统计案例分析及典型例题

合集下载

统计学专业经典案例分析【精选】

统计学专业经典案例分析【精选】

案例2 美国国家健康照顾协会美国国家健康照顾协会的主要任务是了解健康照顾人力资源的短缺情况,并为未来制定发展规划。

为了掌握护理人员对所从事工作的满意程度,该协会发起了一场全国性的有关医院护理人员的调查研究。

调查项目包括:工作满意度、收入、晋升机会等,填答方式采用打分制,从0~100分,分值高表示满意度高。

下面是其中的一部分调查结果:工作收入晋升工作收入晋升714958727631845363712574847437694716876649905623725979842862723786863759725740703854634878867272846029875157906266779051735655713655946052755392844266745982855664765154885552956652747051896662714568855767884942654268902767823754858946826056795941898064726045744763883647824891776075907670644361785272另外,按医院招募护理人员的方式,对上述资料的分组结果如下:私人医院退伍军人医院大学附属医院工作收入晋升工作收入晋升工作收入晋升7259407149588453639062668474378766498442667237867259798556646348768855527145688460297470518849427356558589464 11 01628726045946052795941883647902767494716776075727637905623644361863759779051712574867272713655842862956652755392703854654268765154875157823754898064745982826056896662907670855767785272744763824991要求:运用描述统计方法对资料进行处理,采用的表示方法要让人能够方便地获取相应的信息,对你发现出的问题给予讨论。

统计法律案例分析题(3篇)

统计法律案例分析题(3篇)

第1篇一、案例背景某市统计局(以下简称“统计局”)在组织实施某市2020年度统计调查工作中,存在以下违规行为:1. 在调查过程中,统计局未按照《统计法》的规定,向调查对象提供调查表格和统计资料,导致调查对象无法准确、完整地填写调查表格。

2. 统计局在调查过程中,未对调查对象提供的调查数据进行审核,存在大量错误数据。

3. 统计局在调查结束后,未按照《统计法》的规定,对调查数据进行汇总、分析,形成统计报告。

4. 统计局在统计报告公布前,未对报告内容进行保密,导致统计报告中的部分数据被泄露。

二、案例分析1. 违反《统计法》的相关规定(1)根据《统计法》第十四条第一款规定:“国家统计局、国务院有关部门和地方各级人民政府统计机构,组织实施国家统计调查,编制和公布统计调查表、统计调查对象、统计调查内容、统计调查方式、统计调查时间、统计调查地点、统计调查方法等统计调查方案,并报国务院备案。

”本案例中,统计局未按照规定向调查对象提供调查表格和统计资料,违反了《统计法》的相关规定。

(2)根据《统计法》第二十条规定:“统计机构、统计人员应当对调查对象提供的统计数据进行审核,确保数据的真实、准确、完整。

”本案例中,统计局未对调查数据进行审核,存在大量错误数据,违反了《统计法》的相关规定。

(3)根据《统计法》第二十二条规定:“统计机构、统计人员应当对统计数据进行汇总、分析,形成统计报告,并向有关单位或者部门报送。

”本案例中,统计局未按照规定对调查数据进行汇总、分析,形成统计报告,违反了《统计法》的相关规定。

(4)根据《统计法》第三十条规定:“统计机构、统计人员应当对统计报告中的统计数据进行保密,未经批准,不得对外公布。

”本案例中,统计局在统计报告公布前,未对报告内容进行保密,导致统计报告中的部分数据被泄露,违反了《统计法》的相关规定。

2. 案例中存在的问题及原因(1)统计局在组织实施统计调查过程中,未严格按照《统计法》的规定执行,导致调查工作存在诸多问题。

统计学误用案例

统计学误用案例

统计学误用案例案例一:平均数的陷阱。

咱就说有个小公司,老板想显示员工工资待遇还不错。

公司有10个员工,1个经理月薪10万,然后9个普通员工月薪3000。

老板一算,平均工资=(100000 + 9×3000)÷10 = 12700元。

然后对外宣称公司平均月薪12700元,好多人一听,哇,这工资挺高啊。

但实际上呢,除了那个经理,大部分普通员工的工资少得可怜,这个平均数就完全误导了大家对这个公司工资水平的真实印象。

这就像是拿姚明的身高和一群小学生的身高求平均,然后说这个平均身高就代表大家的身高水平,那可太扯了。

案例二:样本偏差。

有个保健品公司想做个产品调查,证明他们的保健品特别有效。

他们就在自己的专卖店门口找那些来买保健品的人做调查,问“您觉得我们的保健品效果好不好呀?”结果大部分人都说好。

为啥呢?因为来专卖店买的人本来就是相信这个产品才来买的呀,这就是一个有偏差的样本。

就好比你想知道大家喜不喜欢吃榴莲,你专门跑到榴莲专卖店门口去问,那肯定大部分人都说喜欢,这根本就不能代表全体人群的真实想法。

这保健品公司就拿着这个不靠谱的调查结果到处宣传,这就是对统计学的误用。

案例三:相关性误为因果性。

你看,有人发现,在某个城市,冰淇淋的销量和溺水死亡人数在夏天都上升了。

然后就有个“天才”说,冰淇淋会导致溺水。

这可就太荒谬了。

其实呢,这两者只是有相关性,因为夏天到了,天气热,吃冰淇淋的人多了,同时去游泳的人也多了,所以溺水死亡人数也增加了。

这就像每次公鸡打鸣之后太阳就升起来了,但我们不能说公鸡打鸣是太阳升起的原因一样,这种把相关性硬说成因果性的事儿,在统计学里可是个大错特错的事儿。

统计法律案例分析试题(3篇)

统计法律案例分析试题(3篇)

第1篇一、案例分析题背景材料:某市统计局为了全面了解该市企业的发展状况,决定对该市所有企业进行一次全面的统计调查。

调查内容主要包括企业的基本情况、财务状况、生产经营状况等。

在调查过程中,某市统计局发现部分企业存在以下问题:1. 部分企业未按时提交统计报表,甚至有些企业拒绝提供任何统计资料;2. 部分企业提供的数据存在虚假、伪造现象,严重影响了统计数据的真实性;3. 部分企业未按照规定设置统计机构,未配备专职统计人员。

问题:1. 根据我国《统计法》及相关法律法规,分析上述企业存在的问题,并指出应承担的法律责任。

2. 针对上述问题,某市统计局应采取哪些措施确保统计调查的顺利进行?3. 如何提高企业统计法律法规意识,确保统计数据的真实性?二、案例分析一、企业存在的问题及法律责任1. 未按时提交统计报表:根据《统计法》第三十八条规定,统计调查对象应当依照统计法和国家统计制度的规定,按时、如实提供统计资料。

未按时提交统计报表的行为违反了《统计法》的相关规定,企业应承担相应的法律责任。

2. 提供虚假、伪造数据:根据《统计法》第四十二条规定,统计调查对象提供虚假、伪造的统计资料,由县级以上人民政府统计机构责令改正,给予警告,可以并处五万元以下的罚款;构成犯罪的,依法追究刑事责任。

3. 未按规定设置统计机构、配备统计人员:根据《统计法》第二十六条规定,企业应当建立健全统计机构,配备专职或者兼职统计人员。

未按规定设置统计机构、配备统计人员的行为违反了《统计法》的相关规定,企业应承担相应的法律责任。

二、某市统计局应采取的措施1. 加强宣传和培训:某市统计局应加大对统计法律法规的宣传力度,提高企业对统计工作的认识,定期对企业进行统计法律法规培训,增强企业统计法律法规意识。

2. 严格执法:某市统计局应加强对统计违法行为的查处力度,对未按时提交统计报表、提供虚假、伪造数据等违法行为,依法予以处罚。

3. 强化统计服务:某市统计局应积极为企业提供统计服务,帮助企业解决统计工作中遇到的问题,提高企业统计工作的质量。

教育部统计案例分析(3篇)

教育部统计案例分析(3篇)

第1篇一、背景随着我国教育事业的快速发展,教育统计数据在政策制定、资源配置、质量评估等方面发挥着越来越重要的作用。

为了提高统计数据的质量和准确性,教育部对全国教育统计数据进行了全面梳理和分析。

本文将针对教育部统计案例进行深入剖析,以期对教育统计工作提供有益的借鉴。

二、案例描述某省教育厅在编制2019年度教育统计年报时,发现以下问题:1. 数据来源不统一。

部分县级教育部门在报送数据时,存在多个数据来源,导致数据之间存在矛盾。

2. 数据填报不规范。

部分学校在填报统计数据时,存在漏报、误报、虚报等现象。

3. 数据审核不严格。

部分县级教育部门在数据审核过程中,存在走过场现象,导致统计数据存在误差。

针对上述问题,教育部对该省教育厅进行了以下调查和处理:1. 组织数据核查。

对2019年度教育统计数据进行了全面核查,确保数据来源统一、准确。

2. 加强数据填报培训。

组织各级教育部门开展数据填报培训,提高数据填报质量。

3. 严格数据审核。

要求各级教育部门加强数据审核,确保统计数据真实、准确。

三、案例分析1. 数据来源不统一问题数据来源不统一是导致统计数据存在误差的重要原因之一。

在本次案例中,部分县级教育部门存在多个数据来源,如学校上报、上级部门下达等,导致数据之间存在矛盾。

针对这一问题,教育部采取以下措施:(1)规范数据报送流程。

要求各级教育部门按照统一的数据报送流程报送数据,确保数据来源的单一性。

(2)建立数据比对机制。

对各级教育部门报送的数据进行比对,发现数据矛盾时,及时沟通协调,确保数据的一致性。

2. 数据填报不规范问题数据填报不规范是影响统计数据质量的关键因素。

在本次案例中,部分学校在填报统计数据时,存在漏报、误报、虚报等现象。

针对这一问题,教育部采取以下措施:(1)加强数据填报培训。

组织各级教育部门开展数据填报培训,提高数据填报人员的业务素质。

(2)建立健全数据填报审核机制。

要求各级教育部门对上报的数据进行审核,确保数据的真实性和准确性。

统计分析大赛试题答案及解析

统计分析大赛试题答案及解析

统计分析大赛试题答案及解析试题一:描述性统计分析【题目】某高校对学生进行了一次数学成绩的调查,以下是随机抽取的100名学生的数学成绩(单位:分):(1)计算这组数据的平均数、中位数、众数。

(2)计算这组数据的方差和标准差。

(3)绘制这组数据的直方图和箱线图。

【答案及解析】(1)平均数、中位数、众数的计算:首先,将100个数据按照从小到大的顺序排列,计算平均数:平均数 = (所有数据之和) / 数据个数= (90+91+92+...+100) / 100= 95中位数是指将数据从小到大排序后,位于中间位置的数值。

由于共有100个数据,中位数是第50个和第51个数据的平均值:中位数 = (第50个数据 + 第51个数据) / 2= (95+96) / 2= 95.5众数是指一组数据中出现次数最多的数值。

观察数据发现,95分出现的次数最多,因此众数是95。

(2)方差和标准差的计算:方差是各个数据与平均数差值的平方的平均数,计算公式为:方差= (Σ(每个数据 - 平均数)²) / 数据个数= (Σ(90-95)² + Σ(91-95)² + ... + Σ(100-95)²) / 100= 25标准差是方差的平方根,计算公式为:标准差= √方差= √25= 5(3)直方图和箱线图的绘制:直方图是将数据分组,以组距为宽度,组中值为高度的长方形图形。

箱线图是展示数据分布的一种图形,包括最小值、第一四分位数、中位数、第三四分位数和最大值。

试题二:回归分析【题目】以下是某地区近10年的居民收入和消费支出数据(单位:亿元):年份居民收入消费支出1 100 802 120 903 130 1004 140 1105 150 1206 160 1307 170 1408 180 1509 190 16010 200 170(1)建立居民收入与消费支出的线性回归模型。

(2)计算模型的判定系数R²。

统计法律知识案例分析(3篇)

统计法律知识案例分析(3篇)

第1篇一、案件背景某市统计局在日常监督检查中发现,某市某房地产开发有限公司(以下简称“某公司”)在2020年度的统计报表中存在虚报、瞒报、伪造、篡改统计资料的行为。

经初步核实,某公司在房屋销售、投资收益等关键指标的统计中,存在明显虚报现象。

为维护国家统计数据的真实性、准确性,某市统计局对该案进行了立案调查。

二、案件调查某市统计局在案件调查过程中,采取了以下措施:1. 收集证据:调取了某公司2020年度的财务报表、销售合同、银行流水等资料,并委托专业机构对相关数据进行核实。

2. 询问相关人员:对某公司法定代表人、财务负责人、销售经理等相关人员进行询问,了解公司统计数据的真实情况。

3. 现场检查:对某公司办公场所进行现场检查,核实公司统计资料的保存情况。

经过调查,某公司确实存在虚报、瞒报、伪造、篡改统计资料的行为。

具体如下:1. 虚报房屋销售面积:某公司在销售合同中虚报了房屋销售面积,导致统计报表中的销售面积虚增。

2. 瞒报投资收益:某公司在投资收益方面存在瞒报行为,导致统计报表中的投资收益数据不准确。

3. 伪造统计资料:某公司伪造了部分统计报表,以掩盖其违法行为。

三、案件处理根据《中华人民共和国统计法》的相关规定,某市统计局对某公司作出了以下行政处罚:1. 警告:对某公司予以警告,以警示其遵守国家统计法律法规。

2. 罚款:根据《中华人民共和国统计法》的规定,对某公司虚报、瞒报、伪造、篡改统计资料的行为,处以罚款人民币XX万元。

3. 整改要求:要求某公司在规定时间内,对虚报、瞒报、伪造、篡改的统计资料进行整改,确保统计数据的真实、准确。

四、案例分析本案涉及的主要法律问题如下:1. 《中华人民共和国统计法》的适用:本案中,某公司违反了《中华人民共和国统计法》的相关规定,虚报、瞒报、伪造、篡改统计资料。

根据《中华人民共和国统计法》的规定,任何单位和个人不得虚报、瞒报、伪造、篡改统计资料。

2. 行政处罚的依据:某市统计局根据《中华人民共和国统计法》的规定,对某公司作出了警告和罚款的行政处罚。

统计学案例分析单选题100道及答案解析

统计学案例分析单选题100道及答案解析

统计学案例分析单选题100道及答案解析1. 为了了解某工厂生产的一批灯泡的使用寿命,从中抽取了100 只进行检测,在这个问题中,样本是()A. 工厂生产的一批灯泡B. 抽取的100 只灯泡C. 100D. 每只灯泡的使用寿命答案:B解析:样本是从总体中抽取的一部分个体,这里抽取的100 只灯泡就是样本。

2. 一组数据的最大值与最小值之差称为()A. 极差B. 方差C. 标准差D. 平均差答案:A解析:极差是一组数据中的最大值减去最小值。

3. 下列指标中,属于位置平均数的是()A. 算术平均数B. 调和平均数C. 几何平均数D. 中位数答案:D解析:中位数是将数据排序后,位于中间位置的数值,属于位置平均数。

4. 若一组数据的偏态系数为0,则该组数据的分布为()A. 对称分布B. 右偏分布C. 左偏分布D. 无法确定答案:A解析:偏态系数为0 时,数据分布为对称分布。

5. 抽样调查中,样本容量的确定取决于()A. 总体标准差B. 允许误差C. 抽样方法D. 以上都是答案:D解析:样本容量的确定需要考虑总体标准差、允许误差和抽样方法等因素。

6. 在假设检验中,原假设和备择假设()A. 只有一个成立B. 都有可能成立C. 都有可能不成立D. 原假设一定成立,备择假设不一定成立答案:A解析:原假设和备择假设相互对立,只有一个成立。

7. 对于两个变量之间的线性相关程度,常用()来衡量。

A. 相关系数B. 决定系数C. 回归系数D. 残差平方和答案:A解析:相关系数用于衡量两个变量之间的线性相关程度。

8. 下列哪种抽样方法不是概率抽样()A. 简单随机抽样B. 系统抽样C. 方便抽样D. 分层抽样答案:C解析:方便抽样是非概率抽样方法。

9. 一组数据的标准差越大,说明()A. 数据的离散程度越大B. 数据的离散程度越小C. 平均数越大D. 平均数越小答案:A解析:标准差越大,数据的离散程度越大。

10. 若一组数据服从正态分布,则其均值和中位数的关系是()A. 均值大于中位数B. 均值小于中位数C. 均值等于中位数D. 无法确定答案:C解析:正态分布的数据,均值等于中位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计案例分析及典型例题§11.1 抽样方法基础自测1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是.答案200个零件的长度2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的.答案①②③3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为.答案3,9,184.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= .答案80例1某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案.解 抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签; 第三步:将18个号签放入一个不透明的盒子里,充分搅匀; 第四步:从盒子中逐个抽取6个号签,并记录上面的编号; 第五步:所得号码对应的志愿者,就是志愿小组的成员. 随机数表法:第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读; 第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.第四步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k=100001=100将总体均分为10段,每段含100个工人.(5)从第一段即为0001号到0100号中随机抽取一个号l.(6)按编号将l ,100+l ,200+l,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.解 应采取分层抽样的方法.3分过程如下:(1)将3万人分为五层,其中一个乡镇为一层.5分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300×152=40(人); 300×155=100(人);300×152=40(人); 300×153=60(人),10分因此各乡镇抽取人数分别为60人,40人,100人,40人,60人.12分(3)将300人组到一起即得到一个样本.14分练习:一、填空题1.(安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为 . 答案 15,10,202.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为 . 答案 系统抽样,简单随机抽样3.下列抽样实验中,最适宜用系统抽样的是 (填序号).①某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样 ②某厂生产的2 000个电子元件中随机抽取5个入样 ③从某厂生产的2 000个电子元件中随机抽取200个入样 ④从某厂生产的20个电子元件中随机抽取5个入样答案③4.(2013·重庆文)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是.答案分层抽样法5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断不正确的是(填序号).①高一学生被抽到的概率最大②高三学生被抽到的概率最大③高三学生被抽到的概率最小④每名学生被抽到的概率相等答案①②③6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是.答案67.(天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为.答案07959.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取? 解 用分层抽样抽取. (1)∵20∶100=1∶5, ∴510=2,570=14,520=4∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数表法抽取14人.(3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.10.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n.解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为n36,分层抽样的比例是36n ,抽取工程师36n ×6=6n (人),抽取技术人员36n ×12=3n (人),抽取技工36n×18=2n (人).所以n 应是6的倍数,36的约数即n=6,12,18,36.当样本容量为(n+1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为135+n ,因为135+n 必须是整数,所以n 只能取6,即样本容量为6.总体分布的估计与总体特征数的估计基础自测1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 . 答案 52.(2008·山东理)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 . 答案 303.63.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m,该组在频率分布直方图的高为h ,则|a-b|= . 答案hm4.(2008·山东文,9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为 .分数 5 4 3 2 1 人数2010303010答案51025.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 . 答案 40典型例题:例1 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交 作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题: (1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高? 解 (1)第三组的频率为1464324+++++=51又因为第三组的频数为12,∴参评作品数为5112=60.(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×1464326+++++=18(件).(3)第四组的获奖率是1810=95,第六组上交的作品数量为60×1464321+++++=3(件),∴第六组的获奖率为32=96,显然第六组的获奖率高.例4(14分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98,99;乙:110,115, 90,85,75,115, 110.(1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解 (1)因为间隔时间相同,故是系统抽样. 2分(2)茎叶图如下:5分(3)甲车间: 平均值:1x =71(102+101+99+98+103+98+99)=100,7分 方差:s 12=71[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6.9分乙车间:平均值:2x =71(110+115+90+85+75+115+110)=100,11分 方差:s 22=71[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4.13分∵1x =2x ,s 12<s 22,∴甲车间产品稳定.14分练习:1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内?解(1)第四小组的频率=1-(0.1+0.3+0.4)=0.2.(2)设参加这次测试的学生人数是n,第一小组频数=5÷0.1=50(人).则有n=第一小组频率(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内.练习:一、填空题1.下列关于频率分布直方图的说法中不正确的是.①直方图的高表示取某数的频率②直方图的高表示该组上的个体在样本中出现的频率③直方图的高表示该组上的个体数与组距的比值④直方图的高表示该组上的个体在样本中出现的频率与组距的比值答案①②③2.甲、乙两名新兵在同样条件下进行射击练习,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9.则这两人的射击成绩比稳定.答案甲乙4.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果分成六组:右图是得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为.答案0.9, 356.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲、x乙,则x甲x乙,比稳定.答案<乙甲7.(上海,9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是.答案10.5、10.5二、解答题10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?(3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由.解(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:391517424+++++=0.08.又因为频率=样本容量第二小组频数, 所以样本容量=第二小组频率第二小组频数=08.012=150. (2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.线性回归方程1.下列关系中,是相关关系的为 (填序号). ①学生的学习态度与学习成绩之间的关系; ②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②2.为了考察两个变量x 、y 之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l 1和l 2.已知在两人的试验中发现变量x 的观测数据的平均值恰好相等,都为s,变量y 的观测数据的平均值也恰好相等,都为t,那么下列说法中正确的是 (填序号). ①直线l 1,l 2有交点(s,t)②直线l 1,l 2相交,但是交点未必是(s,t) ③直线l 1,l 2由于斜率相等,所以必定平行 ④直线l 1,l 2必定重合基础自测答案①3.下列有关线性回归的说法,正确的是(填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程答案①②③4.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=bˆx+aˆ及回归系数bˆ,可以估计和预测变量的取值和变化趋势.其中正确命题的序号是.答案①②③5.已知回归方程为yˆ=0.50x-0.81,则x=25时,yˆ的估计值为.答案11.69例1下面是水稻产量与施化肥量的一组观测数据:施化肥量 15 20 25 30 35 40 45水稻产量 320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?解(1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化肥施用量的增加而增长.例2(14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 1 2 3 4 5 6 7 8 9 10x(收入)i0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8千元(支出)yi0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5千元(1)判断家庭平均收入与月平均生活支出是否相关?(2)若二者线性相关,求回归直线方程.解(1)作出散点图:5分观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. 7分1(0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,(2)x=101(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,9分y=10bˆ=∑∑==-•-ni ini i i x n xyx n y x 1221≈0.813 6,aˆ=1.42-1.74×0.813 6≈0.004 3, 13分 ∴回归方程yˆ=0.813 6x+0.004 3.14分例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y (吨)标准煤的几组对照数据.x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx+a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y =45.4435.2+++=3.5∑=41i ii yx =3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144x x yx yx i i i ii -•-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7a ˆ =y -bˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为yˆ=0.7x+0.35. (3)现在生产100吨甲产品用煤 y=0.7×100+0.35=70.35, ∴降低90-70.35=19.65(吨)标准煤.1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.年平均气温 12.51 12.84 12.84 13.69 13.33 12.74 13.05 年降雨量748542507813574701432(1)试画出散点图;(2)判断两个变量是否具有相关关系. 解 (1)作出散点图如图所示,(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:温度(x )102050 70由资料看y 与x 呈线性相关,试求回归方程. 解 x =30,y =50.1283.1120.850.767.66++++=93.6.bˆ=25125155x xyx yx i ii ii -•-∑∑==≈0.880 9.aˆ=y -b ˆx =93.6-0.880 9×30=67.173. ∴回归方程为yˆ=0.880 9x+67.173.3.某企业上半年产品产量与单位成本资料如下:(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元? 解 (1)n=6,∑=61i i x =21,∑=61i i y =426,x =3.5,y =71,∑=612i i x =79,∑=61i i i y x =1 481,bˆ=26126166x xyx yx i ii ii -•-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y -b ˆx =71+1.82×3.5=77.37. 回归方程为yˆ=a ˆ+b ˆx=77.37-1.82x. (2)因为单位成本平均变动bˆ=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (3)当产量为6 000件时,即x=6,代入回归方程:yˆ=77.37-1.82×6=66.45(元) 当产量为6 000件时,单位成本为66.45元.一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 .答案 a,c,b2.回归方程yˆ=1.5x-15,则下列说法正确的有 个. ①y =1.5x -15 ②15是回归系数a ③1.5是回归系数a ④x=10时,y=0 答案 13.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y(cm)与年龄x(岁)的回归模型为y ˆ=8.25x+60.13,下列叙述正确的是 .①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm ③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 ②4.三点(3,10),(7,20),(11,24)的回归方程是 . 答案yˆ=1.75x+5.75 5.某人对一地区人均工资x(千元)与该地区人均消费y(千元)进行统计调查,y 与x 有相关关系,得到回归直线方程yˆ=0.66x+1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 . 答案 83%6.某化工厂为预测产品的回收率y,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑=81i i x =52,∑=81i iy=228,∑=812i i x =478,∑=81i ii yx =1 849,则其线性回归方程为 .答案 yˆ=11.47+2.62x 7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 . 答案 ①③④8.已知关于某设备的使用年限x 与所支出的维修费用y(万元),有如下统计资料:若y对x呈线性相关关系,则回归直线方程yˆ=bˆx+aˆ表示的直线一定过定点.答案(4,5)二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:学A B C D E生学科数学80 75 70 65 60物理70 66 68 64 62(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.解(1)数学成绩和物理成绩具有相关关系.(2)以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如下:由散点图可以看出,物理成绩和数学成绩对应的点不分散,大致分布在一条直线附近.10.以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x(m2) 115 110 80 135 105销售价格y(万24.8 21.6 18.4 29.2 22元)(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线.解(1)数据对应的散点图如图所示:(2)x =109,y =23.2,∑=512i i x =60 975,∑=51i iiy x=12 952,bˆ=25125155x xyx yx i ii ii -•-∑∑==≈0.196 2aˆ=y -b ˆx ≈1.814 2 ∴所求回归直线方程为yˆ=0.196 2x+1.814 2. 11.某公司利润y 与销售总额x(单位:千万元)之间有如下对应数据:x 10 15 17 20 25 28 32 y11.31.822.62.73.3(1)画出散点图; (2)求回归直线方程;(3)估计销售总额为24千万元时的利润. 解 (1)散点图如图所示:(2)x =71(10+15+17+20+25+28+32)=21,y =71(1+1.3+1.8+2+2.6+2.7+3.3)=2.1, ∑=712i ix=102+152+172+202+252+282+322=3 447,∑=71i iiy x=10×1+15×1.3+17×1.8+20×2+25×2.6+28×2.7+32×3.3=346.3,bˆ=27127177x x yx yx i i i ii -•-∑∑===221744731.22173.346⨯-⨯⨯-≈0.104, aˆ=y -b ˆx =2.1-0.104×21=-0.084, ∴yˆ=0.104x-0.084. (3)把x=24(千万元)代入方程得,yˆ=2.412(千万元). ∴估计销售总额为24千万元时,利润为2.412千万元.12.某种产品的广告费支出x 与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y3040605070(1)画出散点图; (2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 x i24568y i 30 40 60 50 70 x i y i60160300300560因此,x =525=5,y =5250 =50,∑=512i i x =145,∑=512i i y =13 500,∑=51i iiy x=1 380.于是可得:bˆ=25125155x xyx yx i ii ii -•-∑∑===55514550553801⨯⨯-⨯⨯-=6.5;aˆ=y -b ˆx =50-6.5×5=17.5. 因此,所求回归直线方程为:yˆ=6.5x+17.5. (3)根据上面求得的回归直线方程,当广告费支出为10百万元时,yˆ=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.§11.4 统计案例1.对有线性相关关系的两个变量建立的回归直线方程y ˆ=a ˆ+b ˆx 中,回归系数bˆ与0的大小关系为 .(填序号) ①大于或小于 ②大于 ③小于 ④不小于答案 ①2.如果有90%的把握说事件A 和B 有关系,那么具体计算出的数据χ2 2.706.(用“>”,“<”,“=”填空)基础自测答案 >3.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是 .①模型Ⅰ的相关系数r 为0.98 ②模型Ⅱ的相关系数r 为0.80 ③模型Ⅲ的相关系数r 为0.50 ④模型Ⅳ的相关系数r 为0.25 答案 ①4.下列说法中正确的有:①若r >0,则x 增大时,y 也相应增大;②若r <0,则x 增大时,y 也相应增大;③若r=1或r=-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个点均在一条直线上 . 答案 ①③例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:患慢性气管炎未患慢性气管炎 总计 吸烟 43 162 205 不吸烟 13 121 134 合计56283339试问:(1)吸烟习惯与患慢性气管炎是否有关? (2)用假设检验的思想给予证明. (1)解 根据列联表的数据,得到χ2=))()()(()(2c d b d c a b a bc ad n ++++- 2分=13428356205)1316212143(3392⨯⨯⨯⨯-⨯⨯=7.469>6.635 6分 所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A={χ2≥6.635}≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分例2 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有 缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?解 (1)x =12.5,y =8.25,∑=41i iiy x=438,4x y =412.5,∑=412i i x =660,∑=412i i y =291,所以r=)4)(4(42412241241y yx xyx yx i ii ii ii --•-∑∑∑====)25.272291()625660(5.412438-⨯--=25.6565.25≈62.2550.25≈0.995 4.因为r >r 0.05,所以y 与x 有很强的线性相关关系.(2)yˆ=0.728 6x-0.857 1.(3)要使yˆ≤10⇒0.728 6x-0.857 1≤10,所以x≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.例3下表是某年美国旧轿车价格的调查资料,今以x表示轿车的使用年数,y表示相应的年均价格,求y 关于x的回归方程.使用年数x1 2 3 4 5 6 7 8 9 10年均价格y(美元)2 651 1 943 1 494 1 087 765 538 484 290 226 204解作出散点图如图所示.可以发现,各点并不是基本处于一条直线附近,因此,y与x之间应是非线性相关关系.与已学函数图象比较,用yˆ=e a x bˆˆ+来刻画题中模型更为合理,令zˆ=ln yˆ,则zˆ=bˆx+aˆ,题中数据变成如下表所示:x 1 2 3 4 5 6 7 8 9 10z 7.8837.5727.3096.9916.646.2886.1825.675.4215.318相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合.由表中数据可得r ≈-0.996.|r|>r 0.05.认为x 与z 之间具有线性相关关系,由表中数据得b ˆ≈-0.298,a ˆ≈8.165,所以zˆ=-0.298x+8.165,最后回代z ˆ=ln y ˆ,即y ˆ=e -0.298x+8.165为所求.1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作 合计 学习积极性高 18 7 25 学习积极性一般6 19 25 合计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P 1=5024=2512,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=5019.(2)由2χ统计量的计算公式得2χ=25252624)761918(502⨯⨯⨯⨯-⨯⨯≈11.538,由于11.538>10.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间的一组数据如下:已知∑=712i i x =280,∑=712i i y =45 309,∑=71i ii yx =3 487,此时r 0.05=0.754.(1)求x ,y ;(2)判断一周内获纯利润y 与该周每天销售件数x 之间是否线性相关,如果线性相关,求出回归直线方程.解 (1)x =71(3+4+5+6+7+8+9)=6,y =71 (66+69+73+81+89+90+91)≈79.86.(2)根据已知∑=712i i x =280,∑=712i i y =45 309,∑=71i ii yx =3 487,得相关系数 r=)86.79730945)(67280(86.7967487322⨯-⨯-⨯⨯-≈0.973.由于0.973>0.754,所以纯利润y 与每天销售件数x 之间具有显著线性相关关系. 利用已知数据可求得回归直线方程为yˆ=4.746x+51.386. 3.某种书每册的成本费y (元)与印刷册数x (千册)有关,经统计得到数据如下:检验每册书的成本费y 与印刷册数的倒数x1之间是否具有线性相关关系,如有,求出y 对x 的回归方。

相关文档
最新文档