安乐中学九年级数学导学案

合集下载

九中学校九年级数学人教版上册一元二次方程导学案

九中学校九年级数学人教版上册一元二次方程导学案

注意:由于数学中涉及到一些公式和图形,所以行间距不能用固定值18磅,请不要更改行间距。

谢谢!第二十二章:一元二次方程22.1一元二次方程第1课时【学习目标】1、使学生理解一元二次方程的概念。

2、通过提供实际问题的情境,让学生感受到在我们的生活、学习中方程知识的实际意义。

3、能够根据具体问题中的数学关系列出方程;体会一元二次方程是刻画现实世界的一个有学习难点:理解一元二次方程的概念,认识一元二次方程的一般形式。

【自习自疑】阅读教材相关内容,完成以下练习。

【问题1】有一块面积为900平方米的长方形绿地,并且长比宽多10米,则绿地的长和宽各为多少?解:设绿地的宽为x米,则列方程得:;整理得:;【问题2】如图,有一块长方形铁片,长100cm,宽50cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒。

如果无盖方盒的底面积为3600cm2,那么铁皮各角应切去多大的正方形?解:设切去的正方形的边长为xcm,则盒底的长为 cm,宽为 cm,列方程得;整理得:。

【问题3】学校要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?【分析】全部比赛共场,设应邀请x个队参赛,列方程得;整理得:。

【自主探究】探究一:一元二次方程的概念。

【观察】(1)上面三个方程左右两边是含未知数的。

(填“整式”“分式”“无理式”);(2)方程整理后含有个未知数;(3)未知数最高次数是次。

【归纳】1、请你用自己的语言给一元二次方程下定义:2、一元二次方程的一般形式一般地,任何一个关于x 的一元二次方程,经过整理,都能化成如下形式: ax 2+bx+c=0(a ≠0)这种形式叫做一元二次方程的一般形式。

其中ax 2是二次项,a 是二次项系数,bx 是一次项,b 是一次项系数,c 是常数项。

【思考】为什么规定a ≠0?探究二:将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.())2(5)1(31+=-x xx ()1)2)(2()1(22=-+++x x x探究三: 判断下列方程,哪些是一元二次方程?()052123=+-x x()122=x ()()y x 31232=-()()222124x x =+ ()5152=-x x ()x x 45962-=一元二次方程有: ;【自结自测】:本节课的学习,你有哪些收获?1、下列方程是一元二次方程的是有 :932)1(3=+x x , 8)1)(1)(2(=-+x x 82)3(2=y ,(4)01122=-+xx (5) (6)05322=-+y x2、填空:① 一元二次方程25)2(4=+x x 化为一般形式是: ;其二次项是: ;一次项是: ;常数项是: 。

九年级数学导学案全册

九年级数学导学案全册

九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。

本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。

二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。

三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。

通过练习提高学生的计算能力和代数运算技巧。

2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。

同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。

3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。

同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。

4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。

通过实际案例和练习,培养学生的数据分析和概率计算能力。

四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。

2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。

3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。

五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。

通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。

希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。

人教版九年级数学下册全册导学案

人教版九年级数学下册全册导学案

学科数学课题26.1.2反比例函数的图象和性质班级授课者时间审核者课型学习目标1.通过画反比例函数图象,训练作图能力 2.通过从图象中获取信息.训练识图能力.3.通过对图象性质的研究,训练探索能力和语言组织能力.重点会确定一个单项式的系数和次数;难点会确定一个单项式的系数和次数;探究新知(一)小组合作学习自学主题一:自学教材P4页.做—做观察反比例函数y=x2,y=x4,y=x6的图象它们有什么共同点? 总结它们的共同特征.(1)函数图象分别位于哪几个象限?(2)在每一个象限内,随着x值的增大.y的值是怎样变化的?能说明这是为什么吗?(3)反比例函数的图象可能与x轴相交吗?可能与y轴相交吗?为什么?请大家先独立思考,再互相交流得出结论.对于问题 (3),可能会有学生认为图象在逐渐接近x轴,y轴,所以当自变量取很小或很大的数时,图象能与x轴y轴相交.可以从函数式的定义域、函数与方程等角度进行解释。

总结:当k>0时,函数图象分别位于第象限内,并且在每一个象限内,y随x 的增大而 .主题二:议一议用类推的方法来研究y=-x2,y=-x4,y=-x6的图象有哪些共同特征?结论:反比例函数y =xk的图象,当k>0时,在每一象限内,y 的值随x 值的增大而 ;当k<0时,在每一象限内,y 的值随x 值的增大而 . 对 学对子间检查自学内容并相互讨论 群 学 1、组长带领组员进行讨论上述的相关问题,并检查本组成员的完成情况。

2、组长组织好本组要展示的内容和展示人员的安排。

(二)展示展示一:主题一:反比例函数的图像 展示二:主题一:反比例函数的性质课堂练习1.已知反比例函数xky -=3,分别根据下列条件求出字母k 的取值范围:(1)函数图象位于第一、三象限(2)在第二象限内,y 随x 的增大而增大2.函数y =-ax +a 与xay -=(a ≠0)在同一坐标系中的图象可能是( )3.在平面直角坐标系内,过反比例函数xky =(k >0)的图象上的一点分别作x 轴、y 轴的垂线段,与x 轴、y 轴所围成的矩形面积是6,则函数分析式为课堂小结通过本节课的学习,你有什么收获和体会?还有什么疑惑?课后练习1.若函数x m y )12(-=与xmy -=3的图象交于第一、三象限,则m 的取值范围是 2.反比例函数xy 2-=,当x =-2时,y = ;当x <-2时;y 的取值范围是 ; 当x >-2时;y 的取值范围是学科数学课题27.1图形的相似班级授课者时间审核者课型学习目标1.通过对生活中的事物或图形的观察,从而加以识别相似的图形.2.通过观察、归纳等数学活动,能用所学的知识去解决问题。

人教版九年级数学下册导学案第二十六章数学活动

人教版九年级数学下册导学案第二十六章数学活动

人教版九年级数学下册导学案第二十六章数学活动——应用双曲线探求数量关系一、导学1.活动导入效果1:矩形的面积一定时,矩形的长和宽成什么关系?效果2:假设把矩形的一个顶点固定,拖动这个固定顶点的对角顶点,拖动时必需保证矩形的面积不变,猜猜看,这个对角顶点的运动轨迹会是什么图象呢?2.活动目的〔1〕经过活动感受面积为定值的矩形的长与宽与正比例函数的关系.〔2〕经过活动树立正比例函数模型,解释杠杆平衡原理.3.活动重、难点重点:两个活动.难点:第二个活动.二、活动进程活动1探求矩形顶点的运动轨迹1.活动指点〔1〕活动内容:教材P19活动1:探求矩形顶点的运动轨迹.〔2〕活动时间:10分钟.〔3〕活动方法:完成活动参考提纲.〔4〕活动参考提纲:①下表是10个面积相等的矩形的长与宽,请补齐表格.②设∠A为这10个矩形的公共角,在下面的坐标系中画出这10个矩形(假定每个小正方形的边长都是1 cm,矩形的长对应横坐标,宽对应纵坐标),然后取∠A的10个对角的顶点,并把这10个点用平滑的曲线衔接起来. 这条曲线是正比例函数图象的一支吗?为什么?(是,它是双曲线的一支.)③如图,过y=kx的图象上恣意一点P作两坐标轴的垂线段,那么图中矩形的面积S 是定值吗?是多少?〔是,k 〕第③题图 第④题图④如图,过y=k x 的图象上恣意一点P 作某一坐标轴的垂线段,那么图中三角形的面积为2k S . 2.自学:先生参考活动指点停止活动性学习.3.助学〔1〕师助生:①明了学情:了解先生能否会画图.②差异指点:把全班先生分红4个组,依次以图中网格的四个角处的格点为∠A 的顶点,区分画图.〔2〕生助生:小组内相互交流.4.强化〔1〕把面积为定值的矩形的一个顶点固定,拖动这个固定顶点的对角顶点,这个对角顶点的运动轨迹是正比例函数图象的一支.〔2〕正比例函数的k 的几何意义.活动2探求力与力到支点距离的关系1.活动指点〔1〕活动内容:教材P19活动2:探求力与力到支点距离的关系.〔2〕活动时间:10分钟.〔3〕活动方法:完成活动参考提纲.〔4〕活动参考提纲:①如图,取一根长100 cm 的匀质木杆,用细绳绑在木杆的中点O 并将其吊起来.在中点O 的左侧距离中点O 25 cm 处挂一个重9.8 N 的物体,在中点O 右侧用一个弹簧测力计向下拉,使木杆处于水平形状.改动弹簧测力计与中点O 的距离L 〔单位:cm 〕,看弹簧测力计的示数F 〔单位:N 〕有什么变化,并填写下表:②以L 的数值为横坐标,以F 的数值为纵坐标树立直角坐标系,在坐标系内描出以上表中的数对为坐标的各点,用平滑曲线衔接这些点;③这条曲线是正比例函数图象的一支吗?为什么?点〔50,4.9〕在这条曲线上吗?是,由于它是双曲线的一支,点〔50,4.9〕在这条曲线上.2.自学:先生参考活动指点停止活动性学习.3.助学〔1〕师助生:①明了学情:看先生能否能顺利完成实验,关注先生处置实验误差的才干.②差异指点:先生4人一组分组实验搜集数据,然后各自完成后续活动义务.〔2〕生助生:小组内相互交流.4.强化:弹簧秤的示数F与它到点O的距离L成正比.三、评价1.先生学习的自我评价:这节课你有什么收获?有哪些缺乏?2.教员对先生的评价:〔1〕表现性评价:从先生回答以下效果,入手操作才干等方面停止评价.〔2〕纸笔评价:课堂评价检测.3.教员的自我评价〔教学反思〕.本节课经过数学活动,应用双曲线来探求数量关系.在探求矩形顶点的运动轨迹这一活动中,我们经过描点、作图、算面积来感受面积为定值的矩形的长与宽与正比例函数的关系.在探求力与力到支点距离的关系活动中,我们经过树立正比例函数模型来解释杠杆平衡原理.整个活动进程应充沛发扬先生的自动性,对活动进程中存在效果的先生及时给予协助,增强与先生的互动与交流.。

人教版九年级数学导学案全册

人教版九年级数学导学案全册

人教版九年级数学导学案全册九年级数学导学案-全册第一章:有理数导学目标:了解有理数的定义,会对有理数进行加减法运算1. 有理数的定义有理数是指可以表示为两个整数比例的数,包括正整数、负整数、零以及可以表示为分数形式的小数。

2. 有理数的表示有理数可以通过分数、小数和负号表示。

例如:32/5,-1.2,-3。

3. 有理数的比较有理数的大小可以通过数轴进行比较,数轴的左边表示负数,右边表示正数。

例如:-5 < -1 < 0 < 2 < 4。

4. 有理数的加法运算有理数的加法运算遵循以下规则:- 两个正数相加,结果为正数;- 两个负数相加,结果为负数;- 正数加负数时,找到两个数的绝对值中较大的数,并用它的符号作为结果的符号。

5. 有理数的减法运算有理数的减法运算可以转化为加法运算,即求减数的相反数后再进行加法运算。

例如:7-3可以转化为7+(-3)。

第二章:代数基础导学目标:掌握代数基础概念,灵活运用代数式进行计算1. 代数式的定义代数式是由数或运算符号组成的表达式,可以包括数字、字母和运算符号。

2. 代数式的计算代数式可以通过代数运算进行计算,其中常用的运算符号包括加减乘除和指数符号。

3. 代数式的展开和因式分解代数式的展开指的是将括号中的内容按照规则进行计算,例如:(a+b)^2 = a^2 + 2ab + b^2。

代数式的因式分解指的是将代数式分解成乘积的形式,例如:4x^2 + 12x = 4x(x + 3) 。

4. 代数式的简化代数式可以通过合并同类项进行简化,合并同类项是将相同字母的项合并在一起,例如:2x + 3x = 5x。

第三章:图形的认识导学目标:了解几何图形的基本概念和性质,能够进行图形的分类和判断1. 平面图形的分类平面图形包括点、线段、射线、直线和曲线,可以通过形状和大小进行分类,例如:三角形、四边形、圆等。

2. 几何图形的性质几何图形有不同的性质,例如:矩形的对边相等、正方形的对角线相等。

最新人教版九年级数学上册全册导学案(含答案)

最新人教版九年级数学上册全册导学案(含答案)

第二十一章 一元二次方程 21.1 一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题. 2.掌握一元二次方程的一般形式ax 2+bx +c =0(a ≠0)及有关概念. 3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟) 问题1:如图,有一块矩形铁皮,长100 cm ,宽50 cm ,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm 2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm ,则盒底的长为__(100-2x)cm __,宽为__(50-2x)cm __.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x 2-75x +350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x 个队参赛,每个队要与其他__(x -1)__个队各赛1场,所以全部比赛共x (x -1)2__场.列方程__x (x -1)2=28__,化简整理,得__x 2-x -56=0__.② 探究:(1)方程①②中未知数的个数各是多少?__1个__. (2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x 的方程(m 2-8m +17)x 2+2mx +1=0,无论m 取何值,该方程都是一元二次方程.证明:m 2-8m +17=(m -4)2+1, ∵(m -4)2≥0,∴(m -4)2+1>0,即(m -4)2+1≠0.∴无论m 取何值,该方程都是一元二次方程.点拨精讲:要证明无论m 取何值,该方程都是一元二次方程,只要证明m 2-8m +17≠0即可.2.下面哪些数是方程2x 2+10x +12=0的根? -4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x =-2或x =-3是一元二次方程2x 2+10x +12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 1.判断下列方程是否为一元二次方程. (1)1-x 2=0; (2)2(x 2-1)=3y ; (3)2x 2-3x -1=0; (4)1x 2-2x =0;(5)(x +3)2=(x -3)2; (6)9x 2=5-4x. 解:(1)是;(2)不是;(3)是; (4)不是;(5)不是;(6)是.2.若x =2是方程ax 2+4x -5=0的一个根,求a 的值. 解:∵x =2是方程ax 2+4x -5=0的一个根, ∴4a +8-5=0, 解得a =-34.3.根据下列问题,列出关于x 的方程,并将其化成一元二次方程的一般形式: (1)4个完全相同的正方形的面积之和是25,求正方形的边长x ; (2)一个长方形的长比宽多2,面积是100,求长方形的长x. 解:(1)4x 2=25,4x 2-25=0;(2)x(x -2)=100,x 2-2x -100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为__2x-1=±5__,即将方程变为__2x-1=5和__2x-1=-5__两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=__1+52,x2=__1-52__.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__ ,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p或mx+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0; (4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=1 2.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x+1)2=7; (2)y2+2y+1=24;(3)9n2-24n+16=11.解:(1)-1±73;(2)-1±26;(3)4±113.点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值. 解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟) 用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5; (3)9x 2+6x +1=4; (4)36x 2-1=0; (5)4x 2=81; (6)(x +5)2=25; (7)x 2+2x +1=4.解:(1)x 1=1+2,x 2=1-2; (2)x 1=2+5,x 2=2-5; (3)x 1=-1,x 2=13;(4)x 1=16,x 2=-16;(5)x 1=92,x 2=-92;(6)x 1=0,x 2=-10; (7)x 1=1,x 2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程. 2.理解“降次”思想.3.理解x 2=p(p ≥0)或(mx +n)2=p(p ≥0)中,为什么p ≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1 配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__, 解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0; (2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2. 2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0. 解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x2=-52-32.(3)去括号,整理得x2+4x-1=0,移项得x2+4x=1,配方得(x+2)2=5,x+2=±5,即x1=5-2,x2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5;(2)x1=2+2,x2=2-2;(3)x1=14+174,x2=14-174;(4)x1=62,x2=-62.2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=1 36.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟)用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0.解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax 2+bx +c =0(a ≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax 2+bx +c =0(a ≠0),试推导它的两个根x 1=-b +b 2-4ac2a,x 2=-b -b 2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a ,b ,c 也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax 2+bx +c =0(a ≠0)的根由方程的系数a ,b ,c 而定,因此: (1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx +c =0,当b 2-4ac ≥0时,将a ,b ,c 代入式子x =-b±b 2-4ac2a 就得到方程的根,当b 2-4ac <0时,方程没有实数根.(2)x =-b±b 2-4ac 2a 叫做一元二次方程ax 2+bx +c =0(a ≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b 2-4ac 叫做方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b 2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 用公式法解下列方程,根据方程根的情况你有什么结论? (1)2x 2-3x =0; (2)3x 2-23x +1=0; (3)4x 2+x +1=0.解:(1)x 1=0,x 2=32;有两个不相等的实数根;(2)x 1=x 2=33;有两个相等的实数根; (3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14.3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根. 证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根.2.用公式法解下列方程:(1)x2+x-12=0 ; (2)x2-2x-14=0;(3)x2+4x+8=2x+11; (4)x(x-4)=2-8x;(5)x2+2x=0 ; (6)x2+25x+10=0.解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6; (5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a(b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a ,b ,c 的值,再算.出b 2-4ac 的值、最后代.入求根公式求解. 3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3 因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am +bm +cm =(__a +b +c__)m ; (2)a 2-b 2=__(a +b)(a -b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①?分析:方程①的右边为0,左边可以因式分解得:x(10-4.9x)=0,于是得x=0或10-4.9x=0,②∴x1=__0__,x2≈2.04.上述解中,x2≈2.04表示物体约在2.04 s时落回地面,而x1=0表示物体被上抛离开地面的时刻,即0 s时物体被抛出,此刻物体的高度是0 m.点拨精讲:(1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b=0,那么a=0或b=0,这是因式分解法的根据.如:如果(x+1)(x-1)=0,那么__x+1=0或__x-1=0__,即__x=-1__或__x=1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)1.说出下列方程的根:(1)x(x-8)=0;(2)(3x+1)(2x-5)=0.解:(1)x1=0,x2=8;(2)x1=-13,x2=52.2.用因式分解法解下列方程:(1)x2-4x=0; (2)4x2-49=0;(3)5x2-20x+20=0.解:(1)x1=0,x2=4; (2)x1=72,x2=-72;(3)x1=x2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=4 5;(2)x1=23,x2=-12;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-14=x2-2x+34;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=43,x2=-2;(3)x1=12,x2=-12;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟) 1.用因式分解法解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=23;(3)x1=x2=1;(4)x 1=112,x 2=-112;(5)x 1=3,x 2=1.点拨精讲:因式分解法解一元二次方程的一般步骤: (1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__; (3)令每个因式分别为__0__,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m 得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m . 则可列方程2πx 2=π(x +5)2.解得x 1=5+52,x 2=5-52(舍去). 答:小圆形场地的半径为(5+52) m .学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab =0得 a =0或b =0,即“二次降为一次”. 2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4 一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x 1+x 2=-b a ,x 1x 2=ca .2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用. 难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟) 自学1:完成下表:问题:你发现什么规律? ①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项. ②x 2+px +q =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-p ,x 1x 2=q. 自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立) 请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理) ax 2+bx +c =0的两根x 1=2a ,x 2=2a.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积. (1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1;(2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积. (1)x 2-6x -15=0; (2)3x 2+7x -9=0; (3)5x -1=4x 2.解:(1)x 1+x 2=6,x 1x 2=-15; (2)x 1+x 2=-73,x 1x 2=-3;(3)x 1+x 2=54,x 1x 2=14.点拨精讲:先将方程化为一般形式,找对a ,b ,c.2.已知方程2x 2+kx -9=0的一个根是-3,求另一根及k 的值. 解:另一根为32,k =3.点拨精讲:本题有两种解法,一种是根据根的定义,将x =-3代入方程先求k ,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x 2-3x -5=0的两根,不解方程,求下列代数式的值. (1)1α+1β; (2)α2+β2; (3)α-β. 解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟) 1.不解方程,求下列方程的两根和与两根积: (1)x 2-3x =15; (2)5x 2-1=4x 2; (3)x 2-3x +2=10; (4)4x 2-144=0. 解:(1)x 1+x 2=3,x 1x 2=-15; (2)x 1+x 2=0,x 1x 2=-1; (3)x 1+x 2=3,x 1x 2=-8; (4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C )A .7x 2-12x +5=0B .6x 2-13x -5=0C .4x 2+21x +5=0D .x 2+15x -8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3 实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理. 3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题. 难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x 个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x +1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x +1)(x +1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为() A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%)分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,则1000+2000x·80%+(1000+2000x·80%)x·80%=1320,整理,得1280x2+800x+1600x=320,即8x2+15x-2=0,解得x1=-2(不符,舍去),x2=0.125=12.5%.答:所求的年利率是12.5%.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(6分钟)青山村种的水稻2011年平均每公顷产7200 kg,2013年平均每公顷产8460 kg,求水稻每公顷产量的年平均增长率.解:设年平均增长率为x,则有7200(1+x)2=8460,解得x1=0.08,x2=-2.08(舍).即年平均增长率为8%.答:水稻每公顷产量的年平均增长率为8%.点拨精讲:传播或传染以及增长率问题的方程适合用直接开平方法来解.学生总结本堂课的收获与困惑.(3分钟)1. 列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符。

【人教版】九年级上册数学导学案(含答案) 21.2.3 因式分解法

【人教版】九年级上册数学导学案(含答案) 21.2.3  因式分解法

21.2.3 因式分解法学习目标:1.会用因式分解法(提公因式法、公式法)法解某些简单的数字系数的一元二次方程。

2.能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性。

重点、难点2、难点:灵活应用各种分解因式的方法解一元二次方程.【课前预习】阅读教材P38 — 40 , 完成课前预习1:知识准备将下列各题因式分解am+bm+cm= ; a2-b2= ; a2±2ab+b2=因式分解的方法:(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)2:探究仔细观察方程特征,除配方法或公式法,你能找到其它的解法吗?3、归纳:(1)对于一元二次方程,先因式分解使方程化为__________ _______的形式,再使_________________________,从而实现_____ ____________,这种解法叫做__________________。

(2)如果,那么或,这是因式分解法的根据。

如:如果,那么或_______,即或________。

(1) x2-4x=0 (2) 4x2-49=0 (3) 5x2-10x+20=0【课堂活动】活动1:预习反馈活动2:典型例题活动3:随堂训练1、用因式分解法解下列方程(1)x2+x=0 (2)x2-2x=0(3)3x2-6x=-3 (4)4x2-121=0(5)3x(2x+1)=4x+2 (6)(x-4)2=(5-2x)22、把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径。

活动4:课堂小结因式分解法解一元二次方程的一般步骤(1)将方程右边化为(2)将方程左边分解成两个一次因式的(3)令每个因式分别为,得两个一元一次方程(4)解这两个一元一次方程,它们的解就是原方程的解【课后巩固】1.方程的根是2.方程的根是________________3.方程2x(x-2)=3(x-2)的解是_________4.方程(x-1)(x-2)=0的两根为x1、x2,且x1>x2,则x1-2x2的值等于___5.若(2x+3y)2+2(2x+3y)+4=0,则2x+3y的值为_________.6.已知y=x2-6x+9,当x=______时,y的值为0;当x=_____时,y的值等于9.7.方程x(x+1)(x-2)=0的根是()8.若关于x的一元二次方程的根分别为-5,7,则该方程可以为()A.(x+5)(x-7)=0 B.(x-5)(x+7)=0C.(x+5)(x+7)=0 D.(x-5)(x-7)=09.方程(x+4)(x-5)=1的根为()A.x=-4 B.x=5 C.x1=-4,x2=5 D.以上结论都不对10、用因式分解法解下列方程:(1) 3x(x-1)=2(x-1) (2)x2+x(x-5)=0。

人教版九年级数学下册导学案 第二十六章 反比例函数 26.1.2反比例函数图像和性质(第二课时)

人教版九年级数学下册导学案 第二十六章 反比例函数 26.1.2反比例函数图像和性质(第二课时)

人教版九年级数学下册导学案 第二十六章 反比例函数 26.1.2反比例函数图像和性质(第二课时)【学习目标】1.进一步理解和掌握反比例函数及其图象与性质;2.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法; 3.探索反比例函数和一次函数、几何图形以及图形面积的综合应用; 4.通过观察、归纳、总结反比例函数的性质,培养勇于探索的科学精神。

’ 【课前预习】1.若点A (﹣1,y 1),B (2,y 2),C (3,y 3)在反比例函数6y x=-的图象上,则y 1,y 2,y 3的大小关系是( ) A .y 1>y 2>y 3B .y 2>y 3>y 1C .y 1>y 3>y 2D .y 3>y 2>y 12.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3;③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( ) A .①②B .③④C .②③D .②④3.在函数y =kx(k ≠0)的图象上有三点(﹣3,y 1)(﹣1,y 2)(2,y 3),若y 2<y 3,那么y 1与y 2的大小关系正确的是( ) A ..y 1<y 2<0 B ..y 2<y 1<0C ..0<y 2<y 1D .0<y 1<y 24.在反比例函数13my x-=图象上有两点()11,A x y ,()22,B x y ,120x x <<,12y y <,则m 的取值范围是( ) A .13m >B .13m <C .13m ≥D .13m ≤5.如图,在平面直角坐标系中,点(0,3)A ,点P 是双曲线(0)ky x x=>上的一个动点,作PB x ⊥轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会( )A .逐渐增大B .不变C .逐渐减小D .先减小后增大6.如图,在平面直角坐标系中,AB x ⊥轴于点3,tan 4B AOB ∠=,反比例函数()0ky k x =>的图象经过AO 的中点C ,且与AB 交于点D ,若点D 的坐标为()8,m ,则m =( ) A .32B .12C .2D .17.如图,直线y==x=3与y 轴交于点A ,与反比例函数y=kx(k≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B=AO=3BO ,则反比例函数的解析式为( )A .y=2xB .y==2xC .y=4xD .y==4x8.对于反比例函数2y x=,下列说法不正确的是( ) A .点(﹣2,﹣1)在它的图象上 B .它的图象在第一、三象限 C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小9.如图在平面直角坐标系中,直线y 6x =-+分别与x 轴、y 轴交于点A 、B ,与()y 0kx x=>的图象交于点C 、D .若CD =13AB ,则k 的值为( ) A .4.B .6.C .8.D .10.10.如图,在平面直角坐标系,点A(23,0),点B(0,2),把△AOB 沿直线AB 翻折,点O 落在了点C 处,则图象过点C 的反比例函数的解析式为( )图A .4y x=B .33y x=C .33y x-=D .23y x-=【学习探究】 自主学习阅读课本,完成下列问题填表分析正比例函数和反比例函数的区别函数 正比例函数 反比例函数 解析式y=kx(k ≠0)y=kx(k ≠0) 图象形状 k>0位置及图像增减性k<0位置及图像 增减性互学探究探究点一:反比例函数解析式中k 的几何意义问题2 如图2所示,点A 在反比例函数y =kx 的图象上,AC 垂直x 轴于点C ,且△AOC 的面积为2,求该反比例函数的表达式.解析:先设点A 的坐标,然后用点A 的坐标表示△AOC 的面积,进而求出k 的值.解:∵点A 在反比例函数y =kx 的图象上,∴x A ·y A =k ,∴S △AOC =12·k =2,∴k =4,∴反比例函数的表达式为y =4x.方法总结:过双曲线上任意一点与原点所连的线段与坐标轴和向坐标轴作垂线所围成的直角三角形的面积等于|k|的一半.变式训练:(2016贵州毕节)如图3,点A 为反比例函y =-4x过A 作AB ⊥x 轴于点B ,连接OA ,则△ABO 的面积为( )A .﹣4B .4C .﹣2D .2探究点二:反比例函数的图象和性质的综合运用 【类型一】 利用反比例函数的性质比较大小问题3 若M(-4,y 1)、N(-2,y 2)、P(2,y 3)三点都在函数y =kx (k <0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 1解析:∵k<0,故反比例函数图象的两个分支在第二、四象限,且在每个象限内y 随x 的增大而增大.∵M(-4,y 1)、N(-2,y 2)是双曲线y =kx (k <0)上的两点,∴y 2>y 1>0.∵2>0,P(2,y 3)在第四象限,∴y 3<0.故y 1,y 2,y 3的大小关系为y 2>y 1>y 3.故选B.方法总结:反比例函数的解析式是y =kx (k≠0),当k <0时,图象在第二、四象限,且在每个现象内y 随x 的增大而增大;当k >0,图象在第一、三象限,且在每个象限内y 随x 的增大而减小.【类型二】 利用反比例函数计算图形的面积问题4 如图4,直线l 和双曲线y =kx (k >0)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P分别向x 轴作垂线,垂足分别是C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积是S 1, △BOD 的面积是S 2,△POE 的面积是S 3,则( )A .S 1<S 2<S 3B .S 1>S 2>S 3C .S 1=S 2>S 3D .S 1=S 2<S 3解析:如图,∵点A 与点B 在双曲线y =kx上,A CB 图图4∴S 1=12k ,S 2=12k ,S 1=S 2.∵点P 在双曲线的上方,∴S 3>12k ,∴S 1=S 2<S 3.故选D.方法总结:在反比例函数的图象上任选一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|2,且保持不变. 变式训练:如图5,A,B 是反比例函数y =x2的图象上关于原点对 称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为 S ,则S=( )A. S=2B. 2<S<4C. S=4D. S>4【类型三】 反比例函数与一次函数的交点问题问题5 函数y =1-kx的图象与直线y =-x 没有交点,那么k 的取值范围是( )A .k >1B .k <1C .k >-1D .k <-1解析:直线y =-x 经过第二、四象限,要使两个函数没有交点,那么函数y =1-kx 的图象必须位于第一、三象限,则1-k >0,即k <1.故选B.方法总结:判断正比例函数y =k 1x 和反比例函数y =k 2x 在同一直角坐标系中的交点个数可总结为:①当k 1与k 2同号时,正比例函数y =k 1x 与反比例函数y =k 2x 有2个交点;②当k 1与k 2异号时,正比例函数y =k 1x 与反比例函数y =k 2x 没有交点.【类型四】 反比例函数与一次函数的综合问题问题6 如图6,已知A(-4,12),B(-1,2)是一次函数y =kx +b 与反比例函数y =mx (m <0)图象的两个交点,AC⊥x轴于点C ,BD ⊥y 轴于点D.(1)根据图象直接回答:在第二象限内,当x 取何值时, 一次函数的值大于反比例函数的值;图6(2)求一次函数解析式及m 的值;(3)P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和 △PDB 的面积相等,求点P 的坐标.解析:(1)观察函数图象得到当-4<x <-1时,一次函数图象都在反比例函数图象上方;(2)先利用待定系数法求出一次函数解析式,然后把A 点或B 点坐标代入y =mx 可计算出m 的值;(3)设出P 点坐标,利用△PCA 与△PDB 的面积相等列方程求解,从而可确定P 点坐标.解:(1)当-4<x <-1时,一次函数的值大于反比例函数的值;(2)把A(-4,12),B(-1,2)代入y =kx +b 中得⎩⎪⎨⎪⎧-4k +b =12,-k +b =2,解得⎩⎪⎨⎪⎧k =12,b =52,所以一次函数解析式为y =12x +52,把B(-1,2)代入y =mx中得m =-1×2=-2;(3)设P 点坐标为(t ,12t +52),∵△PCA 和△PDB 的面积相等,∴12×12×(t +4)=12×1×(2-12t -52),即得t =-52,∴P 点坐标为(-52,54).方法总结:解决问题的关键是明确反比例函数与一次函数图象的交点坐标所包含的信息.本题也考查了用待定系数法求函数解析式以及观察函数图象的能力. 【课后练习】1.下列函数:=y x =-;=1y x =-;=y =;=()212024030y x x x =++<中,y 随x 的增大而减小的函数有( ) A .1个 B .2个C .3个D .4个2.如图,点A 为函数()180y x x =>图象上一点,连结OA ,交函数()20=>y x x的图象于点B ,点C 是x 轴上一点,且AO AC =,则三角形ABC 的面积为( )A .9B .12C .20D .363.若()12,M y -,()1,2N -,()22,P y 三点都在函数ky x=的图象上,则1y ,2y ,的大小关系是 ( ) A .21<2y y < B .21>2y y > C .21<2<y yD .12>2>y y4.已知在一、三或二、四象限内,正比例函数(0)y kx k =≠和反比例函数(0)by b x=≠的函数值都随x 的增大而增大,则这两个函数在同一坐标系中的大致图象是( )A .B .C .D .5.如图,在平面直角坐标系中,点A 是函数(0)ky x x=<图象上的点,过点A 作y 轴的垂线交y 轴于点B ,点C 在x 轴上,若ABC ∆的面积为1,则k 的值为( )A .1B .2C .1-D .2-6.规定:如果关于x 的一元二次方程20ax bx c ++=(0a ≠)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”.现有下列结论: ①方程2230x x --=是“倍根方程”;②若方程220x ax ++=是“倍根方程”,则3a =±;③若方程20ax bx c ++=是“倍根方程”,且相异两点A (2+t ,s ),B (4-t ,s )都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为2;④若点(m ,n )在反比例函数4y x=的图像上,则方程250mx x n ++=是“倍根方程”. 上述结论中正确的有( ) A .①②B .③④C .②③D .②④7.如图,在平面直角坐标系中,点O 为坐标原点,点P 在直线28y x =-+上,且点P 的横坐标是2,过点P 分别向x 轴、y 轴作垂线,交反比例函数4y x=的图象于点A 、点B ,则四边形OAPB 的面积是( )A .4B .174C .194D .58.如图所示,点B 、D 在双曲线6(0)y x x=>上,点A 在双曲线2(0)y x x =>上,且//AD y 轴,//AB x 轴, 以AB 、AD为邻边作平行四边形ABCD ,则平行四边形ABCD 的面积是( )A .6B .8C .10D .129.已知一次函数y=kx+b 的图象如图,那么正比例函数y=kx 和反比例函数y=bx在同一坐标系中的图象的形状大致是( )A .B .C .D .10.如图,正比例函数11y k x =的图像与反比例函数22k y x=的图象相交于A 、B 两点,其中点A 的横坐标为2,当12y y >时,x 的取值范围是( )A .x <-2或x >2B .x <-2或0<x <2C .-2<x <0或0<x <2D .-2<x <0或x >211.如图,直线AB 过原点分别交比例函数6y x=,于A .B ,过点A 作AC x ⊥轴,垂足为C ,则△ABC 的面积为______.12.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x=>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.13.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)ky x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.14.已知如图,一次函数y =ax +b 和反比例函数y =k x 的图象相交于A 、B 两点,不等式ax +b >kx的解集为_____.15.直线y =k 1x +b 与双曲线y =2k x 交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x +b <2k x的解集是_______.【参考答案】 【课前预习】1.C 2.D 3.B 4.A 5.C 6.A 7.D 8.C 9.C 10.B 【课后练习】1.A 2.B 3.A 4.C 5.D 6.C 7.A 8.B 9.C 10.D 11.6;12.﹣313).(314.x>1或﹣3<x<0.15.0<x<1或x>5.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程概念导学案【目标要求】学习目标:1.知道什么样的方程是一元二次方程。

2.会把每一个一元二次方程转化成一般形式。

3.了解一元二次方程的解。

学习重点:1.会判断一个方程是一元二次方程。

2.会把每一个一元二次方程转化成一般形式。

并知道相关信息。

学习难点:1.会判断一个方程是一元二次方程。

2.会把每一个一元二次方程转化成一般形式。

并知道相关信息。

【尝试自学】相关知识链接一元一次方程:。

判断一个方程是一元一次方程的条件:1.2.3.一元一次方程的一般形式:。

其中是一次项,一次项系数,是常数项。

一次项系数的限制是:。

知识点一:一元二次方程的定义1、问题导学:预习课本25页问题1、问题2,回答下列问题。

问题(1)整理得方程:问题(2)整理得方程:像这样的方程两边都是,只含有个未知数(一元),并且未知数的最高次数是的方程,叫做一元二次方程.判断一个方程是一元二次方程的条件:○1○2○32、例题解析问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.学生活动:请口答下面问题.(1)上面三个方程整理后含有个未知数。

(2)按照整式中的多项式的规定最高次数。

(3)等号两边是式。

3、自学检测判断下列方程中,哪些是一元二次方程?○10423=--x x ○2013)12(2=+++x x m ○30222=-+y x ○40422=-+x x ○502=x ○623)22(22+-=-x x 方法技巧:任何一个一元二次方程,经过整理,都可以化为一般形式,二次项系数、一次项系数都是方程在一般形式下定义的,所以在求一元二次方程的各项系数时,必须先将方程化为 。

知识点二:一元二次方程的一般形式:1、问题导学:预习课本26页,回答下列问题。

任何一个一元二次方程,经过整理都可以化为: 的一般形式(又叫 )。

其中 叫二次项, 叫二次项系数, 叫一次项, 叫一次项系数, 叫常数项。

二次项数的限制是 , 可以是任意实数。

2、例题解析:当a 为何值时,方程056)3(1=++--x xx a 是关于x 的一元二次方程? 解:要使方程(a-3)X |a |-1+6x+5=0是关于x 的一元二次方程,则必有⎩⎨⎧∴=a 。

3、自学检测:当m 为何值时,方程03)2(42=+--x x m m 是关于x 的一元二次方程?知识点二:一元二次方程的解.1、问题导学:预习教材27页要判断一个值是否是一元二次方程的解,只要将这个值代入一元二次方程中,看看 是否相等。

若相等,则是方程解;反之,则不是。

方程的解也叫方程的根。

2、自学检测:○1数-4,-3,-2,-1,0,1,2,3,4,中是方程0432=-+x x 的解是: 。

○2已知关于x 的方程01)1()12(2=-++-m x m 有一个根是1-=x ,则m = 。

○3若一元二次方程)0(02≠=++a c bx ax 有一个根为1,则=++c b a ; 若有一个根为-1则b 与a ,c 之间的关系为 ;若有一个根为0,则c = 。

○4如果关于x 的一元二次方程02=++q px x 的两根分别为1,221==x x ,那么q p ,的值分别为: 。

用直接开平方法解一元二次方程教学目标:理解一元二次方程“降次”的转化思想.2.根据平方根的意义解形如x 2=p (p≥0)的一元二次方程,然后迁移到解(mx+n )2=p (p≥0)型的一元二次方程.一、自主预习1. 如果有X 2=a 则x 叫a 的平方根,也可以表示为x = .2. 将下列各数的平方根写在旁边的括号里A :9( );5( );4925( ); B :8( );24( );316( ); C :32( ) ;1.2( ). 3. x 2=4,则x =______.想一想:求x 2=4的解的过程,就相当于求什么的过程?4. 解方程:(1)3x 2-1=5;(2)4(x -1)2-9=0;(3)4x 2+16x +16=9.自学导读:1. 自主学习课本P30页问题1,思考并填空:(1)如果x 2=16,则x =________.(2)应怎样解方程(2x -1)2=5及方程x 2+6x +9=2?2. 自主学习课本P31页内容,体会利用直接开平方法降次解一元二次方程的思想方法,并将此面三个空填起来.3. 你能求出一元二次方程-x 2+3=0 和 x 2+1=0的解吗?若能,请写出求解过程,若不能,说明为什么.观察前面可以求解的一元二次方程的二次项系数与常数项的符号有何共同规律?二、合作探究 探究主题:用直接开平方法解一元二次方程(1)9x 2=16可以怎样求解?你们认为哪种解法更简便?(2)一元二次方程(a -8)2=25与x 2=4的形式有何联系?对比x 2=4 的求解过程,一元二次方程(a -8)2=25该如何求解?试解出此方程.(3)黑板上的三个方程和课本上的三个方程(即x 2=25,(2x -1)2=5,x 2+6x +9=2)有何联系?如何求解?2. 解下列方程:(1)x 2=256; (2)(x -5)2=36;(3)x 2-9=0; (4)(x +1)2-12=0. 一元二次方程.的解法(配方法)导学案(第一课时)学习目标:1、理解配方法的含义.2、把一元二次方程转化为q p x =+2)(,熟练地用配方法解一元二次方程。

一、课前自习:1、方程42=x 的解是x= 。

2、如果方程(x+3)2=9,那么x+3= 。

3、方程x 2+12x+36=5 的解是(提示:用代入检验法)( )A 、x=4B 、x=2C 、x =-2D 、x=2或x =-64、请写出两个完全平方公式:① ②5、填空:(1)2x +12x+ =(x+6)2;(2)2x -4x+4=(x - )2;(3)2x +8x+ =( x + )2;以上过程的完成就叫做配方,配方到底如何来配呢?通过观察发现,后面加上的数都是一次项系数一半的平方,你觉得对吗?二、课堂学习与探究 :认真阅读课本P32~34,尝试解答下列问题:例1解方程x 2+8x -9=0 解题步骤解:移项——把常数项 移到方程的右边得:配方——两边都加上 (一次项系数8的一半的平方)得:分解因式——把等式左边化为“完全平方”式,右边合并同类项得:开平方得:即: 或所以:1x = ,2x =归纳——方法解一元二次方程的步骤:(1)移项,(2)配方,(3)分解因式,(4)开平方,(5)解一元一次方程,(6)用代入法检验(口算)巩固练习用配方法解下列方程:(1)2x -10x+25=7; (2)2x +12x +25=0.(3)2x -2x -4=0 (4)2x -6x =11 一元二次方程.的解法(配方法)导学案(第二课时)【目标导航】1、掌握用配方法解一元二次方程的基本步骤和方法2、使学生掌握用配方法解二次项系数不为1的一元二次方程,进一步体会配方法是一种重要的数学方法一、课前复习:1、什么叫配方法?2、怎样配方?方程两边同加上一次项系数一半的平方。

3、解方程:(1)x 2+4x+3=0 (2)x 2―4x+2=0观察上述两个方程,我们可以发现它们的二次项系数都是1,那么按照配方法解方程的步骤我们解下边这个方程该怎么做呢?二、课上探究:1.例题:解方程:3x 2+8x ―3=0 (思路:化成二次项系数为1的方程再解)解:两边都除以3,得移项,得:配方,得: (方程两边都加上一次项系数一半的平方)这样我们就用配方法完成了二次项 系数不为1的方程的解题过程,归纳——方法解一元二次方程的步骤:(1)二次项系数化为1,(2)移项,(3)配方,(4)分解因式,(5)开平方,(6)解一元一次方程,(7)用代入法检验(口算)请同学们参考上述过程方法完成下列解方程。

2(1)3920x x -+= 2(2)2320x x +-=2(3)267x x += 2(4)542x x =-公式法解一元二次方程导学案学习目标:1.理解一元二次方程求根公式的推导过程.2.掌握公式结构,知道使用公式前先将方程化为一般形式,通过判别式判断根的情况.3.学会利用求根公式解简单数字系数的一元二次方程学习重点:求根公式的推导,公式的正确使用学习难点:求根公式的推导一、课前预习1、用配方法解下列方程4x 2-3x=522、如果这个一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它们的两根?分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.ax 2+bx+c=0(a ≠0)解: 移项,得: ,二次项系数化为1,得配方,得: 即∵a ≠0,∴4a 2>0,式子b 2-4ac 的值有以下三种情况: (1) b 2-4ac >0,则2244b ac a ->0直接开平方,得: 即x=2b a-± ∴x 1= ,x 2=(2) b 2-4ac=0,则2244b ac a -=0此时方程的跟为 即一元二次程ax 2+bx+c=0(a ≠0)有两个 的实根。

(3) b 2-4ac <0,则2244b ac a -<0,此时(x+2b a )2 <0,而x 取任何实数都不能使(x+2b a )2 <0,因此方程 实数根。

一、由预习可知,一元二次方程ax 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定 。

(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,将a 、b 、c 代入式子b 2-4ac <0,方程没有实数根。

(2)x=2b a-±叫做一元二次方程ax 2+bx+c=0(a ≠0)的求根公式. (3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有 实数根。

当b 2-4ac >0时,一元二次方程有 的实数根;当b 2-4ac=0时,一元二次方程有 的实数根;当b 2-4ac <0,一元二次方程 实数根。

(4) 一般地,式子b 2-4ac 叫做方程ax 2+bx+c=0(a ≠0)的根的判别式,通常用希腊字Δ表示它,即Δ= b 2-4ac二、使用公式法解一元二次方程的一般步骤:○1把方程整理成一般形式,确定a,b,c 的值,注意符号 ○2求出b 2-4ac 的值○3当b 2-4ac ≥0时,把a ,b ,c 及b 2-4ac 的值带入求根公式x=2b a -求出x 1,x 2;当b 2-4ac <0时,方程没有实数根三、用公式法解方程(参考课本65页例题书写)(1)x 2-4x-7=0 (2)4x 2-3x+1=0 因式分解法解一元二次方程导学案【学习目标】1、会用因式分解法(提公因式法、公式法)解一元二次方程,体会“降次”化归的思想方法。

相关文档
最新文档