简谐运动的图象和公式

合集下载

1-3----简谐运动的图像

1-3----简谐运动的图像
2.某简谐运动的位移与时间关系为:x=0.1sin (100πt+π )cm, 由此可知该振动的振幅是
__0_.1___cm,频率是 50 Hz,零时刻振动物体 的速度与规定正方向__相_反__(填“相同”或“相 反”).
例2 (2012·上海虹口高二检测)如图是一做 简谐运动的物体的振动图像,下列说法正 确的是( )
1、质点离开平衡位置的最大位移? 2、1s末、4s末、10s末质点位置在哪里?
3、1s末、6s末质点朝 x/m 哪个方向运动?
3Leabharlann 4、质点在6s末、14s末的位移是多少? O
8
5、质点在4s、16s内
通过的路程分别是多 -3
少?
16
t/s
课堂训练
1、某一弹簧振子的振动图象如图所示,则由 图象判断下列说法正确的是( A B)
一、弹簧振子的位移——时间图象
1、频闪照片法
第一个1/2周期:
时间
t(s) 0
t0
2t0
3t0 4t0
5t0
6t0
位移 x(m)
-20.0
-17.8
-10.1
0.1
10.3
17.7
20.0
第二个1/2周期:
时间
t(s) 6t0
7t0
8t0
9t0 10t0 11t0 12t0
位移 x(m)
20.0
-20
二、简谐运动的表达式
以x代表质点对于平衡位置的位移, t代表时间,则
x Asint
1、公式中的A 代表什么? 2、ω叫做什么?它和T、f之间有什么关系? 3、公式中的相位用什么来表示? 4、什么叫简谐振动的初相?
2 2f
T

高中物理:简谐运动

高中物理:简谐运动

高中物理:简谐运动【知识点的认识】简谐运动1.定义:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图象是一条正弦曲线,这样的振动叫简谐运动。

2.简谐运动的描述(1)描述简谐运动的物理量①位移x:由平衡位置指向质点所在位置的有向线段,是矢量。

②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。

③周期T和频率f:物体完成一次全振动所需的时间叫周期,而频率则等于单位时间内完成全振动的次数,它们是表示振动快慢的物理量。

二者互为倒数关系。

(2)简谐运动的表达式x=Asin(ωt+φ)。

(3)简谐运动的图象①物理意义:表示振子的位移随时间变化的规律,为正弦(或余弦)曲线。

②从平衡位置开始计时,函数表达式为x=Asinωt,图象如图1所示。

从最大位移处开始计时,函数表达式为x=Acosωt,图象如图2所示。

3.简谐运动的回复力(1)定义:使物体返回到平衡位置的力。

(2)方向特点:回复力的大小跟偏离平衡位置的位移大小成正比,回复力的方向总指向平衡位置,即F=﹣kx。

4.简谐运动的能量简谐运动过程中动能和势能相互转化,机械能守恒,振动能量与振幅有关,振幅越大,能量越大。

5.简谐运动的两种基本模型弹簧振子(水平)单摆模型示意图条件忽略弹簧质量、无摩擦等阻力细线不可伸长、质量忽略、无空气等阻力、摆角很小平衡位置弹簧处于原长处最低点回复力弹簧的弹力提供摆球重力沿与摆线垂直(即切向)方向的分力周期公式T =2π(不作要求)T =2π能量转化弹性势能与动能的相互转化,机械能守恒重力势能与动能的相互转化,机械能守恒【命题方向】常考题型是考查简谐运动的概念:简谐运动是下列哪一种运动()A .匀变速运动B .匀速直线运动C .变加速运动D .匀加速直线运动分析:根据简谐运动的加速度与位移的关系,分析加速度是否变化,来判断简谐运动的性质,若加速度不变,是匀变速直线运动;若加速度变化,则是变加速运动。

解:根据简谐运动的特征:a =﹣,可知物体的加速度大小和方向随位移的变化而变化,位移作周期性变化,加速度也作周期性变化,所以简谐运动是变加速运动。

第一章 第3节 简谐运动的图像和公式

第一章 第3节 简谐运动的图像和公式

第3节简谐运动的图像和公式1.简谐运动图像是一条正弦(或余弦)曲线,描述了质点做简谐运动时位移x 随时间t 的变化规律,并不是质点运动的轨迹。

2.由简谐运动图像可以直接得出物体振动的振幅、周期、某时刻的位移及振动方向。

3.简谐运动的表达式为x =A sin(2πTt +φ)或x =A sin(2πft+φ),其中A 为质点振幅、(2πTt +φ)为相位,φ为初相位。

1.建立坐标系以横轴表示做简谐运动的物体的时间t ,纵轴表示做简谐运动的物体运动过程中相对平衡位置的位移x 。

2.图像的特点一条正弦(或余弦)曲线,如图所示。

3.图像意义表示物体做简谐运动时位移随时间的变化规律。

4.应用由简谐运动的图像可找出物体振动的周期和振幅。

[跟随名师·解疑难]1.图像的含义表示某一做简谐运动的质点在各个时刻的位移,不是振动质点的运动轨迹。

2.由图像可以获取哪些信息? (1)可直接读取振幅、周期。

(2)任意时刻质点的位移的大小和方向。

如图甲所示,质点在t 1、t 2时刻的位移分别为x 1和-x 2。

甲 乙(3)任意时刻质点的振动方向:看下一时刻质点的位置,如图乙中a 点,下一时刻离平衡位置更远,故a 此刻向上振动。

(4)任意时刻质点的速度、加速度、位移的变化情况及大小比较:看下一时刻质点的位置,判断是远离还是靠近平衡位置,若远离平衡位置,则速度越来越小,加速度、位移越来越大,若靠近平衡位置,则速度越来越大,加速度、位移越来越小。

如图乙中b 点,从正位移向着平衡位置运动,则速度 为负且增大,位移、加速度正在减小;c 点从负位移远离平衡位置运动,则速度为负且减小,位移、加速度正在增大。

[学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手)如图所示为某质点做简谐运动的图像,则质点在前6 s 内通过的路程为________ cm ,在6~8 s 内的平均速度大小为________ cm/s ,方向________。

3.简谐运动的图像和公式

3.简谐运动的图像和公式

旋 转 矢量 A的
x 端点在
轴上的投
影点的运
动为简谐
运动.
x Acos(t )
简谐运动的位移公式:
x Acos( t )
其中A表示振幅, 是圆频率(或称角频率),( t + )称
为物体在t时刻振动的相位(或相)。 是t =0时的相位,
称为初相位,简称为初相。
物体振动状态由相位( t + )决定
旋转矢量
为了直观地表明简谐运动的三个特征量的物理意义,
可用一个旋转矢量来表 示简谐运动。
A
t=t
t = 0
t+
A
o

x
x Aco(s t )
因此,以o为圆点,旋转矢量A的末端在ox轴上的
投影点的运动是简谐运动。
参考圆
用旋转矢量图画简谐运动的 x t 图
T 2π (旋转矢量旋转一周所需的时间)
2:1 1:1 0
1.相位是用来描述一个周期性运动的物体在一个周期内所 处的不同运动状态的物理量.
2.
x=Asin(ωt+ φ )
其中x代表质点对于平衡位置的位移,t代表时间,ω叫做 圆频率,ωt+φ表示简谐运动的相位.
3.两个具有相同圆频率w的简谐运动,但初相分别为φ1 和φ2,它们的相位差就是 (ωt+ φ 2)-(ωt+ φ 1)= φ 2- φ 1
知识应用: 1.一质点作简谐运动,图象如图所示,在0.2s 到0.3s这段时间内质点的运动情况是 ( CD )
A.沿负方向运动,且速度不断增大 B.沿负方向运动的位移不断增大 C.沿正方向运动,且速度不断增大 D.沿正方向的加速度不断减小
弹力、动能、 势能、机械能、 动量呢?

简谐运动的所有公式

简谐运动的所有公式

简谐运动的所有公式简谐运动是物理学中重要的一个概念,它包括各种物理运动的模型。

简谐运动是一种复杂的物理运动模型,用数学方法表示它的运动轨迹。

有了这些数学模型,人们就可以更好的理解物理学中的运动,从而更好的进行物理学实验和物理学研究。

下面就介绍简谐运动的所有公式。

首先,要讲述简谐运动的速度公式,它的形式为:V=Asin(ωt+φ)其中,V是运动物体的速度;A是振幅;ω是角速度;t是时间;φ是初相。

其次,是简谐运动的加速度公式,它的形式为:a=-Aω^2sin(ωt+φ)其中,a是运动物体的加速度;A是振幅;ω是角速度;t是时间;φ是初相。

再次,是简谐运动的位移公式,它的形式为:S=Acos(ωt+φ)其中,S是运动物体的位移量;A是振幅;ω是角速度;t是时间;φ是初相。

最后,是简谐运动的动能公式,它的形式为:E=1/2mA^2ω^2其中,E是运动物体的动能;m是运动物体的质量;A是振幅;ω是角速度。

简谐运动可以用多种方式表达,因此上述四个公式不但能够表示简谐运动,也可以帮助人们更好地理解物理学中的运动。

它们可以用来计算物体的加速度、速度、位移量和动能。

这些公式的应用能够帮助人们精确预测物体的运动轨迹,由此可以做出正确的物理实验,从而应用到工程、科学、数学等各个领域。

简谐运动的所有公式均可以用数学来表示,所以在物理学中简谐运动的应用非常广泛。

比如在音乐中,一些乐器的振动可以用简谐运动的公式来描述;在工程中,一些振动设备的运行也是基于简谐运动的模型;在天文学中,行星的运行路径也可以用简谐运动来描述等。

总之,简谐运动是一种重要的物理运动模型,它的公式可以被应用到各个领域中,从而更好的描述物理运动的模型。

简谐运动

简谐运动

四、两种分析运动的方法: 两种分析运动的方法:
1、模型分析法:通过对振动全过程中位移、回复力、加 模型分析法:通过对振动全过程中位移、回复力、 速度、速度大小、 速度、速度大小、方向变化的分析得到 结论。 结论。 要熟练掌握做简谐运动的物体在某一时刻( 要熟练掌握做简谐运动的物体在某一时刻(或某一位 置)的位移x、回复力F、加速度a、速度v这四个矢 量的相互关系。 量的相互关系。
7、弹簧振子以O点为平衡位置做简谐运动,从O点开 弹簧振子以O点为平衡位置做简谐运动, 始计时,振子第一次到达M点用了0.3s时间, 0.3s时间 始计时,振子第一次到达M点用了0.3s时间,又经过 0.2s第二次经过 第二次经过M 则振子第三次通过M 0.2s第二次经过M点,则振子第三次通过M点还要经 过多少时间: 过多少时间:
0
零 零 正向最大 负向最大
T/4
正向最大 负向最大 零 零
T/2
零 零
3T/4
负向最大 正向最大 零 零
T
零 零 正向最大 负向最大
负向最大 正向最大
6、一弹簧振子作简谐运动,周期为 ,则下列说法正 、一弹簧振子作简谐运动 周期为 周期为T, 确的是: 确的是: A.若t时刻和 △t)时刻振子运动位移的大小相等、 时刻和(t+△ 时刻振子运动位移的大小相等 时刻振子运动位移的大小相等、 若 时刻和 方向相同,则△t一定等于 的整数倍; 方向相同, 一定等于T的整数倍 一定等于 的整数倍 B.若t时刻和 △t)时刻振子运动速度的大小相等、 时刻和(t+△ 时刻振子运动速度的大小相等 时刻振子运动速度的大小相等、 若 时刻和 方向相反, 一定等于T/2的整数倍 方向相反,则△t一定等于 的整数倍 一定等于 的整数倍; C、若△t=T,则在 时刻和 △t)时刻振子运动的加 时刻和(t+△ 时刻振子运动的加 、 ,则在t时刻和 速度一定相等; 速度一定相等; D、若△t=T/2,则在 时刻和 △t)时刻弹簧的长度 时刻和(t+△ 时刻弹簧的长度 、 ,则在t时刻和 一定相等; 一定相等;

简谐运动和振动的图像

简谐运动和振动的图像

【4】如图所示,是某弹簧振子的振动图象,试由图 】如图所示,是某弹簧振子的振动图象, 象判断下列说法哪些是正确的 ( ) B A、振幅是 、振幅是3m B、周期是 、周期是8s C、4s末振子的加速度为 ,速度为负 、 末振子的加速度为0, 末振子的加速度为 D、第14s末振子的加速度为正,速度最大 末振子的加速度为正, 、 末振子的加速度为正
例3.如果下表中给出的是做简谐运动的物体的位移或速度与 . 时刻的对应关系, 为振动周期 为振动周期, 时刻的对应关系,T为振动周期,则下列选项中正确的 ( ) AB 是
时刻 状态 物理量
0
零 零 正向最 大 负向最 大
T/4
正向最 大 负向最 大 零 零
T/2
零 零 负向最 大 正向最 大
3T/4
2.简谐运动的特点: 简谐运动的特点: 简谐运动的特点
(1)简谐运动的位移必须是指偏离平衡位置的 ) 位移(这是为研究方便而规定的)。也就是说 这是为研究方便而规定的)。也就是说, 位移 这是为研究方便而规定的)。也就是说, 在研究简谐运动时所说的位移的起点都必须在平 衡位置处。 衡位置处。
(2)回复力是一种效果力。是振动物体在沿振动 )回复力是一种效果力。 方向上所受的合力。 方向上所受的合力。 (3)“平衡位置”不等于“平衡状态”。平衡位 ) 平衡位置”不等于“平衡状态” 置是指回复力为零的位置, 置是指回复力为零的位置,物体在该位置所受的合 外力不一定为零。(如单摆摆到最低点时, 。(如单摆摆到最低点时 外力不一定为零。(如单摆摆到最低点时,沿振动 方向的合力为零, 方向的合力为零,但在指向悬点方向上的合力却不 等于零,所以并不处于平衡状态) 等于零,所以并不处于平衡状态) (4)F=-kx是判断一个振动是不是简谐运动的充 ) 是判断一个振动是不是简谐运动的充 分必要条件。 分必要条件。凡是简谐运动沿振动方向的合力必须 满足该条件;反之, 满足该条件;反之,只要沿振动方向的合力满足该 条件,那么该振动一定是简谐运动。 条件,那么该振动一定是简谐运动。

简谐运动的图像和公式

简谐运动的图像和公式

2.
x/m
写出振动方程 x=10sin(2π t)cm .
3.某弹簧振子的振动图象如图所示,根据图象判断。下列说法正 确的是( D ) A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同,但瞬时 速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相同,瞬时 速度方向相反。
周期、路程、振动情况关系
①1T内,路程s=4A
②T/2内,路程s=2A
③T/4内,路程s有可能大于A,也可能小于A,也
可能等于A
④t2 - t1=NT时,两时刻物体的运动情况一样 ⑤t2 - t1=(2n+1)T/2时,两时刻物体以相反的速 度通过两对称点。
例1.如图所示为某质点简谐运动的振动图像,根据图像回答:
⑴振幅、周期; ⑵具有正向最大速度的时刻; ⑶具有正向最大加速度的时刻; ⑷在3~4s内,质点的运动情况; ⑸1~4s内质点通过的路程。
二、简谐运动的表达式
简谐运动的图像为正弦(或余弦)曲线,也 就是说振动物体离开平衡位置的位移x与时间t的关 系可用正弦函数(或余弦函数)来表示,即
x A sin(t )
x/cm
1 2 3 4 5 6 t/s
-5
-10
【板书设计】
1.3 简谐运动的图像和公式 1.简谐运动的振动图像 都是正弦或余弦曲线。 表示振动物体相对平衡位置的位移随时间变化的规律。 2、图像中的信息:
(1)任一时刻的位移
(2)T、A、f (3)回复力和加速度大小方向的变化 (4)速度方向和大小的变化 3.简谐运动的表达式:
x A sin(t )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
• 图像绘制方法 1、描点法
第一个1/2周期: t 时间t(s) 0 第二个1/2周期: 7t 时间t(s) 6t
0
0
2t
0
3t
0
4t
0
5t
0
6t
0
位移x(cm) 20.0
-17.8
-10.1
0.1
10.3
17.7
20.0
0
8t
0
9t
0
10t
0
11t
0
12t
0
位移 x(cm)
20.0
17.7
10.3
以x代表质点对于平衡位置的位移,t代表时间,则
x A sint
(1)公式中的A 代表什么? A叫简谐运动的振幅。表示简谐运动的强弱。 (2)ω叫做什么?它和T、f之间有什么关系?
叫圆频率。表示简谐运动的快慢。 它与频率的关系: =2f
(3)公式中的相位用什么来表示?
“ t+” 叫简谐运动的相位。表示简谐运动所处的状态。
二、简谐运动的图象作用:
1.物理意义:简谐运动的振动图象表示某个振动物体 相对平衡位置的位移随时间变化的规律。 注意:振动图象不是振子运动的轨迹。 2. 从简谐运动的振动图象可以知道振动物体的运动情 况。 (1)从图象可以知道振幅。 (2)从图象可以知道周期(频率)。(曲线相邻两最 大值之间的时间间隔) (3)从图象可以知道任一时刻物体对平衡位置的位移, 从而确定此时刻物体的位置。 (4)从图象可以确定任一时刻物体的速度大小和方向, 以及某一段时间速度大小变化情况。
x
·
t = 0 A
x
参考圆
简谐运动的位移公式:
x A cos( t )
其中A表示振幅, 是圆频率(或称角频率),( t +
)称为物体在t时刻振动的相位(或相)。 是t =0时的相位,称为初相位,简称为初相。
物体振动状态由相位( t + )决定
1、简谐运动的表达式:
竖 直 方 向 弹 簧 振 子 的 振 动 图 像
这种记录振动的方法在实际中有很多应用。 医院里的心电图及地震仪中绘制的地震曲线等, 都是用类似的方法记录振动情况的。
心电图 绘制地震曲线的装置
体验: 一同学匀速拉动一张白纸,另一同学沿与 纸运动方向相垂直方向用笔往复画线段,观察 得到的图象
6.右图中是甲乙两弹簧振子的振动图象,两振动 2∶ 1 , 振幅之比为_______ 频率之比为______ 1∶ 1 , 2 甲和乙的相差为____
_
7.写出振动方程.
s
y=10sin(2π t) cm
s
y=10sin(2π t+π/2) cm
8.两个简谐振动分别为
x1=4asin(4πbt+π/2) x2=2acos(4πbt+π/2) 求它们的振幅之比,各自的频率,以及 它们的相位差.
x/cm
1 2 3 4 5 6 t/s
课堂练习
4.某弹簧振子的振动图象如图所示,根据图象判断。下 列说法正确的是( ) A、第1s内振子相对于平衡位置的位移与速度方向相反 B、第2s末振子相对于平衡位置的位移为-20cm C、第2s末和第3s末振子相对于平衡位置的位移均相同, 但瞬时速度方向相反 D、第1s内和第2s内振子相对于平衡位置的位移方向相 同,瞬时速度方向相反。
t 1 t 2 1 2
同相:两个振子振动步调完全相同
2k
反相:两个振子振动步调完全相反 2k 1
(1)同相:相位 差为零,一般地为 =2n (n=0,1,2,……)
(2)反相:相位 差为 ,一般地为 =(2n+1) (n=0,1,2,……)
因此, 以o为圆点,旋转矢量 A的末端在ox轴上的投 影点的运动是简谐运动 。
用旋转矢量图画简谐运动的
x t 图
T 2π (旋转矢量旋转一周所需的时间)
为了直观地表明简谐运动的三个特征量的物理意义, 可用一个旋转矢量来表示简谐运动。
A
t=t

t+
o

x A cos ( t )
简谐运动的图象和公式
复习:
1.简谐运动的受力特点:F=-kx 2.描述简谐运动的参量:振幅、周期、频率、 位移、速度、回复力、加速度、动能和势能。
一、子的位移x都是相对于平衡位置的位移,以平衡位 置为坐标原点O,沿振动方向建立坐标轴。规定在O点右 边时位移为正,在左边时位移为负。
x/m 3 O -3
8
16 t/s
课堂练习
3.某一弹簧振子的振动图象如图所示,则由图象判断 下列说法正确的是( )
AB
A、振子偏离平衡位置的最大距离为10cm
B、1s到2s的时间内振子向平衡位置运动
C、2s时和3s时振子的位移相等,运动方向也相同
D、振子在2s内完成一次往复性运动
10 5 0 -5 -10
D
x/cm
2 0
-20
0 1 2 3 4 5 6 7
t/s
5.一个质点作简谐运动的振动图像如图.从图中可以 0.1 看出,该质点的振幅A= __ m,周期T=__ 0.4 s,频率 f= __ Hz,从t=0开始在△t=0.5s内质点的位移0.1m __ ,路 2.5 程= 0.5m ___ .
三、简谐运动的表达式
课堂练习
1.一质点作简谐运动,图象如图所示,在0.2s到0.3s这 段时间内质点的运动情况是 CD A.沿负方向运动,且速度不断增大 B.沿负方向运动的位移不断增大 C.沿正方向运动,且速度不断增大 D.沿正方向的加速度不断减小
弹力、动能、势能、机 械能、动量呢?
2.回答下列问题: (1)质点离开平衡位置的最大位移? (2)1s末、4s末、10s末质点位置在哪里? (3)1s末、6s末质点朝哪个方向运动? (4)质点在6s末、14s末的位移是多少? (5)质点在4s、16s内通过的路程分别是多少?
0.1
-10.1
-17.8
-20.0
三、弹簧振子的位移—时间图象 2、频闪照相法
思考:如何理解这就是振子的位移时间图象?
也可以用数码照相机拍摄竖直方向弹簧振子的运动 录像,得到分帧照片,依次排列得到图象。
3、用运动传感器测量垂直悬挂弹簧振子的运动
用位移传感器和计算机描绘
4、描图记录法
在弹簧振子的小球上安装一枝绘图笔,让一条纸带 在与小球振动方向垂直的方向上匀速运动,笔在纸带 上画出的就是小球的振动图象。
(4)什么叫简谐振动的初相? 叫初相,即t=0时的相位。
x A sin(t )
振幅 初相位 相位
圆频率
2 2f T 2 x A sin( t ) A sin( 2ft )
T
振幅
初相位
频率
相位
周期
2、相位差:
实际上经常用到的是两个相同频率的简谐 运动的相位差,简称相差。
相关文档
最新文档