选修3-4 第2讲 简谐运动的公式描述

选修3-4 第2讲 简谐运动的公式描述
选修3-4 第2讲 简谐运动的公式描述

选修3-4 第2讲简谐运动的公式描述

1.以振幅值为半径做一个参考圆,一个小球在此参考圆上做匀速圆周运动,周期为12t0,把圆周分成12等分,测量圆周上每一个等分点在水平轴上的投影,描出过点t0、2 t0、3 t0、…12 t0的曲线。

2.匀速圆周运动在x轴上的投影和简谐运动图像一样,是余弦或正弦曲线。物体做匀速圆周运动,设半径为A,周期为T,质点从x1开始运动,则其在t时刻在x轴上的投影为。

式中w就是简谐运动所对应匀速圆周运动的角速度,在研究简谐运动时,称之为圆频率(或角频率)。

3.如果圆周运动的质点在t=0时刻从x7位置开始运动,则t时刻在x轴上的投影刚好与图1-3-2的曲线大小相等,方向相反,称之为反相,或者称这两种振动的相位差相反,也称相位差等于,数学公式为。

4.如果t=0时刻,质点的运动不是从x7开始,而是由任意一个角度开始,则应该写为:,叫做简谐运动在t时刻的相位,由于时间t

是变量,所以相位也在变化,是t=0时的相位叫做初相。相位每增加,振子完成一次全振动。相位从0变到,需要的时间。

5.对于频率、振幅相同,相位不同的振子,我们常通过相位差来比较它们,相位差用表示,有:。

当相位差为时,振动相差的时间为。

6.如图,一辆玩具电动车在一水平面上做匀速圆周运动,在同一水平面上放置一台幻灯机,灯光水平照射在这量小车上,小车运动时在墙壁的投影正好和弹簧振子做简谐运动的情景相似。

设小车沿半径为A的圆周做匀速圆周运动,其角速度为w,则

向心力F= 。

F在水平方向的投影Fx= 。式中负号表示Fx与坐标x轴的正方向相反。由几何关系知x= 。

于是有Fx= 。

由于m、w都有确定的值,mw2可以用一个常数k表示,k=mw2,

上式可写成:Fx= 。与弹簧振子做简谐运动的力相同。

由此可知,做匀速圆周运动的物体在直径方向的投影正好与弹簧振子做简谐运动的情景完全相同,并且w= 。

简谐运动的振动周期与物体做匀速圆周运动周期相等,所以T== 。

习题

1.两个简谐运动的表达式分别为xA=10sincm,xB=8sin(4πt+π)cm,下列说法正确的是 ( ).

A.振动A超前振动Bπ B.振动A滞后振动Bπ

C.振动A滞后振动Bπ D.两个振动没有位移相等的时刻

2.(双选)某质点做简谐运动,其位移随时间变化的关系式为x=Asin t,则质点( ).

A.第1 s末与第3 s末的位移相同 B.第1 s末与第3 s末的速度相同C.第3 s末与第5 s末的位移方向相同 D.第3 s末与第5 s末的速度方向相同

3.有一个弹簧振子,振幅为0.8 cm,周期为0.5 s,初始时具有负方向最

大加速度,则它的振动方程是 ( ).

A.x=8×10-3sinm B.x=8×10-3sinm

C.x=8×10-1sinm D.x=8×10-1sinm

4.一个小球和轻质弹簧组成的系统按x1=5sincm的规律振动.

(1)求该振动的周期、频率、振幅和初相.

(2)另一简谐运动的表达式为x2=5sincm,求它们的相位差.

5.如图是一弹簧振子,O为平衡位置,B、C为两个最大位置,取向右为正方向,现把小球向右移动5 cm到B点,放手后发现小球经过1 s第一次到达C点,如果从B点放手时开始计时,求:

(1)小球做简谐运动的振幅、周期各是多少?(2)写出小球运动的位移表达式.

(3)如果从小球经过平衡位置向左运动开始计时,则小球的位移表达式如何?

1.B 2.AD 3.A

4.解析 (1)已知ω=8π,由ω=得,T= s,

f==4 Hz.A=5 cm,φ1=.

(2)由Δφ=φ2-φ1得,Δφ=π-=π.

5.解析 (1)根据振幅的定义,可知振幅A=5 cm;根据周期的定义可

知,周期

T=2×1 s=2 s.

(2)因为ω=,所以ω=π.

又据题意知t=0时,x=5 cm.因为简谐运动的表达式是x=Asin (ωt+φ),把

上面已知数据代入得φ=,所以该振动的表达式x=5sincm.

(3)如果从小球经过平衡位置向左运动开始计时,则t=0时,x=0,此后位移

负值变大,所以小球的位移表达式x=-5sinπt cm.

高中物理-简谐运动的图像和公式教学设计

高中物理-简谐运动的图像和公式教学设计 教学目标 1.理解振动图象的物理意义。 2.通过利用图象得到的信息,例如判断物体的位移、速度、加速度等物理量的大小与方向的变化规律,培养学生的抽象思维能力。 3.理解简谐运动的表达式,进一步使学生掌握解决物理问题的两种方法:公式法和图象法。 4.通过实验法得到简谐运动的图象,培养学生认真、严谨、实事求是的科学态度。 重点难点 重点:简谐运动图象的物理意义和特点;运用简谐运动的图象解决有关位移、周期、频率、加速度、回复力等问题。 难点:用实验法描绘出简谐运动的图象;运用简谐运动的图象求解实际问题。 设计思想 在高考中对本节的考查重点在于由振动图像获得振动的信息,并能理解振动方程,学生学习过程中重点在于理解振动图像的物理意义,并能很好得寻找出图像中包含的信息。这些重点知识,重要方法的学习,本课采用了学习自主探究的方式,培养学生的观察习惯,提高学生处理图像的能力。 教学资源《简谐运动的图像和公式》多媒体课件、、 实验器材:沙漏,悬挂支架,可拖动的长板,单摆 教学设计 【课堂引入】 质点做直线运动时,x-t图象能形象地说明质点的位移随时间变化的规律。物体做简 谐运动时,它的位移随时间变化的规律又是什么样的呢? 问题1:思考能否也用x-t图象来形象的描述简谐运动,还是你有其他的想法,并说明如 何获得你想要的图像? (学生分析、讨论:可以仍然作x-t图像,但此处的x与以往的位移不同,是指相对于平衡位置的位移;可以用拍照的方式,记下很多时刻做简谐运动的物体的位置,再用测量、描点的方式得到图像。) 老师引导: 老师小结:这位同学提的方案非常好,我们就以他的想法来画简谐运动的x-t图像,不过课堂上实验条件有限,下面我们就用最简便的装置来描绘x-t图像。 实验仪器介绍、分析:如图所示,沙摆装置,漏斗相对于绳子的长度是比较小的,并且摆动时角度较小,所以它的摆动近似可以看成是简谐运动,当它摆动时在沙漏的下方有一块可以拖动的薄板,薄板匀速拖动时接收漏下的沙子,就可以在板上留下一张图。下面我们就进行实验。 【课堂学习】 学习活动一:探究描述简谐运动的图像 实验演示:让砂摆振动,同时沿着与振动垂直的方向匀速拉 动摆下的长木板(即平板匀速抽动,如图所示)。 实验现象:砂子在长木板上形成一条曲线。现以板拖动的 反方向为横轴,以垂直于拖动方向为纵轴,得到了如图所示的图 像。 问题1:如图这样建立了坐标那么图线的横、纵坐标分别表 示什么物理量? (学生答案:横坐标表示时间,纵坐标表示质点在不同时刻相对

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

高中物理第1章机械振动3简谐运动的图像和公式教师用书教科选修3-4

3.简谐运动的图像和公式 学习目标知识脉络 1.掌握简谐运动的位移——时间 图像.(重点、难点) 2.知道简谐运动的表达式、明确 各量表示的物理意义.(重点) 3.了解相位、初相和相位差的概 念. 4.能用公式描述简谐运动的特 征.(重点、难点) 简谐运动的图像 [先填空] 1.坐标系的建立 在简谐运动的图像中,以横轴表示质点振动的时间,以纵轴表示质点偏离平衡位置的位移. 2.物理意义 表示做简谐运动质点的位移随时间变化的规律. 3.图像的特点 是一条正弦(或余弦)曲线. 4.从图像中可以直接得到的信息 (1)任意时刻质点偏离平衡位置的位移; (2)振动的周期; (3)振动的振幅. [再判断] 1.简谐运动图像反映了物体在不同时刻相对平衡位置的位移.(√) 2.振动位移的方向总是背离平衡位置.(√) 3.振子的位移相同时,速度也相同.(×) 4.简谐运动的图像都是正弦或余弦曲线.(√) [后思考] 1.简谐运动的图像是否是振动物体的运动轨迹?

【提示】不是.简谐运动的图像是描述振动物体的位移随时间变化的规律,并不是物体的运动轨迹. 2.简谐运动中振动物体通过某一位置时,加速度和速度方向是否一致? 【提示】不一定.振动物体通过某一位置时,加速度方向始终指向平衡位置,但速度方向可能指向平衡位置,也可能背离平衡位置,故加速度和速度方向不一定一致. 1.图像含义 表示某一质点不同时刻的位移;简谐运动图像不是做简谐运动的物体的运动轨迹. 2.图像斜率 该时刻速度的大小和方向. 3.判断规律 (1)随时间的延长,首先得到质点相对平衡位置的位移情况. (2)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-1中a点,下一时刻离平衡位置更远,故a此刻向上振动. 图1-3-1 (3)任意时刻质点的速度、回复力、加速度的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,如图1-3-1中b点,从正位移向着平衡位置运动,则速度为负且增大.回复力方向与位移方向相反,总指向平衡位置,t轴上方曲线上各点回复力取负值.t轴下方曲线上各点回复力取正值,回复力大小和位移成正比,离平衡位置越远,回复力越大.加速度变化步调与回复力相同. 1.一质点做简谐运动,其位移x与时间t的关系曲线如图所示,由图1-3-2可知( ) 图1-3-2 A.质点振动频率是4 Hz B.t=2 s时,质点的加速度最大 C.质点的振幅为2 cm D.t=2 s时,质点的位移是2 cm E.从t=0开始经过3 s,质点通过的路程是6 cm

单摆作简谐运动的周期公式可以应用简谐运动周期公式推出

单摆作简谐运动的周期公式可以应用简谐运动周期公式 推出。 可以看出:单 摆的振动周期 跟摆长的平方 根成正比,跟 该处重力加速 度的平方根成 反比。 单摆的 这就是单摆的振动周期公式,是荷兰物理学家惠更斯最早确定的。这个公式只适用于单摆最大偏 角很小的情况。 当最大偏角增大时,振幅随之增大,单摆的周期也将增大。下表是单摆的偏角增大时实际周期与简谐振动周期的比值的变化情况。

显然,最大偏角越小, 应用公式计算的周期 值与实际周期越相 符。当最大偏角为5° 时,误差为万分之五, 10°时误差为万分 之十九,将近千分之 二,30°时误差就接 近百分之二了。 这说明单摆的摆角很 小时,它的实际周期 就近似等于简谐振动 周期 周期为2秒的单摆叫做秒摆。 由于重力加速度跟地球的纬度与距地心的高 度有关,所以世界各地秒摆都有些差异。 若重力加速度g取9.8m·s -2 则秒摆摆长为l=0.993m。 秒摆 重力加速度一、首先是与地球的因素有关,如: 1、物体处在地面的位置。 如,由于地球自转的原因,重力是地球对物体万有引力的一个分力,还有一个分力是供给物体绕地球自转所需要的向心力。 1)赤道处物体,随地球转动的线速度大,需要的向心力大,则分得的重力小,重力加速度就小。 2)向两极位置去时,物体的随地球转动的线速度变小,需要的向心力变小,则分得的重力重力变大,重力加速度就变大。 3)到极点时,物体的随地球转动的线速度最小,需要的向心力最小,则分得的重力最大,

重力加速度就最大。 2、物体离地面的高度,越高,重力加速度越小,因为重力是地球对物体万有引力的一个分力,而且这个万有引力的主要分量就是重力,万有引力的大小与距离的平方成反比,物体离地面越高,物体与地球中心的距离越大,万有引力越小,重力就越小,所以加速度越小; 3、如果是地面打的一个深洞,则越深,重力加速度越小,物体处于地球中心时,理论上说重力加速度是“0”这是根据理论力学的原理得到的。 二、与外来星体的吸引力有关,如太阳、月亮对地球的吸引,使得物体受的重力减小,使重力加速度变小。

高三物理简谐运动的公式描述.docx

简谐运动的公式描述教案 教学目标 1.知识与技能 (1)会用描点法画出简谐运动的运动图象. (2)知道振动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线. (3)了解替代法学习简谐运动的位移公式的意义. (4) 知道简谐运动的位移公式为x=A sin (ωt+),了解简谐运动位移公式中各量的物 理含义. (5) 了解位相、位相差的物理意义. (6) 能根据图象知道振动的振幅、周期和频率、位相. 2.过程与方法 (1) 通过“讨论与交流”匀速圆周运动在Ⅳ方向的投影与教材表1— 3— 1 中数据的 比较,并描出z— t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图象一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易 以及应用已学的知识解决问题. (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点. 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简, 科学地寻找解决问题的方法. (2)培养学生合作学习、探究自主学习的学习习惯. ●教学重点 ,难点 1.简谐运动位移公式x=Asin(ω t +)的推导 2.相位 , 相位差的物理意义 .. ●教学过程 教师讲授 简谐振动的旋转矢量法 。y 在平面上作一坐标轴 OX,由原点 O 作一长度等于振幅的矢量 A t=0 ,矢量与坐标轴的夹角等于初相 矢量 A 以角速度w 逆时针作匀速圆周运动, 研究端点M 在 x 轴上投影点的运动, 1.M 点在 x 轴上投影点的运动 x=Asin(ω t+)为简谐振动。 x 代表质点对于平衡位置的位移,t 代表时间,简谐运动的三角函数表示 回答下列问题 a:公式中的 A 代表什么 ? b:ω叫做什么 ?它和 f 之间有什么关系? c:公式中的相位用什么来表示? d:什么叫简谐振动的初相? M A t M 0 o x P x

简谐运动周期公式的推导

简谐运动周期公式的推导 【摘要】:本文通过简谐运动与圆周运动的联系,用圆周运动的周期公式推导出了简谐运动周期公式。 【关键辞】:简谐运动、周期、匀速圆周运动、周期公式 【正文】: 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标图2 图3 图4

系。 则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= 二零一一年三月九日 图5

高中物理 1.3简谐运动的图像和公式同步练习(含解析)新人教版选修3-4

第3节简谐运动的图像和公式 1.以横坐标表示________,纵坐标表示________________________________________,描绘出简谐运动的质点的________随________变化的图像,称为简谐运动的图像(或振动图像).简谐运动的图像是一条________(或________)曲线. 2.由简谐运动的图像,可以直接读出物体振动的________和________.用图像记录振动的方法在实际生活中有很多应用,如医院里的________________、监测地震的____________等. 3.简谐运动的表达式:x=________________或x=________________.其中A表示简谐运动的________,T和f分别表示简谐运动的周期和频率,________或________表示简谐运动的相位,Φ表示t=0时的相位,叫做初相位,简称初相.频率相同、初相不同的两个振动物体的相位差是________. 4.如图1所示是一做简谐运动的物体的振动图像,下列说法正确的是( ) 图1 A.振动周期是2×10-2 s B.第2个10-2 s内物体的位移是-10 cm C.物体的振动频率为25 Hz D.物体的振幅是10 cm

5.摆长为l 的单摆做简谐运动,若从某时刻开始计时(即取t =0),当振动至t =3π 2 l g 时,摆球恰具有负向最大速度,则单摆的振动图像是下图中的( ) B 做简谐运动的振动位

概念规律练 知识点一简谐运动的图像 1.如图2所示是表示一质点做简谐运动的图像,下列说法正确的是( ) 图2

简谐运动周期公式的推导

简谐运动周期公式的推导 考虑弹簧振子在平衡位置附近的简谐运动,如图2所示。它的运动及受力情况和图3所示的情况非常相似。在图3中,O 点是弹性绳(在这里我们设弹性绳的弹力是符合胡克定律的)的原长位置,此点正好位于光滑水平面上。把它在O 点的这一端系上一个小球,然后拉至A 位置由静止放手,小球就会在弹性绳的作用下在水平面上的A 、A ’间作简谐运动。如果我们不是由静止释放小球,而是给小球一个垂直于绳的恰当的初速度,使得小球恰好能在水平面内以O 点为圆心,以OA 长度为半径做匀速圆周运动。那么它在OA 方向的投影运动(即此方向的分运动)与图3中的简谐运动完全相同。证明如下: 首先,两个运动的初初速度均为零(图4中在OA 方向上的分速度为零)。 其次,在对应位置上的受力情况相同。 由上面的两个条件可知这两个运动是完全相同的。 在图4中小球绕O 点转一圈,对应的投影运动(简谐运动)恰好完成一个周期,这两个时间是相等的。因此我们可以通过求圆周运动周期的方法来求简谐运动的周期。 如图5作出图4的俯视图,并建以O 为坐标原点、OA 方向为x 轴正方向建直角坐标 系。 图2 图 3 图4

则由匀速圆周运动的周期公式可知: ωπ 2=T (1) 其中ω是匀速圆周运动的角速度。 小球圆周运动的向心力由弹性绳的弹力来提供,由牛顿第二定律可知: r m kr 2ω= (2) 式中的r 是小球圆周运动的半径,也是弹性绳的形变量;k 是弹性绳的劲度系数。 由(1)(2)式可得: k m T π 2= (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注) 图5

高中物理.《简谐运动的图像和公式》教案教科版选修解析

《简谐运动的图像》 一、教学三维目标 (一)知识与技能 1、知道振动图像的物理含义。 2、知道简谐运动的图像是一条正弦或余弦曲线。 3、能根据图象知道振动的振幅、周期和频率。 (二)过程与方法 1、学会用图象法、列表法表示简谐运动位移随时间变化规律,提高运用工具解决物理问题的能力。 2、分析简谐运动图像所表示的位移,速度、加速度和回复力等物理量大小及方向变化的规律,培养抽象思维能力。 (三)情感态度与价值观 1、描绘简谐运动的图像,培养学生认真、严谨、实事求是的科学态度。 2、从图像了解简谐运动的规律,培养学生分析问题的能力,以及审美能力(逐步认识客观存在着简洁美、对称美等)。 二、重点、难点、疑点及解决办法 1、重点 (1)简谐运动图像的物理意义。 (2)简谐运动图像的特点。 2、难点 (1)用描点法画出简谐运动的图像。 (2)振动图像和振动轨迹的区别。 (3)由简谐运动图像比较各时刻的位移、速度、加速度和回复力的大小及方向。 3、疑点 能用正弦(或余弦)图像判定一个物体的振动是否是简谐运动。 4、解决办法 (1)通过对颗闪照相的分析,利用表格,通过作图比较,认识简谐运动的特点。 (2)复习数学中的正弦(或余弦)图像知识;比较几种典型运动(匀速直线运动,匀加速、匀减速直线运动)的图像与简谐运动图像的区别。

三、课时安排 1课时 四、教具、学具准备 自制幻灯片、幻灯机(或多媒体课件)、音叉(带共鸣箱)(附小槌、灵敏话筒、示波器)。 五、学生活动设计 1、学生观看多媒体课件,观察振子的简谐运动情况及其频闪照片、位移一时间变化表格。 2、学生根据表格画出s-t图 3、学生分组讨论,确定振子在各时刻的位移、速度、回复力和加速度的方向。 六、教学步骤 [导入新课] 提问 1、在匀速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线?(是一条过原点的直线) 2、在匀变速直线运动中,设开始计时的那一时刻位移为零,则运动的位移图像是一条什么线? (根据s=at2,运动的位移图像是一条过原点的抛物线) 那么,简谐运动的位移图像是一条什么线? [新课教学] 多媒体课件(或幻灯)显示。观察气垫导轨上弹簧振子的振动情况,这是典型的简谐运动。 观察振子从离平衡位置最左侧20mm处向右运动的1/2周期内频闪照片,以及接下来1/2周期内的频门照片,已知频闪的频率为9.0Hz提问,相邻两次闪光的时间间隔t。是多少? 时间t0=s=0.11s 提问,频闪照片上记录下来什么? (照片上记录下来每隔t0振子所在的位置) 取平衡位置的右方为正方向。根据频门照片上的读数,列出位移。随时间;变

简谐振动、振幅

高中学生学科素质训练 高一物理测试题—简谐振动、振幅(9) 一、选择题(每题只少有一个正确答案,选对得5分,多选得0分,漏选得2分)10×5=50 分 1、关于简谐振动,下列说法正确的有() A.回复力越大,速度一定越大 B.回复力为正,速度一定为负 C.回复力为负,加速度一定为负 D.回复力可能是某些力的合力,也可以是某个的分力 2、弹簧振子沿直线作简谐振动,当振子连续两次经过相同位置时,() A.加速度相同动能相同 B.动能相同动量相同 C.回复力相同机械能和弹性势能相同 D.加速度和位移相同,速度相同 3、当弹簧振子从正向最大位移向负向最大位移运动时,经过与平衡位置对称的两个位置时 说法正确的是()A.加速度相同动能相同B.动能相同动量相同 C.回复力相同机械能相同D.加速度相同,速度相同 4、有关弹簧振子的正确说法是() A.周期与振幅无关 B.周期与振幅有关,振幅越小,周期越小 C.在平衡位置速度最大 D.在最大位移处,因为速度为零所以处于平衡位置 5、弹簧振子作简谐振动,先后以相同的动量依次通过A、B两点,历时1秒,质点通过B 点后再经过1秒又第二次通过B点,在这2秒内质点通过的总路程为12cm,则质点的振动周期和振幅分别为()A.3s 12cm B.4s 6cm C.4s 9cm D.2s 8cm 6、右图为质点的振动图象,则()

A.再经1秒,该质点达到位移最大处 B.再经3秒该质点也到达位移最大处 C.再经1秒该质点达到正向最大加速度 D.再经1秒该质点达到速度最大 7、一质点沿x轴做简谐运动,其振动图象如图所示,在1.5s~2s的 时间内,其速度v、加速度a的大小的变化情况是: A、v变大,a变大 B、v变小,a变小 C、v变大,a变小 D、v变小,a变大 8、弹簧振子的质量为M,弹簧劲度系数为k,在振子上面放一质量为 m的木块,使振子和木块一起在光滑水平面上做简谐振动。如图所示,木块的回复力F 是振子对木块的静摩擦力提供的,若F=—k`x的关系,x是弹簧的伸长(或压缩)量,那么k`/k应是: A、m/M B、m/(M+m) C、(M+m)/M D、M/m 9、一弹簧振子做简谐振动,周期为T,下列叙述正确的是: A、若t时刻和(t+△t)时刻的位移大小相等,方向相同,则△t一定等于T的整数倍 B、若t时刻和(t+△t)时刻的动能相等,则△t一定等于T/2的整数倍 C、若△t=T ,则t时刻和(t+△t)时刻的动能一定相等 D、若△t=T/2 ,则t时刻和(t+△t)时刻弹簧长度一定相等 10、甲、乙两弹簧振子,振动图象如图所示,则可知: A、两弹簧振子完全相同 B、两弹簧振子所受的回复力最大值之比为F甲:F乙=2:1 C、振子甲速度为零时,振子乙速度最大 D、振子的振动频率之比为f甲:f乙=1:2 二、填空题(每题4分,4×5=20) 11、一个作简谐振动的质点,它的振幅是4cm,频率为2.5HZ,则质点从平衡位置开始经过 2.5S时位移的大小和经过的路程分别为, 。 12、从右图可知, ⑴周期T= 频率f= 。振幅 A= 。 ⑵A、B、C、三时刻振动质点的速度方向 为,加速度方向。 ⑶t= .质点位移最大,t= 速度最大。

第一章第三节 简谐运动的公式描述

1-3简谐运动的公式描述(选修3-4) 教材分析:这节课的内容标准主要是用公式和图像描述简谐运动,与前两节一起完成《课程标准》中对简谐运动的要求,即“通过观察与分析,理解简谐运动的特征”。本节的内容比较抽象,过去的教学安排是从简谐运动的回复力出发,直接给出简谐运动的运动图像,现在不仅增加了简谐运动的运动公式,并且增加了运用参考圆得出简谐运动的位移公式以及各个量的物理意义的过程,并讨论公式的x-t 图像中表示,难度是比较大的。教学中应注意将教学难点分散,逐层进行教学,多采取学生动手练习、讨论和启发式讲述的方法,同时设计配套课件,节约一定时间,提高直观性。 教学目标: 1.知识与技能 (1)会用描点法画出简谐运动的运动图像。 (2)知道振动图象的物理含义,知道简谐运动的图像是一条正弦或余弦曲线。 (3)了解替代法学习简谐运动的位移公式的意义。 (4)知道简谐运动的位移公式为)(?ω+=t A x cos ,了解简谐运动位移公式中各 量的物理含义。 (5)了解位相、位相差的物理意义。 (6)能根据图像知道振动的振幅、周期和频率、位相。 2.过程与方法 (1)通过“讨论与交流”匀速圆周运动在“方向的投影与教材中给出的数据比较,描出x-t 函数曲线,判断其结果,使学生获知匀速圆周运动在x 方向的投影和简谐运动的图像一样,是一条正弦或余弦曲线. (2)通过用参考圆替代法学习简谐运动的位移公式和位相,使学生懂得化难为易以及应用已学的知识解决问题。 (3)通过课堂讲解习题,可以巩固教学的知识点与清晰理解重点与难点。 3.情感、态度与价值观 (1)通过本节的学习,培养学生学会用已学的知识使难题化难为易、化繁为简,科学地寻找解决问题的方法。 (2)培养学生合作学习、探究自主学习的学习习惯。 重难点分析: 1、得出简谐运动的位移公式、x-t 图象是重点。 2、运用参考圆来分析和理解简谐运动及图象,对各量的理解是难点。 教学过程: 1、复习回顾:简谐运动最基本的特征?(周期性) 2、提出问题:简谐运动的位移是如何随时间的变化做周期性变化的? 3、引导学生分析讨论得到简谐运动的运动公式。 (1)给出用频闪照相的方法得到的一组简谐运动的位移x 随时间t 变化的数据,引导学生找出大致规律。 (2)讲述分析参考圆的方法。

简谐振动练习题(含详解)

简谐运动练习题 一、基础题 1.如图所示,是一列简谐横波在某时刻的波形图.若此时质元P正处于加速运动过程中,则此时( ) A.质元Q和质元N均处于加速运动过程中 B.质元Q和质元N均处于减速运动过程中 C.质元Q处于加速运动过程中,质元N处于减速运动过程中 D.质元Q处于减速运动过程中,质元N处于加速运动过程中 2.一质点做简谐运动,先后以相同的速度依次通过A、B两点,历时1s,质点通过B 点后再经过1s又第2次通过B点,在这两秒钟内,质点通过的总路程为12cm,则质点的振动周期和振幅分别为() A.3s,6cm B.4s,6cm C.4s,9cm D.2s,8cm 3.一物体置于一平台上,随平台一起在竖直方向上做简谐运动,则 A.当平台振动到最高点时,物体对平台的正压力最大 B.当平台振动到最低点时,物体对平台的正压力最大 C.当平台振动经过平衡位置时,物体对平台的正压力为零 D.物体在上下振动的过程中,物体的机械能保持守恒 4.一列平面简谐波,波速为20 m/s,沿x轴正方向传播,在某一时刻这列波的图象,由图可知( ) A.这列波的周期是0.2 s B.质点P、Q此时刻的运动方向都沿y轴正方向 C.质点P、R在任意时刻的位移都相同 D.质点P、S在任意时刻的速度都相同 5.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中()A.振子所受回复力逐渐减小 B.振子位移逐渐减小 C.振子速度逐渐减小 D.振子加速度逐渐减小 6.某物体在O点附近做往复运动,其回复力随偏离平衡位置的位移变化规律如图所示,物体做简谐运动的是 F F F F

使A 和B 一起在光滑水平面上做简谐运动,如图所示。振动过程中,A 与B 之间无相对运动,当它们离开平衡位置的位移为x 时,A 与B 间的摩擦力大小为( ) A C D .././().kx B mkx M mkx m M 0 8.如图,一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电荷量为+q 的小球相连,静止在光滑绝缘水平面上的A 点.当施加水平向右的匀强电场E 后,小球从静止开始在A 、B 之间做简谐运动,在弹性限度内下列关于小球运动情况说法中正确的是( ) A .小球在A 、 B 的速度为零而加速度相同 B .小球简谐振动的振幅为k qE 2 C .从A 到B 的过程中,小球和弹簧系统的机械能不断增大 D .将小球由A 的左侧一点由静止释放,小球简谐振动的周期增大 9.劲度系数为20N/cm 的弹簧振子,它的振动图象如图所示,在图中A 点对应的时刻 A .振子所受的弹力大小为5N ,方向指向x 轴的正方向 B .振子的速度方向指向x 轴的正方向 C .在0~4s 内振子作了1.75次全振动 D .在0~4s 内振子通过的路程为0.35cm ,位移为0 二、提高题(14、15、19题提高题) 10.如图甲所示,弹簧振子以O 点为平衡位置,在A 、B 两点之间做简谐运动。O 点为原点,取向左为正,振子的位移x 随时间t 的变化如图乙所示,则由图可知( ) A. t =0.2s 时,振子在O 点右侧6cm 处 B. t =1.4s 时,振子的速度方向向右 C. t =0.4s 和t =1.2s 时,振子的加速度相同 D. t =0.4s 到t =0.8s 的时间内,振子的速度逐渐增大 11.一根用绝缘材料制成的轻弹簧,劲度系数为k ,一端固定,另一端与质量为m 、带电量为+q 的小球相连,静止在光滑绝缘的水平面上,当施加一水平向右的匀强电场E 后(如图所示),小球开始作简谐运动,关于小球运动有如下说法中正确的是

简谐运动的六种图象

简谐运动的六种图象 北京顺义区杨镇第一中学范福瑛 简谐运动在时间和空间上具有运动的周期性,本文以水平方向弹簧振子的简谐运动为情境,用图象法描述其位移、速度、加速度及能量随时间和空间变化的规律,从不同角度认识简谐运动的特征. 运动情境:如图1,弹簧振子在光滑的水平面B、C之间做简谐运动,振动周期为T,振幅为A,弹簧的劲度系数为K。 以振子经过平衡位置O向右运动的时刻为计时起点和初始位置,取向右为正方向。分析弹簧振子运动的位移、速度、加速度、动能、弹性势能随时间或位置变化的关系图象。 1.位移-时间关系式,图象是正弦曲线,如图2 2.速度-时间关系式,图象是余弦曲线,如图3

3.加速度-时间关系式,图象是正弦曲线,如图4 4.加速度-位移关系式,图象是直线,如图5 5.速度-位移关系式,图象是椭圆,如图6

, 整理化简得 6.能量-位移关系 弹簧和振子组成的系统能量(机械能)守恒, 总能量不随位移变化,如图7直线c 弹性势能,图象是抛物线的一部分,如图7曲线b

振子动能,图象是开口向下的抛物线的一部分,如图7曲线a 图象是数形结合的产物,以上根据简谐运动的位移、速度、加速度、动能、弹性势能与时间或位移之间的关系式,得到对应的图象,从不同角度直观、全面显示了简谐运动的规律,同时体现了数与形的和谐完美统一。 2011-12-20 人教网 【基础知识精讲】 1.振动图像 简谐运动的位移——时间图像叫做振动图像,也叫振动曲线. (1)物理意义:简谐运动的图像表示运动物体的位移随时间变化的规律,而不是运动质点的运动轨迹. (2)特点:只有简谐运动的图像才是正弦(或余弦)曲线. 2.振动图像的作图方法 用横轴表示时间,纵轴表示位移,根据实际数据定出坐标的单位及单位长度,根据振动质点各个时刻的位移大小和方向指出一系列的点,再用平滑的曲线连接这些点,就可得到周期性变化的正弦(或余弦)曲线. 3.振动图像的运用 (1)可直观地读出振幅A、周期T以及各时刻的位移x. (2)判断任一时刻振动物体的速度方向和加速度方向 (3)判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况. 【重点难点解析】 本节重点是理解振动图像的物理意义,难点是根据图像分析物体的运动情况. 一切复杂的振动都不是简谐运动.但它们都可以看做是若干个振幅和频率不同的简谐运动的合运动. 所有简谐运动图像都是正弦或余弦曲线,余弦曲线是计时起点从最大位移开始,正弦曲 线是计时起点从平衡位置开始,即二者计时起点相差.我们要通过振动图像熟知质点做简谐运动的全过程中,各物理量大小、方向变化规律. 例1一质点作简谐运动,其位移x与时间t的关系曲线如下图所示,由图可知,在t=4S时,质点的( )

物理竞赛中简谐运动周期的四种求法

物理竞赛中简谐运动周期的四种求法 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

物理竞赛中简谐运动周期的四种求法 物理竞赛中在解决简谐运动问题时,经常会涉及周期的求解。本文通过具体实例,介绍物理竞赛中简谐运动周期的四种求法。 一、周期公式法 由简谐运动的周期公式可知,运用周期公式求周期的关键是求出回复力系数 k。通常情况下,可以通过两种途径求出回复力系数。一是通过对简谐运动物体进行受力分析求出回复力,然后根据物体简谐运动时回复力大小的特征F=kx,找到回复力F与位移x的关系求出回复力系数k;二是通过求简谐运动物体在位移为x时的势能,然后根据物体做简谐运动时势能的关系求出回复力数k。 例1如图1所示,摆球质量为m,凹形滑块质量为M,摆长为L,m与M、M与水平面之间光滑,求摆线偏转很小角度,从静止释放后,系统振动的周期。 图1分析与解由于摆球m周期与整个系统运动周期相等,因此系统振动的周期可以通过求摆球m周期来求出。 凹形滑块M受到水平地面的支持力、重力 G=Mg及m对M的水平作用的作用(图2),由于 M只能在水平面上滑动,因此M沿水平面做往复运动时受到的回复力可表示为:(1) 对摆球m进行受力分析(图3),可得到下列关系式: (2)

例2如图4所示,横截面积为S,粗细均匀的U形管中灌有密度为ρ,质量为m 的水银,现在将B管管口用塞子密封后加热,由于封在B管中空气的膨胀,使水银面在A管内上升,若此时将B管口的塞子拔去,那么水银做简谐运动的周期是多少? 图4 分析与解设A、B两管液面相平时为水银柱的零势能位置,则当B管中水银面距两管液面相平时的液面高度为x时,整个水银柱具有的势能为 。 二、刚体角加速度法 绕定轴转动的刚体的角加速度和外力的关系应遵循刚体定轴转动定律:即刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩

选修3-4 第2讲 简谐运动的公式描述

选修3-4 第2讲简谐运动的公式描述 1.以振幅值为半径做一个参考圆,一个小球在此参考圆上做匀速圆周运动,周期为12t0,把圆周分成12等分,测量圆周上每一个等分点在水平轴上的投影,描出过点t0、2 t0、3 t0、…12 t0的曲线。 2.匀速圆周运动在x轴上的投影和简谐运动图像一样,是余弦或正弦曲线。物体做匀速圆周运动,设半径为A,周期为T,质点从x1开始运动,则其在t时刻在x轴上的投影为。 式中w就是简谐运动所对应匀速圆周运动的角速度,在研究简谐运动时,称之为圆频率(或角频率)。 3.如果圆周运动的质点在t=0时刻从x7位置开始运动,则t时刻在x轴上的投影刚好与图1-3-2的曲线大小相等,方向相反,称之为反相,或者称这两种振动的相位差相反,也称相位差等于,数学公式为。 4.如果t=0时刻,质点的运动不是从x7开始,而是由任意一个角度开始,则应该写为:,叫做简谐运动在t时刻的相位,由于时间t

是变量,所以相位也在变化,是t=0时的相位叫做初相。相位每增加,振子完成一次全振动。相位从0变到,需要的时间。 5.对于频率、振幅相同,相位不同的振子,我们常通过相位差来比较它们,相位差用表示,有:。 当相位差为时,振动相差的时间为。 6.如图,一辆玩具电动车在一水平面上做匀速圆周运动,在同一水平面上放置一台幻灯机,灯光水平照射在这量小车上,小车运动时在墙壁的投影正好和弹簧振子做简谐运动的情景相似。 设小车沿半径为A的圆周做匀速圆周运动,其角速度为w,则 向心力F= 。 F在水平方向的投影Fx= 。式中负号表示Fx与坐标x轴的正方向相反。由几何关系知x= 。 于是有Fx= 。 由于m、w都有确定的值,mw2可以用一个常数k表示,k=mw2, 上式可写成:Fx= 。与弹簧振子做简谐运动的力相同。 由此可知,做匀速圆周运动的物体在直径方向的投影正好与弹簧振子做简谐运动的情景完全相同,并且w= 。 简谐运动的振动周期与物体做匀速圆周运动周期相等,所以T== 。

《简谐运动的振幅、周期、频率》进阶练习 (二)-1-2

《简谐运动的振幅、周期、频率》进阶练习 一、单选题 1.一质点做简谐运动的图象如图所示,下列说法正确的是( ) A.质点振动频率是4 Hz B.在10 s内质点经过的路程是20 cm C.第4 s末质点的速度是零 D.在t=1 s和t=3 s两时刻,质点位移大小相等、方向相同 2.简谐运动中反映物体振动强弱的物理量是() A.周期 B.频率 C.振幅 D.位移 3.弹簧振子做简谐运动,若某一过程中振子的速率在减小,则此时振子的运动() A.速度与位移方向一定相反 B.加速度与速度方向可能相同 C.回复力一定在增大 D.位移可能在减小 二、填空题 4.如图甲所示为一弹簧振子的振动图象,规定向右的方向为正方向,试根据图象分析以 下问题: (1)如图乙所示的振子振动的起始位置是 ______ ,从初始位置开始,振子向 ______ (填“右”或“左”)运动. (2)在乙图中,找出图象中的O、A、B、C、D各对应振动过程中的位置,即O对应 ______ ,A对应 ______ ,B对应 ______ ,C对应 ______ ,D对应 ______ . (3)在t=2s时,振子的速度的方向与t=0时速度的方向 ______ . (4)质点在前4s内的位移等于 ______ .

5.一位学生研究弹簧振子的运动,当振子经过平衡位置时开始记时,并从零开始记数,以后振子每经过平衡位置他就记一次数,在4s内正好数到10,则这个弹簧振子的频率是 ______ ,周期是 ______ .

参考答案 【答案】 1.B 2.C 3.C 4.E;右;E;G;E;F;E;相反;0 5.1.2Hz;0.8s 【解析】 1. 【分析】 由简谐运动的图象直接读出周期,求出频率,根据时间与周期的关系求出在10s内质点经过的路程.根据质点的位置分析其速度,根据对称性分析t=1s和t=35s两时刻质点的位移关系。 由振动图象能直接质点的振幅、周期,还可读出质点的速度、加速度方向等等,求质点的路程,往往根据时间与周期的关系求解,知道质点在一个周期内通过的距离是4A, 半个周期内路程是2A,但不能依此类推,周期内路程不一定是A。 【解答】 A.由图读出质点振动的周期T=4s,则频率,故A错误; B.质点做简谐运动,在一个周期内通过的路程是4A,t=10s=2.5T,所以在10s内质点经过的路程是 S=2.5×4A=10×2cm=20cm,故B正确; C.在第4s末,质点的位移为0,经过平衡位置,速度最大,故C错误; D.由图知在t=1s和t=3s两时刻,质点位移大小相等、方向相反,故D错误; 故选B。 2. 解:A、B频率和周期表示振动的快慢.故AB错误. C、振幅是振动物体离开平衡位置的最大距离,表示振动的强弱,故C正确. D、位移大小是振动物体离开平衡位置的距离,不表示振动的强弱,故D错误. 故选:C 能够反映物体做机械振动强弱的物理量是振幅,不是频率,回复力和周期 振幅是振动物体离开平衡位置的最大距离,表示振动的强弱;频率和周期表示振动的时间上的快慢,注意理解 3. 【分析】 首先知道判断速度增减的方法:当速度与加速度方向相同时,速度增大;当速度与加速

物理竞赛中简谐运动周期的四种求法

物理竞赛中简谐运动周期的四种求法 物理竞赛中在解决简谐运动问题时,经常会涉及周期的求解。本文通过具体实例,介绍物理竞赛中简谐运动周期的四种求法。 一、周期公式法 由简谐运动的周期公式可知,运用周期公式求周期的关键是求出回复力系数 k。通常情况下,可以通过两种途径求出回复力系数。一是通过对简谐运动物体进行受力分析求出回复力,然后根据物体简谐运动时回复力大小的特征F=kx,找到回复力F与位移x的关系求出回复力系数k;二是通过求简谐运动物体在位移为x时的势能,然后根据物体做简谐运动时势能的关系求出回复力数k。 例1 如图1所示,摆球质量为m,凹形滑块质量为M,摆长为L,m与M、M 与水平面之间光滑,求摆线偏转很小角度,从静止释放后,系统振动的周期。 图1分析与解由于摆球m周期与整个系统运动周期相等,因此系统振动的周期可以通过求摆球m周期来求出。 凹形滑块M受到水平地面的支持力、重力 G=Mg及m对M的水平作用的作用(图2),由于 M只能在水平面上滑动,因此M沿水平面做往复运动时受到的回复力 (1) 对摆球m进行受力分析(图3),可得到下列关系式:

(2) 例2 如图4所示,横截面积为S,粗细均匀的U形管中灌有密度为ρ,质量为m 的水银,现在将B管管口用塞子密封后加热,由于封在B管中空气的膨胀,使水银面在A管内上升,若此时将B管口的塞子拔去,那么水银做简谐运动的周期是多少? 图4 分析与解设A、B两管液面相平时为水银柱的零势能位置,则当B管中水银面距两管液面相平时的液面高度为x时,整个水银柱具有的势能为 。 二、刚体角加速度法

绕定轴转动的刚体的角加速度和外力的关系应遵循刚体定轴转动定律:即刚体所受的对于某一固定转轴的合外力矩等于刚体对此转轴的转动惯量与刚体在此合外力矩 作用下所获得的角加速度的乘积。采用这种方法时,往往通过刚体定轴转动定律求出刚体转动的角加速度,然后根据加速度与角加速度的关系求出刚体转动的角速度,从而求出刚体做简谐运动的周期。 例3 如图5所示,质量为m的小球用轻杆悬挂,两侧用劲度系数为k的弹簧连接。杆自由下垂时,弹簧无形变,图中a、b已知,求摆杆做简谐运动的周期T。 图5 分析与解设轻杆向右偏很小的角度θ时,小球向右偏离平衡位置距离x=bsinθ≈bθ,此时右侧弹簧压缩了aθ,左侧弹簧伸长了aθ。根据刚体定轴转动定律可得: 三、解方程组法

简谐运动、简谐波

简谐运动、简谐波 一、基本概念原理 1、振幅:物体离开平衡位置的最大距离,叫做振动的振幅。用字母A 表示。振幅是标量。 振幅是表示振动强弱的物理量。 2、周期:做简谐运动的物体完成一次全振动所需要的时间,叫做振动的周期。用字母T 表示。 频率:单位时间内完成全振动的次数,叫做振动的频率,用字母f 表示。 周期和频率都是表示振动快慢的物理量,周期越短,频率越大,表示振动越快。 周期与频率的关系:T f 1 ,频率的单位是赫兹,符号是Hz 。 3、简谐运动的对称性 在图中,O 点为振动的平衡位置,M 、N 点为最大位移处,OA=OB , 即A 与B 关于O 点对称。讨论得出以下结论: (1)物体通过A 、B 点时的速率相等。 在A 、B 点弹簧的形变量相等,弹簧的弹性势能相等,则振子的动能相等。 (2)振子运动过程中,A →O 、O →B 、B →O 、O →A 时间相等;M →A 、B →N 、N →B 、A →M 时间相等。因此,A →O →B →N →B 的运动时间等于半个周期。 (3)在一个周期内,振子通过的路程等于4A ,振子的位移为0。 在半个周期内,振子通过的路程等于2A ,振子的位移大小在0~2A 间。 在1/4周期内,振子通过的路程可能大于A ,也可能小于A 。 讨论:如图,D 为ON 的中点,由于在OD 段的速度大于在DN 段的速度,因此,t OD > t DN ,即t OD T/8。D →N →D 的时间 大于T/4,路程等于A ,D →O →C 的时间小于T/4,路程等于A 。这就说明,在1/4周期内,振子通过的路程可能大于A ,也可能小于A 。 4、运动过程分析 确定图中小球在各个位置所受的合外力和位移(已知:OB=BC=5cm ;OA=OD=10cm ,小球与一弹簧连在一起,k=100N /m , O 点为弹簧原长) 位移和力的关系分析: 小结:简谐运动的受力特点:回复力的大小与位移成正比,回复力的方向指向平衡位置。 简谐运动的运动特点分析: M A O B N M C O D N

高中物理第一章机械振动第3节简谐运动的图像和公式教学案教科版选修

第3节简谐运动的图像和公式 对应学生用书P7 简谐运动的图像 [自读教材·抓基础] 1.建立坐标系 以横轴表示做简谐运动的物体的时间t,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x。 2.图像的特点 一条正弦(或余弦)曲线,如图1-3-1所示。 图1-3-1 3.图像意义 表示物体做简谐运动时位移随时间的变化规律。 4.应用 1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点 做简谐运动时位移x随时间t的变化规律,并不是质点运动 的轨迹。 2.由简谐运动图像可以直接得出物体振动的振幅、周 期、某时刻的位移及振动方向。 3.简谐运动的表达式为x=A sin( 2π T t+φ)或x=A sin(2πft +φ),其中A为质点振幅、( 2π T t+φ)为相位,φ为初相位。

由简谐运动的图像可找出物体振动的周期和振幅。 [跟随名师·解疑难] 1.图像的含义 表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。 2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。 (2)任意时刻质点的位移的大小和方向。如图1-3-2所示,质点在t1、t2时刻的位移分别为x1和-x2。 图1-3-2 (3)任意时刻质点的振动方向:看下一时刻质点的位置,如图1-3-3中a点,下一时刻离平衡位置更远,故a此刻向上振动。 图1-3-3 (4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。如图中b点,从正位移向着平衡位置运动,则速度为负且增大,位移、加速度正在减小;c点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手) 一质点做简谐运动,其位移x与时间t关系曲线如图1-3-4所示,由图可知( ) 图1-3-4 A.质点振动的频率是4 Hz

相关文档
最新文档