2a b -的值是( )A .4B .2C .20D .1412.已知点P 在x 轴上,且点P 到y 轴的距离为1,则点P 的坐标为( )A .(0,1)B .(1,0)C .(0,1)或(0,-1)D .(1,0)或(-1,0)二、填空题13.若3x =+3y =,则222x xy y ++=___. 14.李叔叔骑车从家到工厂,通常要40分钟,如果他骑车速度比原来每小时增加2千米,那么可节约10分钟,李叔叔的家离工厂有_______千米.15.如图,已知∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A上取点O 2,以点O 2为圆心,O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心,O 3O 2为半径的圆与OB 相切……,若⊙O 1的半径为1,则⊙O n 的半径是______________.16.如图,在4×4的正方形网格图中,以格点为圆心各画四条圆弧,则这四条圆弧所围成的阴影部分面积为_____.17.如图,直线113y x =+与x 轴交于点M ,与y 轴交于点A ,过点A 作AB AM ⊥,交x 轴于点B ,以AB 为边在AB 的右侧作正方形ABCA 1,延长A 1C 交x 轴于点B 1,以A 1B 1为边在A 1B 1的右侧作正方形A 1B 1C 1A 2…按照此规律继续作下去,再将每个正方形分割成四个全等的直角三角形和一个小正方形,每个小正方形的每条边都与其中的一条坐标轴平行,正方形ABCA 1,A 1B 1C 1A 2,…,111n n n n A B C A ---中的阴影部分的面积分别为S 1,S 2,…,S n ,则S n 可表示为_____.三、解答题18.进入夏季,为了解某品牌电风扇销售量的情况,厂家对某商场5月份该品牌甲、乙、丙三种型号的电风扇销售量进行统计,绘制如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:(1)该商场5月份售出这种品牌的电风扇共多少台?(2)补全条形统计图.(3)若该商场计划订购这三种型号的电风扇共2000台,根据5月份销售量的情况,求该商场应订购丙种型号电风扇多少台比较合理?19.如图,已知E ,F 分别是▱ABCD 的边BC 、AD 上的点,且BE=DF求证:四边形AECF 是平行四边形.20.某特产店销售核桃,进价为每千克40元,按每千克60元出售,平均每天可售100千克,后经市场调查发现,单价每降低2元,则平均每天销售可增加20千克,若该专卖店销售该核桃要想平均每天获利2240元,且在平均每天获利不变的情况下,为尽可能让利于顾客,求每千克核桃应降价多少元?21.设用符号〈a ,b 〉表示a ,b 两数中较小的数,用符号[a ,b]表示a ,b 两数中较大的数,试求下列各式的值.(1)〈-5,-0.5〉+[-4,2]; (2)〈1,-3〉+[-5,〈-2,-7〉].22.已知:2(1)3a b a x y -+=是关于y x 、二元一次方程,点A 在坐标平面内的坐标为a b (,) 点B (3,2)将线段AB 平移至A’B’的位置,点B 的对应点'B (-1,3).求点A’的坐标23.先化简,再求值:,其中.24.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,AD 平分∠BAC ,BD=CD(1)求证:BE=CF ;(2)已知AC=10,DE=4,BE=2,求△AEC 的面积25.如图,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x 、y 轴交于,A B 两点,正比例函数的图像2l 与1l 交于点(),3C m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S ∆∆-的值;(3)在坐标轴上找一点P ,使以OC 为腰的OCP ∆为等腰三角形,请直接写出点P 的坐标. 26.如图,在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴为直线2x =,点A 的坐标为(1,0).(1)求该抛物线的表达式及顶点坐标;(2)点P 为抛物线上一点(不与点A 重合),联结PC .当PCB ACB ∠=∠时,求点P 的坐标; (3)在(2)的条件下,将抛物线沿平行于y 轴的方向向下平移,平移后的抛物线的顶点为点D ,点P 的对应点为点Q ,当OD DQ ⊥时,求抛物线平移的距离.参考答案1.A解:850万=8500000=8.5×106,故选A .2.A根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.3.C由线段垂直平分线的性质定理可知4BD AD ==,30ABD A ︒∠=∠=,易知30CBD ︒∠=,根据直角三角形中30︒角所对的直角边是斜边的一半可得122DC BD ==. 解:在Rt △ABC 中,∠A =30° 60ABC ︒∴∠=DE 垂直平分AB ,点D 在AB 上4BD AD ∴==,30ABD A ︒∠=∠=30CBD ABC ABD ︒∴∠=∠-∠=122DC BD ∴== 故选:C本题考查了线段垂直平分线的性质定理,同时涉及到了直角三角形30︒角这一性质,灵活利用这两个性质求线段长是解题的关键.4.C根据绝对值的性质可得a ≤0, b ≥0,由a b >可得a 到原点的距离大于b 到原点的距离,进而可得答案. 解:,a a b b =-=,∴a ≤0, b ≥0∴B, D 错误;a b >∴a到原点的距离大于b到原点的距离.C是正确的, A是错误的,故选C本题主要考查数轴上的点与绝对值.5.A△ABO是等腰直角三角形,利用三角函数即可求得OA的长,过O'作O'D⊥AB于点D,在直角△AO'D 中利用三角函数求得AD的长,则AB'=2AD,然后根据BB'=AB'-AB即可求解.解:在等腰直角△OAB中,AB=4,则OA=cm,AO'=,∠AO'D=12×120°=60°,过O'作O'D⊥AB于点D.则AD=AO'•sin60°=22×3=6.则AB'=2AD=26,故BB'=AB'-AB=26-4.故选:A.本题考查了三角函数的基本概念,主要是三角函数的概念及运算,关键把实际问题转化为数学问题加以计算.6.B连接OB,根据正方形的对角线平分一组对角线可得∠BOC=45°,过点B作BD⊥x轴于D,然后求出∠BOD=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得12BD OB=,再利用勾股定理列式求出OD,从而得到点B的坐标,再把点B的坐标代入抛物线解析式求解即可.如图,连接OB,∵四边形OABC 是边长为1的正方形,∴451BOC OB ∠===, 过点B 作BD ⊥x 轴于D ,∵OC 与x 轴正半轴的夹角为15,∴451530BOD ∠=-=,∴122BD OB ==OD ==∴点B 的坐标为⎝⎭,∵点B 在抛物线y =ax 2(a <0)的图象上,∴2a =⎝⎭解得a =3-故选B.考查正方形的性质,勾股定理,二次函数图象上点的坐标特征等,求出点B 的坐标是解题的关键. 7.D设A 点坐标为(m ,n),则有AB=-m ,OB=n ,继而根据三角形的面积公式以及反比例函数图象上点的坐标特征即可求得答案. 设A 点坐标为(m ,n),则有AB=-m ,OB=n ,。
2020年昆山市中考数学第一次模拟试题含答案

2020年昆山市中考数学第一次模拟试题含答案一、选择题1.如图,已知a ∥b ,l 与a 、b 相交,若∠1=70°,则∠2的度数等于( )A .120°B .110°C .100°D .70°2.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( ) A .中位数B .平均数C .众数D .方差3.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.阅读理解:已知两点1122,,()(),M x y N x y ,则线段MN 的中点(),K x y 的坐标公式为:122x x x +=,122y y y +=.如图,已知点O 为坐标原点,点()30A -,,O 经过点A ,点B 为弦PA 的中点.若点(),P a b ,则有,a b 满足等式:229a b +=.设(),B m n ,则,m n 满足的等式是( )A .229m n +=B .223922m n -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭C .()()222323m n ++=D .()222349m n ++=5.下表是某学习小组一次数学测验的成绩统计表: 分数/分 70 80 90100 人数/人13x1已知该小组本次数学测验的平均分是85分,则测验成绩的众数是()A.80分B.85分C.90分D.80分和90分6.如图的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B 点,甲虫沿大半圆弧ACB路线爬行,乙虫沿小半圆弧ADA1、A1EA2、A2FA3、A3GB路线爬行,则下列结论正确的是 ( )A.甲先到B点B.乙先到B点C.甲、乙同时到B点 D.无法确定7.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米8.下列计算正确的是()A.a2•a=a2B.a6÷a2=a3C.a2b﹣2ba2=﹣a2b D.(﹣32a)3=﹣398a9.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=10.如图,已知////AB CD EF,那么下列结论正确的是()A.AD BCDF CE=B.BC DFCE AD=C.CD BCEF BE=D.CD ADEF AF=11.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()A.13B.5C.22D.4二、填空题13.已知关于x的方程3x n22x1+=+的解是负数,则n的取值范围为.14.如图,添加一个条件:,使△ADE∽△ACB,(写出一个即可)15.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .16.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.17.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.18.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.19.在Rt△ABC中,∠C=90°,AC=6,BC=8,点E是BC边上的动点,连接AE,过点E作AE的垂线交AB边于点F,则AF的最小值为_______20.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.三、解答题21.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量).(1)求y1与y2的函数解析式.(2)求每天的销售利润W与x的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?22.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?23.小明家所在居民楼的对面有一座大厦AB,AB=80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:ooo o 33711sin 37tan37s 48tan48541010in ,,,≈≈≈≈) 24.某市某中学积极响应创建全国文明城市活动,举办了以“校园文明”为主题的手抄报比赛.所有参赛作品均获奖,奖项分为一等奖、二等奖、三等奖和优秀奖,将获奖结果绘制成如右两幅统计图.请你根据图中所给信息解答意)(1)等奖所占的百分比是________;三等奖的人数是________人;(2)据统计,在获得一等奖的学生中,男生与女生的人数比为11:,学校计划选派1名男生和1名女生参加市手抄报比赛,请求出所选2位同学恰是1名男生和1名女生的概率; (3)学校计划从获得二等奖的同学中选取一部分人进行集训使其提升为一等奖,要使获得一等奖的人数不少于二等奖人数的2倍,那么至少选取多少人进行集训?25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.(3)当点D 在射线OM 上运动时,是否存在以D ,E ,B 为顶点的三角形是直角三角形?若存在,求出此时t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.A解析:A【解析】【分析】根据中位数的定义:位于中间位置或中间两数的平均数可以得到去掉一个最高分和一个最低分不影响中位数.【详解】去掉一个最高分和一个最低分对中位数没有影响,故选A.【点睛】考查了统计量的选择,解题的关键是了解中位数的定义.3.D解析:D 【解析】 【分析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故本题选:D. 【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.4.D解析:D 【解析】 【分析】根据中点坐标公式求得点B 的坐标,然后代入,a b 满足的等式进行求解即可. 【详解】∵点()30A -,,点(),P a b ,点(),B m n 为弦PA 的中点, ∴32a m -+=,02b n +=, ∴23,2a m b n =+=,又,a b 满足等式:229a b +=, ∴()222349m n ++=, 故选D . 【点睛】本题考查了坐标与图形性质,解题的关键是理解中点坐标公式.5.D解析:D 【解析】 【分析】先通过加权平均数求出x 的值,再根据众数的定义就可以求解. 【详解】解:根据题意得:70+80×3+90x+100=85(1+3+x+1), x=3∴该组数据的众数是80分或90分. 故选D .【点睛】本题考查了加权平均数的计算和列方程解决问题的能力,解题的关键是利用加权平均数列出方程.通过列方程求出x是解答问题的关键.6.C解析:C【解析】1 2π(AA1+A1A2+A2A3+A3B)=12π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点。
2020年苏科版中考数学第一次模拟试卷及答案

2020年中考数学第一次模拟试卷一、选择题1.如图,数轴上的A 、B 、C 、D 四点中,与数﹣ √3 表示的点最接近的是( )A. 点AB. 点BC. 点CD. 点D2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A. 1.3×106B. 130×104C. 13×105D. 1.3×105 3.如图是由5个相同的小正方体组成的立体图形,它的俯视图是( )A. B. C. D.4.如图所示,将含有30°角的三角板(∠A=30°)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数( )A. 28°B. 22°C. 32°D. 38°5.某校九年级模拟考试中,2班的五名学生的数学成绩如下:85,95,110,100,110.下列说法不正确的是( )A. 众数是110B. 中位数是110C. 平均数是100D. 中位数是100 6.抛物线y =(x ﹣1)2+3关于x 轴对称的抛物线的解析式是( )A. y =﹣(x ﹣1)2+3B. y =(x+1)2+3C. y =(x ﹣1)2﹣3D. y =﹣(x ﹣1)2﹣3 7.分解因式:x 4﹣16=________.二、填空题8.√−273−(13)−2= ________.9.实数227,√3,−7,√36中,无理数有________;10.已知x= 2+√3是关于x的方程x2−4x+m=0的一个根,则m=________.11.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是________.12.某商店今年6月初销售纯净水的数量如下表所示:观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为________瓶.13.如图,在△ABC 中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于12AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于________.14.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是________.15.如图,在矩形ABCD中,M为BC边上一点,连接AM,过点D作DE⊥AM,垂足为E.若DE=DC=1,AE=2EM,则BM的长为__.16.已知整数a1,a2,a3,a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2019的值为________.三、解答题17.计算:4√12−√8+√27×√13−(√3)018.先化简,再求值:(3x+4x2−1−2x−1)÷x+2x2−2x+1,其中x是整数且-3﹤x﹤1.19.如图,在矩形ABCD中,F是CD的中点,连接AF交BC延长线于点E.求证:BC=EC.20.某学校为了丰富学生课余生活,开展了“第二课堂”的活动,推出了以下四种选修课程:A.绘画;B.唱歌;C.演讲;D.十字绣.学校规定:每个学生都必须报名且只能选择其中的一个课程.学校随机抽查了部分学生,对他们选择的课程情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)这次学校抽查的学生人数是________,C 所占圆心角为________;(2)将条形统计图补充完整;(3)如果该校共有1000名学生,请你估计该校报D的学生约有多少人?21.如图,在直角梯形ABCD中,AD∥BC,AB⊥AD,BC=CD,BE⊥CD,垂足为E,点F在BD上,连接AF、EF.(1)求证:DA=DE;(2)如果AF∥CD,请判断四边形ADEF是什么特殊的四边形,并证明您的结论.22.图1是一台实物投影仪,图2是它的示意图,折线O﹣A﹣B﹣C表示支架,支架的一部分O﹣A﹣B是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AO⊥OM,垂足为点O,且AO=7cm,∠BAO=160°,BC∥OM,CD=8cm.将图2中的BC绕点B向下旋转45°,使得BCD落在BC′D′的位置(如图3所示),此时C′D′⊥OM,AD′∥OM,AD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94,cos70°≈0.34,cot70°≈0.36,结果精确到1cm)23.在甲口袋中有三个球分别标有数码1,-2,3;在乙口袋中也有三个球分别标有数码4,-5,6;已知口袋均不透明,六个球除标码不同外其他均相同,小明从甲口袋中任取一个球,并记下数码,小林从乙口袋中任取一个球,并记下数码.(1)用树状图或列表法表示所有可能的结果;(2)求所抽取的两个球数码的乘积为负数的概率.24.某工厂有甲种原料130kg,乙种原料144kg,现用两种原料生产处A, B两种产品共30件,己知生产每件A产品需甲种原料5kg,乙种原料4kg,且每件A产品可获得700元;生产每件B产品甲种原料3kg,乙种原料6kg,且每件B产品可获利润900元,设生产A产品x件(产品件数为整数件),根据以上信息解答下列问题:(1)生产A,B两种产品的方案有哪几种;(2)设生产这30件产品可获利y元,写出关于x的函数解析式,写出(1)中利润最大的方案,并求出最大利润.25.如图,在Rt△ABC中,以BC为直径的⊙O交AC于点D,过点D作⊙O的切线交AB于点M,交CB延长线于点N,连接OM,OC=1.(1)求证:AM=MD;(2)填空:①若DN =√3,则△ABC的面积为________;②当四边形COMD为平行四边形时,∠C的度数为________.26.已知抛物线y=ax2+bx+3与x轴分别交于A(−3,0),B(1,0)两点,与y轴交于点C.(1)求抛物线的表达式及顶点D的坐标;(2)点F是线段AD上一个动点.①如图1,设k=AFAD ,当k为何值时,CF=12AD.②如图2,以A,F,O为顶点的三角形是否与ΔABC相似?若相似,求出点F的坐标;若不相似,请说明理由.27.如图①所示,已知正方形ABCD和正方形AEFG,连接DG,BE.(1)发现:当正方形AEFG绕点A旋转,如图②所示.①线段DG与BE之间的数量关系是________;②直线DG与直线BE之间的位置关系是________;(2)探究:如图③所示,若四边形ABCD与四边形AEFG都为矩形,且AD=2AB,AG=2AE时,上述结论是否成立,并说明理由.(3)应用:在(2)的情况下,连接BG、DE,若AE=1,AB=2,求BG2+DE2的值(直接写出结果).答案解析一、选择题1.【答案】B【考点】实数在数轴上的表示,估算无理数的大小【解析】【解答】解:∵√3≈1.732,∴﹣√3≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣√3表示的点最接近的是点B.故选:B.【分析】先估算出√3≈1.732,所以﹣√3≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.2.【答案】A【考点】科学记数法—表示绝对值较大的数【解析】【解答】130万=1 300 000=1.3×106.故答案为:A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于130万有7位,所以可以确定n=7-1=6.3.【答案】C【考点】简单组合体的三视图【解析】【解答】它的俯视图如下图所示:故答案为:C.【分析】根据从上边看得到的图形是俯视图进行判断即可.4.【答案】B【考点】平行线的性质,三角形内角和定理,三角形的外角性质【解析】【解答】解:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°,∵∠1=38°,∴∠AEC=∠ABC-∠1=22°,∵GH∥EF,∴∠2=∠AEC=22°,故答案为:B.【分析】如图,延长AB交CF于E,利用三角形的内角和定理,可求出∠ABC=60°,根据三角形的一个外角等于与它不相邻的两个内角和,可求出∠AEC=∠ABC-∠1=22°,根据两直线平行,内错角相等,可得∠2=∠AEC=22°.5.【答案】B【考点】平均数及其计算,中位数,众数【解析】【解答】85,95,110,100,110这组数据的众数是110,中位数是100,平均数为85+95+110+100+1105=100,因此选项B符合题意,故答案为:B.【分析】分别求出这组数据的中位数、众数、平均数,再进行判断.6.【答案】D【考点】二次函数图象的几何变换【解析】【解答】∵y=(x﹣1)2+3的顶点坐标为(1,3),∴关于x轴对称的抛物线顶点坐标为(1,﹣3),且开口向下,∴所求抛物线解析式为:y=﹣(x﹣1)2﹣3.故答案为:D.【分析】先确定原抛物线的顶点坐标(1,3),根据对称性得到关于x轴对称的抛物线顶点坐标为(1,﹣3),且开口向下,即可列出函数关系式.7.【答案】(x2+4)(x+2)(x﹣2)【考点】因式分解﹣运用公式法【解析】【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2)。
2020年江苏省苏州市昆山市九校联考中考数学一模试卷

2020年江苏省苏州市昆山市九校联考中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)的绝对值是()A.B.C.﹣2020D.20202.(3分)港珠澳大桥全长55千米,工程项目总投资额1269亿元,用科学记数法表示1269亿为()A.1269×108B.1.269×108C.1.269×1010D.1.269×10113.(3分)长沙某抗战纪念馆馆长联系某中学,选择18名青少年志愿者在同日参与活动,年龄如表所示:这18名志愿者年龄的众数和中位数分别是()年龄(单位:岁)12131415人数3564A.13,14B.14,14C.14,13D.14,154.(3分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.5.(3分)如图,在△ABC中,∠A=90°,AB=AC=2,⊙A与BC相切于点D,与AB,AC分别相交于点E,F,则阴影部分的面积是()A.B.3﹣C.2﹣D.6.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为10m,DE的长为5m,则树AB的高度是()m.A.10B.15C.15D.15﹣57.(3分)已知点M(m,2018),N(n,2018)是二次函数y=ax2+bx+2017图象上的两个不同的点,则当x=m+n 时,其函数值y=()A.2019B.2018C.2017D.20168.(3分)已知t为正整数,关于x的不等式组的整数解的个数不可能为()A.16B.17C.18D.199.(3分)如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=4,AF=6,则AC的长为()A.4B.6C.2D.10.(3分)已知⊙O的半径为2,A为圆内一定点,AO=1.P为圆上一动点,以AP为边作等腰△APG,AP=PG,∠APG=120°,OG的最大值为()A.1+B.1+2C.2+D.2﹣1二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)分解因式:81﹣9n2=.12.(3分)若有意义,则x的取值范围.13.(3分)a是方程x2+x﹣1=0的一个根,则代数式﹣2a2﹣2a+2020的值是.14.(3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC 的余弦值是.15.(3分)如图,四边形ABCD内接于⊙O,F是上一点,且=,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为度.16.(3分)一个圆锥的侧面展开图半径为16cm,圆心角270°的扇形,则这个圆锥的底面半径是cm.17.(3分)如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D 在双曲线y=(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k的值为.18.(3分)如图,已知在△ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC 为邻边作▱MCNB,连接MN,则MN的最小值为.三.解答题(本大题共10小题,共76分.应写出必要的计算过程、推理步骤或文字说明)19.(5分)计算:(﹣1)2016+2sin60°﹣|1﹣|+π0.20.(5分)解不等式组,并写出该不等式组的所有整数解.21.(6分)先化简,再求值:÷﹣,其中x=.22.(6分)甲、乙两辆货车分别从A、B两城同时沿高速公路向C城运送货物.已知A、C两城相距450千米,B、C两城的路程为440千米,甲车比乙车的速度快10千米/小时,甲车比乙车早半小时到达C城.求两车的速度.23.(8分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.24.(8分)如图,在等腰Rt△ABC中,∠C=90°,AC=4,矩形DEFG的顶点D、G分别在AC、BC上,边EF 在AB上.(1)求证:△AED∽△DCG;(2)若矩形DEFG的面积为4,求AE的长.25.(8分)如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.26.(10分)如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)若BD=6,AB=10,求DE的长.27.(10分)在等腰梯形ABCD中,AD∥BC,AB=DC=5,AD=6,BC=12.(1)梯形ABCD的面积等于.(2)如图1,动点P从D点出发沿DC以每秒1个单位的速度向终点C运动,动点Q从C点出发沿CB以每秒2个单位的速度向B点运动.两点同时出发,当P点到达C点时,Q点随之停止运动.当PQ∥AB时,P点离开D点多少时间?(3)如图2,点K是线段AD上的点,M、N为边BC上的点,BM=CN=5,连接AN、DM,分别交BK、CK 于点E、F,记△ADG和△BKC重叠部分的面积为S,求S的最大值.28.(10分)如图①,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)经过点D(2,4),与x轴交于A,B两点,与y轴交于点C(0,4),连接AC,CD,BC,其且AC=5.(1)求抛物线的解析式;(2)如图②,点P是抛物线上的一个动点,过点P作x轴的垂线l,l分别交x轴于点E,交直线AC于点M.设点P的横坐标为m.当0<m≤2时,过点M作MG∥BC,MG交x轴于点G,连接GC,则m为何值时,△GMC 的面积取得最大值,并求出这个最大值;(3)当﹣1<m≤2时,是否存在实数m,使得以P,C,M为顶点的三角形和△AEM相似?若存在,求出相应m的值;若不存在,请说明理由.2020年江苏省苏州市昆山市九校联考中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【解答】解:根据负数的绝对值等于它的相反数,可得.故选:A.2.【解答】解:1269亿=126900000000=5×1011,故选:D.3.【解答】解:观察图表可知:年龄是14的人数有6人,出现次数最多,故众数为14;由图可知参加社区服务志愿者的共有18人,所以中位数为(14+14)÷2=14,故中位数是14;故选:B.4.【解答】解:它的俯视图是:故选:C.5.【解答】解:连接AD,如图,∵⊙A与BC相切于点D,∴AD⊥BC,∵∠A=90°,AB=AC=2,∴BC=AB=2,∴AD=BD=CD=,∴阴影部分的面积=S△ABC﹣S扇形BAC=×2×2﹣=2﹣.故选:C.6.【解答】解:在Rt△CDE中,∵CD=10m,DE=5m,∴sin∠DCE=,∴∠DCE=30°.∵∠ACB=60°,DF∥AE,∴∠BGF=60°∴∠ABC=30°,∠DCB=90°.∵∠BDF=30°,∴∠DBF=60°,∴∠DBC=30°,∴BC===10(m),∴AB=BC•sin60°=10×=15(m).故选:B.7.【解答】解:∵当x=m和x=n时,y的值相等,∴x=﹣=,∴m+n=﹣,当x=m+n时,则y=a(﹣)2+b(﹣)+2017=2017∴当x=m+n时,二次函数y的值是2017.故选:C.8.【解答】解:不等式组整理得:,解集为:<x<20,t=1时,=3,不等式组解集是3<x<20,整数解的个数是16个;t=2时,=1,不等式组解集是1<x<20,整数解的个数是18个;t=3时,=,不等式组解集是<x<20,整数解的个数是19个;由上可知,t≥3时,0<<1,整数解的个数都是19个.故选:B.9.【解答】解:如图,连接AE,设EF与AC交点为O,∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=6,∴AE=CE=6,BC=BE+CE=4+6=10,∴AB===2,∴AC===2,故选:C.10.【解答】解:如图,将线段OA绕点O顺时针旋转120°得到线段OT,连接AT,GT,OP.则AO=OT=1,AT =,∵△AOT,△APG都是顶角为120°的等腰三角形,∴∠OAT=∠P AG=30°,∴∠OAP=∠TAG,==∴=,∴△OAP∽△TAG,∴==,∵OP=2,∴TG=2,∵OG≤OT+GT,∴OG≤1+2,∴OG的最大值为1+2,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)11.【解答】解:原式=9(9﹣n2)=9(3+n)(3﹣n),故答案为:9(3+n)(3﹣n)12.【解答】解:根据题意得:x﹣1≥0,2﹣x≠0,解得x≥1且x≠2.故答案为:x≥1且x≠2.13.【解答】解:∵a是方程x2+x﹣1=0的一个实数根,∴a2+a﹣1=0,∴a2+a=1,∴﹣2a2﹣2a+2020=﹣2(a2+a)+2020=﹣2×1+2020=﹣2018.故答案为2018.14.【解答】解:作CD⊥AB于点D,△ABC的面积=3×4﹣×3×4﹣×1×2﹣×1×3﹣1×1=,由勾股定理得,AB==5,AC==,×AB×CD=,即×5×CD=,解得,CD=1,由勾股定理得,AD==2,则cos∠BAC===,故答案为:.15.【解答】解:∵四边形ABCD内接于⊙O,∠ABC=105°,∴∠ADC=180°﹣∠ABC=180°﹣105°=75°,∵=,∠BAC=25°,∴∠DCE=∠BAC=25°,∴∠E=∠ADC﹣∠DCE=75°﹣25°=50°,故答案为:50.16.【解答】解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得,2πr=,r=12cm.故答案为:12.17.【解答】解:∵正方形ABCD的面积为20,∴AB=BC=CD=DA==2,∴CE=DE=,∵∠COE=∠ADE=90°,∠CEO=∠AED,∴△COE∽△ADE,∴==,即,==,∴=,∵CE=,∴OE=1,OC=2,过点D作DF⊥x轴,垂足为F,∵CE=DE,∴OF=OC=2,DF=2OE=2,∴D(2,2)代入反比例函数关系式得,k=2×2=4,故答案为:4.18.【解答】解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,∵四边形MCNB是平行四边形,∴O为BC中点,MN=2MO.∵AB=AC=13,BC=10,∴AO⊥BC.在Rt△AOC中,利用勾股定理可得AO==12.利用面积法:AO×CO=AC×OH,即12×5=13×OH,解得OH=.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是.所以此时MN最小值为2OH=.故答案为.三.解答题(本大题共10小题,共76分.应写出必要的计算过程、推理步骤或文字说明)19.【解答】解:原式===3.20.【解答】解:,由①得x≥﹣,由②得x<3,所以不等式组的解集是﹣≤x<3,所以整数解是﹣1,0,1,2.21.【解答】解:当x=时,∴原式=÷﹣=×﹣=﹣==22.【解答】解:设乙车的速度为x千米/时,则甲车的速度为(x+10)千米/时.根据题意,得:+=,解得:x=80,或x=﹣110(舍去),∴x=80,经检验,x=80是原方程的解,且符合题意.当x=80时,x+10=90.答:甲车的速度为90千米/时,乙车的速度为80千米/时.23.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.24.【解答】(1)证明:∵△ABC是等腰直角三角形,∠C=90°,∴∠B=∠A=45°,∵四边形DEFG是正方形,∴∠AED=∠DEF=90°,DG∥AB,∴∠CDG=∠A,∵∠C=90°,∴∠AED=∠C,∴△AED∽△DCG;(2)解:设AE的长为x,∵等腰Rt△ABC中,∠C=90°,AC=4,∴∠A=∠B=45°,AB=4,∵矩形DEFG的面积为4,∴DE•FE=4,∠AED=∠DEF=∠BFG=90°,∴BF=FG=DE=AE=x,∴EF=4﹣2x,即x(4﹣2x)=4,解得x1=x2=.∴AE的长为.25.【解答】(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.26.【解答】(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=;(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB==2,∴⊙O的半径为;(3)解:在Rt△DAB中,AD==8,∵OC⊥AD,∴AF=DF=4,∵OF==3,∴CF=2,∵CF∥BD,∴△ECF∽△EBD,∴===,∴=∴DE=×4=3.27.【解答】解:(1)如图1,作AE⊥BC于E,DF⊥BC于F,则AE∥DF,∵AD∥BC,AE⊥BC,∴四边形ADFE是矩形,∴AE=DF,AD=EF=6,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),∴BE=CF,∴BE=CF==3,由勾股定理得,AE===4,梯形ABCD的面积=×(AD+BC)×AE=×(12+6)×4=36,故答案为:36;(2)如图3,过D作DE∥AB,交BC于点E,∵AD∥BC,DE∥AB,∴四边形ABED为平行四边形,∴BE=AD=6,∴EC=6,当PQ∥AB时,PQ∥DE,∴△CQP~△CED,∴,即=,解得,t=;(3)如图2,过G作GH⊥BC,延长HG交AD于I,过E作EX⊥BC,延长XE交AD于Y,过F作FU⊥BC 于U,延长UF交AD于W,∵BM=CN=5,∴MN=12﹣5﹣5=2,∴BN=CM=7,∵MN∥AD,∴△MGN~△DGA,∴=,即=,解得,HG=1,设AK=x,∵AD∥BC,∴△BEN~△KEA,∴=,即=,解得,EX=,同理:FU=,S=S△BKC﹣S△BEN﹣S△CFM+S△MNG=×12×4﹣×7×﹣×7×+×2×1=,当x=3时,S的最大值为25﹣=5.4.28.【解答】解(1)∵在Rt△AOC中,∠AOC=90°,∴OA==3,∴A(3,0),将A(3,0)、C(0,4)D(2,4)代入抛物线y=ax2+bx+c(a≠0)中得,解得,,∴抛物线解析式为y=﹣x2+x+4;(2)由A(3,0),C(0,4)可得直线AC解析式为y=﹣x+4,∴M坐标为(m,﹣m+4),∵MG∥BC,∴∠CBO=∠MGE,且∠COB=∠MEG=90°,∴△BCO∽△GME,∴=,即=,∴GE=﹣m+1,∴OG=OE﹣GE=m﹣1,∴S△COM=S梯形COGM﹣S△COG﹣S△GEM=m(﹣m+4+4)﹣4×(m﹣1)×﹣(﹣m+1)(﹣m+4),=﹣m2+m=﹣(m﹣)2+2,∴当m=时,S最大,即S最大=2;(3)根据题意可知△AEM是直角三角形,而△MPC中,∠PMC=∠AME为锐角,∴△PCM的直角顶点可能是P或C,第一种情况:当∠CMP=90°时,如图③,则CP∥x轴,此时点P与点D重合,∴点P(2,4),此时m=2;第二种情况:当∠PCM=90°时,如图④,延长PC交x轴于点F,由△FCA∽△COA,得=,∴AF=,∴OF=﹣3=,∴F(﹣,0),∴直线CF的解析式为y=x+4,联立直线CF和抛物线解析式可得,解得,,∴P坐标为(,),此时m=;综上可知存在满足条件的实数m,其值为2或.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省苏州市昆山市2020年中考数学一模试卷一、选择题(每题3分,共30分,答案直接填在答题卡相应位置上)1.(3分)下列计算正确的是()A.x4•x4=x16B.(a3)2•a4=a9C.(ab2)3÷(﹣ab)2=﹣ab4D.(a6)2÷(a4)3=12.(3分)下列关于x的方程中一定有实数根的是()A.x2﹣x+2=0 B.x2+x﹣2=0 C.x2+x+2=0 D.x2+1=03.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1084.(3分)一组数据3,4,x,6,8的平均数是5,则这组数据的中位数是()A.4 B.5 C.6 D.75.(3分)如图,点A、B、C都在⊙O上,若∠ACB=20°,则∠AOB=()A.20°B.40°C.50°D.80°6.(3分)已知点P(m,n)在一次函数y=2x﹣3的图象上,且m+n>0,则m的取值范围()A.m>1 B.m>2 C.m<1 D.m>﹣17.(3分)若x=3n+1,y=3×9n﹣2,则用x的代数式表示y是()A.y=3(x﹣1)2﹣2 B.y=3x2﹣2C.y=x3﹣2 D.y=(x﹣1)2﹣28.(3分)已知关于x的分式方程﹣2=的解为正数,则k的取值范围为()A.﹣2<k<0 B.k>﹣2且k≠﹣1 C.k>﹣2 D.k<2且k≠19.(3分)已知关于x的二次函数y=x2﹣2x+c的图象上有两点A(x1,y1),B(x2,y2),若x1<1<x2且x1+x2=2,则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1=y2D.不能确定10.(3分)如图,在菱形ABCD中,AB=6,∠DAB=60°,AE分别交BC、BD于点E、F,若CE=2,连接CF.以下结论:①∠BAF=∠BCF;②点E到AB的距离是2;③S△CDF:S△BEF=9:4;④tan∠DCF=.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(每题3分,共24分,答案直接填在答题卡相应位置上)11.(3分)若式子在实数范围内有意义,则x的取值范围是.12.(3分)分解因式:x3﹣x=.13.(3分)底面周长为8πcm,母线长为5cm的圆锥的侧面积为cm2.14.(3分)已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.15.(3分)设a=,b=2+,c=,则a、b、c从小到大的顺序是.16.(3分)如图,在边长为6的菱形ABCD中,∠DAB=60°,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是.17.(3分)如图,点A、B在反比例函数y=(k≠0)的图象上,过点A、B作x轴的垂线,垂足分别为M.N,延长线段AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积为6,k的值为.18.(3分)如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH.若正方形的边长为4,则线段DH长度的最小值是.三、解答题(共76分)19.(4分)(1)计算:(π)0+()﹣2+﹣9tan30°;(2)解方程:+1=.20.(5分)先化简,再求值:,其中a是方程x2﹣x=6的根.21.(5分)解不等式组:,并写出该不等式组的整数解.22.(7分)如图,某中学数学课题学习小组在“测量物体高度”的活动中,欲测量一棵古树DE的高度,他们在这棵古树的正前方一平房顶A点处测得古树顶端D的仰角为30°,在这棵古树的正前方C处,测得古树顶端D的仰角为60°,在A点处测得C点的俯角为30°.已知BC为4米,且B、C、E三点在同一条直线上.(1)求平房AB的高度;(2)请求出古树DE的高度(根据以上条件求解时测角器的高度忽略不计)23.(6分)某市教育行政部门为了解初中学生参加综合实践活动的情况,随机抽取了本市初一、初二、初三年级各500名学生进行了调查.调查结果如图所示,请你根据图中的信息回答问题.(其中社区服务占14%,社会调查占16%)(1)在被调查的学生中,参加综合实践活动的有多少人?参加科技活动的有多少人?(2)如果本市有3万名初中学生,请你估计参加科技活动的学生约有多少名?24.(6分)甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛.(1)请用树状图法或列表法,求恰好选中甲、乙两位同学的概率;(2)若已确定甲打第一场,再从其余三位同学中随机选取一位,求恰好选中乙同学的概率.25.(8分)如图,在平面直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B、C的横坐标都是3,且BC=2,点D在AC上,若反比例函数y=(x>0)的图象经过点B、D.且AO:BC=3:2.(1)求点D坐标;(2)将△AOD沿着OD折叠,设顶点A的对称点为A′,试判断点A′是否恰好落在直线BD上,为什么?26.(7分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x件.(1)当x=12时,小丽购买的这种服装的单价为;(2)小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?27.(11分)如图,在直角梯形ABCD中,AB∥CD,∠C=90°,以AD为直径的⊙O与BC相切于点E,交CD于点F,连接DE.(1)证明:DE平分∠ADC;(2)已知AD=4,设CD的长为x(2<x<4).①当x=2.5时,求弦DE的长度;②当x为何值时,DF•FC的值最大?最大值是多少?28.(13分)如图,二次函数y=ax2+bx+c(a≠0)的图象与y轴交于点A(0,4),与x轴负半轴交于B,与正半轴交于点C(8,0),且∠BAC=90°.(1)求该二次函数解析式;(2)若N是线段BC上一动点,作NE∥AC,交AB于点E,连结AN,当△ANE面积最大时,求点N的坐标;(3)若点P为x轴上方的抛物线上的一个动点,连接PA、PC,设所得△PAC的面积为S.问:是否存在一个S 的值,使得相应的点P有且只有2个?若有,求出这个S的值,并求此时点P的横坐标;若不存在,请说明理由.2020年江苏省苏州市昆山市三校联考中考数学一模试卷参考答案与试题解析一、选择题(每题3分,共30分,答案直接填在答题卡相应位置上)1.【解答】解:A、x4×x4=x8,原式计算错误,故本选项错误;B、(a3)2•a4=a10,原式计算错误,故本选项错误;C、(ab2)3÷(﹣ab)2=ab4,原式计算错误,故本选项错误;D、(a6)2÷(a4)3=1,计算正确,故本选项正确;故选:D.2.【解答】解:A、△=1﹣8=﹣7<0,所以没有实数解,故本选项错误;B、△=1+8=9>0,所以有实数解,故本选项正确;C、△=1﹣8=﹣7<0,原方程没有实数解;故本选项错误;D、△=0﹣4=﹣4<0,原方程有实数解,故本选项正确.故选:B.3.【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.4.【解答】解:(3+4+x+6+8)÷5=5,解得x=4,将该组数据按从小到大的顺序排列3,4,4,6,8,中间的一个数是4,这组数据的中位数为4,故选:A.5.【解答】解:∵∠ACB=20°,∴∠AOB=2∠ACB=40°.故选:B.6.【解答】解:∵点P(m,n)在一次函数y=2x﹣3的图象上,∴n=2m﹣3.∵m+n>0,即m+2m﹣3>0,解得:m>1.故选:A.7.【解答】解:∵x=3n+1,y=3×9n﹣2=3×32n﹣2,∴y=3(x﹣1)2﹣2.故选:A.8.【解答】解:∵=2,∴=2,∴x=2+k,∵该分式方程有解,∴2+k≠1,∴k≠﹣1,∵x>0,∴2+k>0,∴k>﹣2,∴k>﹣2且k≠﹣1,故选:B.9.【解答】解:二次函数的对称轴为直线x=﹣=1,∵x1<1<x2且x1+x2=2,∴点A、B关于对称轴对称,∴y1=y2.故选:C.10.【解答】解:∵四边形ABCD是菱形,∴BA=BC,∠ABD=∠CBD,在△ABF和△CBF中,,∴△ABF≌△CBF,∴∠BAF=∠BCF,①正确;作EG⊥AB交AB的延长线于G,∵AD∥BC,∠DAB=60°,∴∠EBG=60°,∴EG=EB×sin∠EGB=2,②正确;∵AB=6,CE=2,∴S△BEF=2S△CEF,∵AD∥BC,∴==,∴S△CFD=S△CFB,∴S△CDF:S△BEF=9:4,③正确;作FH⊥CD于H,则DH=DF=,FH═,∴tan∠DCF==,④错误,故选:B.二、填空题(每题3分,共24分,答案直接填在答题卡相应位置上)11.【解答】解:由题意得:x+2≥0且x≠0,解得:x≥﹣2且x≠0,故答案为:x≥﹣2且x≠0.12.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).13.【解答】解:侧面积是:×8π×5=20πcm2.故答案是:20π.14.【解答】解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.15.【解答】解:c===+;∵2=>,∴b>c,又∵a2=()2=7,c2=(+)2=5+2,且>1,∴a2<c2,∴a<c,∴a<c<b.故答案为a<c<b.16.【解答】解:∵四边形ABCD是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°﹣60°=120°,∵DF是菱形的高,∴DF⊥AB,∴DF=AD•sin60°=6×=3,∴图中阴影部分的面积=菱形ABCD的面积﹣扇形DEFG的面积=6×3﹣=18﹣9π.故答案为:18﹣9π.17.【解答】解:设OM=a,则OM=MN=NC=a,∵点A、B在反比例函数y=的图象上,AM⊥OC、BN⊥OC,∴AM=,BN=,∵S△AOC=S△AOM+S四边形AMNB+S△BNC,∴×3a×=k+6+×a×,解得,k=8,故答案为:8.18.【解答】解:如图,取AB的中点O,连接OH、OD,则OH=AO=AB=2,在Rt△AOD中,OD===2,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH的最小值=OD﹣OH=2﹣2.故答案为:2﹣2.三、解答题(共76分)19.【解答】解:(1)原式=1+9+3﹣9×=10;(2)去分母得:﹣2x+x2﹣3x=2x﹣6,即x2﹣7x+6=0,解得:x=1或x=6,经检验x=1和x=6都为分式方程的解.20.【解答】解:原式====.∵a是方程x2﹣x=6的根,∴a2﹣a=6,∴原式=.21.【解答】解:,解不等式①得,x<﹣3,解不等式②得,x≥﹣5,所以,不等式组的解集是﹣5≤x<﹣3,所以,不等式组的整数解为﹣5、﹣4.22.【解答】解:(1)在Rt△ABC中,∵BC=4m,∠ACB=30°,∴tan30°=,∴AB=m.(2)在Rt△ACB中,易知AC=2AB=m,在Rt△ACD中,∵∠ACD=90°,∠DAC=60°,∴CD=AC=8,在Rt△CDE中,sin60°=,∴DE=4m.23.【解答】解:(1)480+420+150=1050(人).1050×(1﹣60%﹣16%﹣14%)=105(人).故参加综合实践活动的1050人,科技活动的有105人.(2)(30000÷1500)×1050×10%=2100(人).故有2100人参加科技活动.24.【解答】解:(1)方法一画树状图得:方法二列表得:甲乙丙丁/ 甲、乙甲、丙甲、丁甲乙乙、甲/ 乙、丙乙、丁丙丙、甲丙、乙/ 丙、丁丁丁、甲丁、乙丁、丙/ ∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=;(2)∵一共有3种等可能性的结果,其中恰好选中乙同学的有1种,∴恰好选中乙同学的概率为:.25.【解答】解:(1)∵AO:BC=3:2,BC=2,∴OA=3,∵点B、C的横坐标都是3,∴BC∥AO,∴B(3,1),∵点B在反比例函数y=(x>0)的图象上,∴1=,解得k=3,∵AC∥x轴,∴设点D(t,3),∴3t=3,解得t=1,∴D(1,3);(2)结论:点A′不在直线BD上.理由:过点A′作EF∥OA交AC于E,交x轴于F,连接OA′(如图所示),∵AC∥x轴,∴∠A′ED=∠A′FO=90°,∵∠OA′D=90°,∴∠A′DE=∠OA′F,∴△DEA′∽△A′FO,设A′(m,n),∴=,又∵在Rt△A′FO中,m2+n2=9,∴m=,n=,即A′(,),∵经过点D(1,3),点B(3,1)的直线函数关系式为y=﹣x+4,∴当x=时,y=﹣+4=≠,∴点A′不在直线BD上.26.【解答】解:(1)80﹣(12﹣10)×2=76元.(2)设小丽购买了x件这种服装,由题意得x[80﹣2(x﹣10)]=1200解得:x1=20,x2=30当x=20时,80﹣2(20﹣10)=60当x=30时,80﹣2(30﹣10)=40<50(不符合题意,舍去)答:小丽购买了20件这种服装.27.【解答】(1)证明:如图,连接OE.∴BC是⊙O的切线,∴OE⊥BC,∵AB∥CD,∠C=90°,∴∠B=90°,∴AB⊥BC,CD⊥BC,∴AB∥OE∥CD,∴∠OED=∠CDE,∵OD=OE,∴∠OED=∠ODE,∴∠ODE=∠CDE,∴ED平分∠ADC.(2)①连接AF交OE于H.∵AB∥OE∥CD,AO=OD,∴BE=EC,∴OE=(AB+CD),∵OE=2,CD=2.5,∴AB=1.5,∵AD是⊙O的直径,∴∠AFD=90°,∵∠B=∠C=9°,∴四边形ABCF是矩形,∴AF∥BC,∵OE⊥BC,∴OE⊥AF,∴AH=FH,AB=CF=HE=1.5,∴OH=OE﹣EH=0.5,∴AH===,∴AH=FH=CE=,∴DE===.②设AB=CF=m,∵OE=(AB+CD),∴x+m=4,∴m=4﹣x,∴DF•CF=((4﹣x)(2x﹣4)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵﹣2<0,∴x=3时,DF•CF的值最大,最大值为2.28.【解答】解:(1)∵∠BAC=90°,∠AOC=90°,∴由射影定理可得出:OA2=OB•OC,由题意知:OA=4,OC=8,∴42=OB•8,∴OB=2,∴B(﹣2,0),将A、B、C三点坐标代入即得:,解得:,∴抛物线解析式为:y=﹣x2+x+4;(2)设N(n,0),则BN=n+2,BA=10,∵NE∥AC,∴△BNE∽△BAC,∴=()2,∵S△BAC=×10×4=20,∴=()2,S△BEN=(n+2)2,∵S△BAN=×(n+2)×4=2n+4,∴S△ANE=(2n+4)﹣(n+2)2=﹣(n﹣3)2+5,∵a=﹣,∴当n=3时,最大值S△ANE=5,此时N的坐标为:(3,0);(3)设直线AC对应的函数解析式为:y=kx+b,则,解得:,∴直线AC对应的函数解析式为:y=﹣x+4,如图,过P作PH⊥OC,垂足为H,交直线AC于点Q;设P(m,﹣m2+m+4),则Q(m,﹣m+4).①当0<m<8时,PQ=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+2m,S=S△APQ+S△CPQ=×8×(﹣m2+2m)=﹣(m﹣4)2+16,∴0<S≤16;②当﹣2≤m<0时,PQ=(﹣m+4)﹣(﹣m2+m+4)=m2﹣2m,S=S△CPQ﹣S△APQ=×8×(m2﹣2m)=(m﹣4)2﹣16,∴0<S<20;∴当0<S<16时,0<m<8中有m两个值,﹣2≤m<0中m有一个值,此时有三个;当16<S<20时,﹣2≤m<0中m只有一个值;当S=16时,m=4或m=4﹣4这两个.故当S=16时,相应的点P有且只有两个.。