汽车线束端子退针原因分析

合集下载

汽车线束故障原因与检测方法

汽车线束故障原因与检测方法

的安全性也成为了社会大众广泛关注的热门话题。在 就会一直烧到汽车的电器件接线位置,由此会造成汽
汽车使用过程中,汽车线束主要被用于连接汽车各个 车大面积的器件发生故障,这成为判断故障较为明显
电气电子设备,作为实现汽车功能的重要部件,其故障 的一种方式。 问题不容忽视。文章针对汽车线束的故障原因与检测 线束线缆之间发生故障
3)人为原因。汽车在进行保养或检修时,检修人员 率。 使用金属器具不慎,将线束压伤或是破坏,会导致线束 线束更换前的检测
外部绝缘层出现破裂等问题;其次,检修之后未依照原
首先,在对汽车线束进行检修或是更换时要检查
位置恢复线束或造成线束松动,这种情况下就会出现 原有线束的型号大小,要保证现有替换的元件与原车
方法进行了分析,希望给相关维修人员提供有益的参
汽车线缆在接触到外部碰撞或者强力挤压后均会
考。
线束线路故障的原因
出现线束绝缘保护层受损,从而引发电器件和线缆发 生短路或是断路等故障,这种情况下汽车相应的保险
汽车线束故障的发生受三方面因素影响。
丝和电器元件就会失去自身的保护作用。对此,检修人
1)自然原因。汽车线束使用一段时间之后均会出 员在进行判断时,可以拆除汽车线束两端的端子或是
线束烧毁一般发生较为突然,且燃烧速度较快, 的颜色、接口、型号),对有疑问或是操作有异常的地方
通常被烧毁的线缆中很多设置都没有保险装置,线路 利用万用表进行检测,确认线束的各项指标符合检修
- -
2第01192(期12)
· 使用·维修
要求,同时,检测人员要对汽车线束的插接器和线束接 电池和车架搭铁之间,并在不启动发动机的前提下,逐
31!(—$""*#A%4 北京:机械工业出版社,$""!:$-$04 #$0% 中华人民共和国国家质量监督检验检疫总局: 中国国家标准化管理

汽车线束出现问题的原因及检测

汽车线束出现问题的原因及检测

汽车线束出现问题的原因及检测[摘要]随着汽车数量和使用频率的增加,汽?故障也成为人们日常生活中常见的问题之一,对于专业维修人员来说,如何快速准确的判断汽车线束的故障和原因,然后进行检测和修复也关系到自己的工作效率和质量。

本文分析汽车线束的组成和引起常见故障的因素,提出了汽车线束发生故障后的判断方法和进行更换维修时的检测方法,希望能给汽车线束检修人员提供借鉴作用。

[关键词]汽车线束;问题;检测中图分类号:U472 文献标识码:A 文章编号:1009-914X (2017)13-0038-011 引言随着我国社会经济的发展和人民生活水平的提高,汽车已经成为人们日常生活必不可少的交通工具之一,尤其是近几年来,私家车的数量急剧增长,据统计,目前我国的私家车总量已近1.5亿辆,平均每百户家庭拥有36辆,在一些人口集中经济较发达的城市,每百户家庭拥有私家车数量超过70辆,而且还呈现快速增加的态势。

与此同时,随着汽车安全事故和故障的频发,人们对汽车的关注点从外观、价格和质量,已经开始向安全性能和舒适度转移。

随着汽车技术的发展,现代汽车正逐渐向智能化发展,其各种电子控制器件的使用也越来越多,这就使汽车线束系统越来越复杂,汽车线束是汽车控制电路的重要部分,汽车线束的检测与处理是保证汽车安全的重要措施,也是当今社会研究的重要课题之一。

2 汽车线束概述2.1 汽车线束的组成汽车线束是汽车电路的网络主体,是用于连接汽车各电气电子设备部分的线缆,由电线、端子、护套、胶带、橡胶件、PVC管、波纹管、防水热缩管以及一些包装物、防护材料等辅助性材料共同组成。

其结构基本上为铜制的端子和电缆电线压接,再由外部的塑压绝缘体捆扎而成。

主要包括电路、绝缘体、联插件三部分[1]。

2.2 汽车线束的代码汽车线束的线缆数量非常的多,为了便于识别和维修,线缆按不同功能采用了不同颜色的绝缘体护套,在汽车电气线路图中,线缆的编码由线缆的截面积和颜色代码组成。

故障排除比亚迪车型电气故障3例

故障排除比亚迪车型电气故障3例

故障排除比亚迪车型电气故障3例故障1关键词:线束插接器退针故障现象一辆2019年产比亚迪宋Pro运动型多功能车,搭载1.5T发动机和双离合变速器,行驶里程约70km。

车辆在行驶过程中突然自动熄火,仪表显示请检查发动机系统,斜坡控制系统HDC、电子稳定程序ESP故障灯点亮,且无法再次起动。

检查分析维修人员接车后试车,发现故障现象与用户描述一致,仪表板出现多个故障警告灯,无法起动车辆(图1)。

图1 故障车辆的仪表板出现多个故障提示连接专用诊断仪读取系统故障,发现扫描发动机控制单元时处于消极应答状态,无法获取发动机系统故障码。

进入车身控制单元,读取到故障码“B1C1D02——拨挡器的挡位信号故障”、“B1C2C02——转速信号故障”和“U010387——与MG/ECM失去通讯”。

进入多功能视频控制系统,发现故障码“U010087—与ECM 失去通讯”。

接下来,怀疑ECM的供电电压异常或搭铁故障使ECM无法正常工作。

依次测量ECM供电电压及搭铁,均正常。

对CAN系统进行测量,供电及搭铁均无异常,检查发动机舱线束及搭铁也正常。

对照电路图测量CAN总线导通性时发现,ECM插接器A01(A)-77端子到网关控制器G19-12端子(CAN-L)不导通,其他端子都可正常导通,很可能是线束存在故障。

查看线路图确定,发动机及ECM 都需经过AJBO1和BJA01接插器。

经过实际检查,发现BJA01接插器的BJA01-14端子有退针现象(图2)。

图2 插接器端子存在退针故障排除恢复插接器端子后重新测量线束,导通良好。

清除故障码后试车,故障排除。

故障2关键词:转角传感器故障现象一辆2020年产比亚迪汉EV电动汽车,搭载电力驱动系统,行驶里程20km。

用户反映车辆仪表板出现“请检查ESP系统”和“自动紧急制动功能受限”的提示。

检查分析维修人员与用户沟通故障出现的具体情况,用户描述车辆行驶7km左右,仪表板出现故障提示(图3)。

汽车线束故障原因与检测方法

汽车线束故障原因与检测方法

汽车线束故障原因与检测方法摘要:近些年来,随着我国国民大众生活水平质量的不断提高,推动了经济建设的高速发展,基于此,汽车数量和使用频率的增加,汽车故障成为人们日常生活中常见的问题之一。

基于此,本文首先分析汽车线束生产工艺分类、功能及检测原理,然后探讨引起汽车线束故障的原因,最后提出汽车线束发生故障后的判断方法和进行更换维修时的检测方法,以供汽车线束检修人员借鉴。

关键词:汽车线束;线束故障;故障原因;检测方法引言汽车线束是汽车的传动系统、制动系统、行走系统和转向系统传递信号的载体,线束的安全可靠是汽车正常行驶的保障。

随着人们对汽车安全性能的要求不断增加,汽车线束也更加复杂,给线束故障检测带来了困难。

传统的检测方法利用万用表等工具采用逐点搭接的方式来判断线束的通断,该方法速度慢、检测效率低、智能化水平低且容易造成线束的错检和漏检。

基于此,本文就汽车线束故障原因与检测方法进行了分析。

1汽车线束生产工艺分类、功能及检测原理1.1线束生产工艺分类(1)各种汇总图表,结合我单位实际情况,分为下线下管压接跟踪单、新规清单、原材料消耗定额表、工装明细表、装配明细表、工艺流程图、工艺过程表、预装图、挂板图、制品图,它们是作为生产加工、原料购买、材料供应、工装配置、成本核算、劳动力安排、组织生产的依据。

(2)各种作业指导书,分为工序作业指导书、端子压规作业指导书、各种盲堵插法作业指导书,特殊护套作业指导书,特殊加工方式的作业指导书等,总之是指导生产加工中遇到的问题所编制的文件,一切生产人员必须严格遵照执行的。

(3)工艺更改单,分为临时性更改和永久性更改两种。

例如:我们的产品改制单、临时工艺单是临时性的更改,设计更改属于永久性更改。

这些是相关部门实施工艺更改的重要依据。

1.2汽车线束的功能按照功能可将汽车线束分为有运载驱动执行元件(作动器)电力的电力线和传递传感器输入指令的信号线两种。

其中,电力线主要是运送大电流的粗电线,而信号线是不能运载电力的细电线(光纤维通信)。

端子故障分析

端子故障分析

线束防电磁干扰设计
3、屏蔽原理介绍 b、静磁屏蔽体(低频有效) 静磁屏蔽体的作用是使磁场限制于屏蔽体内,它是用强磁材料 (通
常是钢 )制成的。由于磁导系数很高,屏蔽体的磁阻很小,因而干扰源 产生的磁通就大部分被限制于强磁屏蔽体中,而只有少数部分进入被屏 蔽空间。
屏蔽体的磁导系数越大及屏蔽体厚度越大,则屏蔽效果越好;屏蔽 体的半径越大 ,则屏蔽效果越差。
电磁屏蔽原理如下:
电磁屏蔽设计措施:铜丝编织屏蔽线。
线束防电磁干扰设计
4、电磁泄露防护设计实例1
影响线束产品屏蔽效果除材料外,电磁泄露是影响产品屏蔽效果的重要因数。而线 束产品电磁泄露的主要部位是防波套与连接器尾部壳体端接位置。
图1设计通过线束外部选用带聚四氟乙烯管的不锈钢丝防波套。不锈钢丝编织的防 波套具有很强的抗拉强度 ,对导线具有很好的保护作用和抗干扰作用。
⑵ 插接器对插过程中y方向(图4)公端子和母端子不对中,母端子露出部分,公端 子易顶在母端子露出部分,程度较轻会造成插接器插拔力偏大,程度严重会造成插接器 插接过程出现端子退针;
②端子和护套配合间隙设计问题(包括间隙过大或过小等)
b、端子插拔力问题
⑴ 为提高端子的导电能力,实践中经常会加大端子的插拔力,这会导致装配困难。 ⑵ 当端子插拔力大于端子在护套中的保持力时,则可能导致插接器对插过程中的端 子退针。
b、材料选择问题
⑴ 按使用材料的初始许用屈服剪应力设计了弹舌结构; ⑵ 材料的许用屈服剪应力应按材料经受插接器可能存在的高温老化、温度-湿度循环 、化学液体腐蚀等试验后的允许值计算。
端子退针
端子在护套中的保持力不合格原因: ②端子采用弹性结构;
a、结构设计问题
⑴ 装配过程中,端子弹舌受力变形; ⑵ 装配到位后,端子弹舌由于受力解除而恢复至原始状态; ⑶ 此种结构能够保证护套对端子的有效定位; ⑷ 当材料选定后,材料的许用剪应力即固定不变; ⑸ 根据上述公式,端子弹舌的屈服强度决定了端子在护套中的保持力; ⑹ 护套和端子的设计间隙不合理,导致剪切面积不足,屈服力不足,保持力不足。

汽车线束连接器端子退针原因分析

汽车线束连接器端子退针原因分析

汽车线束连接器端子退针原因分析车用电线束插接器用于汽车电路各连接点的连接,是汽车上的重要零件,其品质好坏直接影响到电力或信号的传输效果。

插接器在汽车中占的成本比例较小,但在汽车使用中若出现品质问题,往往产生严重的后果,且维修成本大幅增加,因此,插接器的品质越来越得到汽车制造商及零部件供应商的重视。

端子退针是车用电线束插接器比较常见的一种失效形式,是指插接器完成装配后,端子与护套非正常分离,从而使插接器功能丧失。

此种失效形式的形成原因一般包括3个方面:①端子在护套中的保持力不合格;②对插干涉;③产品应用问题。

本文根据这3个方面的原因对插接器端子退针进行分析并提出解决方案。

01端子在护套中的保持力不合格端子在护套中的保持力是指沿轴向使端子与护套分离所需的力。

为避免出现端子退针的现象,插接器的性能试验标准对端子在护套中的保持力做了严格规定:①规格不大于2.8的插接器保持力大于40N;②规格大于2.8的插接器保持力大于60N。

实践中较多端子退针现象的产生都是因为保持力不满足规定。

一般来说,端子在护套中的保持力不合格的原因有:结构设计问题;材料选择问题。

1.1结构设计问题涉及到端子保持力方面的插接器的结构设计问题主要是指端子和护套的挂接结构设计。

这种挂接结构一般是一种弹性结构,分为护套上采用弹性结构和端子上采用弹性结构。

1.1.1护套上采用弹性结构护套弹性结构见图1。

护套上采用弹性结构是指将端子和护套装配所需要的弹性结构设计在护套上,在端子和护套装配过程中,通过护套弹舌(设计在护套上的弹性结构)受力变形,实现端子和护套的装配。

在端子和护套装配到位后,护套弹舌由于受力解除而恢复至原始状态。

该护套弹舌和设计在端子上的挂台结构的配合,保证护套对端子的有效定位。

护套弹舌的剪切强度决定了端子在护套中的保持力。

剪应力计算公式如下:式中:τ———材料所受的剪应力;F———材料剪切方向受力;A———剪切面积;[τ]——材料的许用屈服剪应力。

汽车线束连接器端子退针原因分析

汽车线束连接器端子退针原因分析车用电线束插接器用于汽车电路各连接点的连接,是汽车上的重要零件,其品质好坏直接影响到电力或信号的传输效果。

插接器在汽车中占的成本比例较小,但在汽车使用中若出现品质问题,往往产生严重的后果,且维修成本大幅增加,因此,插接器的品质越来越得到汽车制造商及零部件供应商的重视。

端子退针是车用电线束插接器比较常见的一种失效形式,是指插接器完成装配后,端子与护套非正常分离,从而使插接器功能丧失。

此种失效形式的形成原因一般包括3个方面:①端子在护套中的保持力不合格;②对插干涉;③产品应用问题。

本文根据这3个方面的原因对插接器端子退针进行分析并提出解决方案。

01端子在护套中的保持力不合格端子在护套中的保持力是指沿轴向使端子与护套分离所需的力。

为避免出现端子退针的现象,插接器的性能试验标准对端子在护套中的保持力做了严格规定:①规格不大于2.8的插接器保持力大于40N;②规格大于2.8的插接器保持力大于60N。

实践中较多端子退针现象的产生都是因为保持力不满足规定。

一般来说,端子在护套中的保持力不合格的原因有:结构设计问题;材料选择问题。

1.1结构设计问题涉及到端子保持力方面的插接器的结构设计问题主要是指端子和护套的挂接结构设计。

这种挂接结构一般是一种弹性结构,分为护套上采用弹性结构和端子上采用弹性结构。

1.1.1护套上采用弹性结构护套弹性结构见图1。

护套上采用弹性结构是指将端子和护套装配所需要的弹性结构设计在护套上,在端子和护套装配过程中,通过护套弹舌(设计在护套上的弹性结构)受力变形,实现端子和护套的装配。

在端子和护套装配到位后,护套弹舌由于受力解除而恢复至原始状态。

该护套弹舌和设计在端子上的挂台结构的配合,保证护套对端子的有效定位。

护套弹舌的剪切强度决定了端子在护套中的保持力。

剪应力计算公式如下:式中:τ———材料所受的剪应力;F———材料剪切方向受力;A———剪切面积;[τ]——材料的许用屈服剪应力。

新能源车直流快充故障案例检查

新能源车直流快充故障案例检查1.快充桩与车辆无法通信(1)用诊断仪访问车载充电机,查看是否有DTC,有则根据DTC提示维修。

(2)检查快充口状况。

检查快充口是否有烧蚀、损坏现象;各端子的导电圈是否脱落;检查充电插座和充电插头连接是否松动。

如出现异常,则进行修理。

(3)检查车辆软件版本确保整车控制器(VBU)和动力电池管理系统(BMS)软件版本号为最新,快充测试时连接良好。

(4)检查快充口搭铁情况。

如果快充接口PE端子与车身连接不良,可能会出现充电桩无法操作、无法与车辆通信的问题。

所以需要测量快充接口PE端子与车身负极搭铁的阻值,应小于0.5Ω。

如果阻值不符,则有可能是螺栓松动、接触面锈蚀、螺纹处油漆未处理干净等原因造成。

如果PE端子与搭铁线端子完全不导通,则应更换快充接口的线束。

(5)测量快充口CC1、PE端子间阻值。

测量快充接口CC1、PE端子之间的阻值是否为1000±50Ω,如果阻值与标准值不符,则更换快充线束。

如正常,则继续进行下面步骤。

(6)检测唤醒信号。

①将车辆与快充桩连接好,测试充电唤醒信号是否正常。

如果仪表未显示唤醒,则首先测量BV21插件5号端子是否有唤醒电压,如果无电压,则应断开充电枪,在点火开关处于关闭状态下,检查快充线束端子有无退针、锈蚀、接触不实等现象;BV21到BV20插件线束是否正常,发现问题则进行修复。

②如果线束端子没有问题,则测量快充接口SO83的5号端子到CA70插件4号端子是否导通。

如不导通则进行分段测量,并更换相关线束;如导通则继续进行下一步。

③根据电路,继续测量CA69插件4号端子、3号端子到CA66插件8号端子、7号端子是否导通,如不导通则应检查并修复线束,在不能有效修复的情况下需要更换线束。

(7)检测确认信号。

检查完快充唤醒信号及相关线束都正常,车辆仍旧不能通信,则需要对车辆端连接确认信号进行检测。

①测量快充接口(CC2)端子与快充线束的BV21接口2号端子是否导通。

片型电路插接件端子脱出问题分析

片型电路插接件端子脱出问题分析张江波;王慧;薛鹏飞【摘要】结合某车型在制造过程出现的端子脱出问题进行了插接件端子脱出原因分析,并总结了针对各种问题在线束生产及整车工厂插接配合过程中的控制措施.从线束护壳、端子原料确认、操作检验控制方式、物料运转、整车工厂对线束插接的标准化操作等方面进行了有效控制,对于线束制造过程中可能导致端子脱出的因素基本可以做到有效预防.【期刊名称】《汽车工艺与材料》【年(卷),期】2016(000)004【总页数】5页(P35-38,43)【关键词】片型电路插接件;端子脱出;线束【作者】张江波;王慧;薛鹏飞【作者单位】上汽通用五菱汽车股份有限公司,青岛266555;上汽通用五菱汽车股份有限公司,青岛266555;上汽通用五菱汽车股份有限公司,青岛266555【正文语种】中文【中图分类】U463.6片型电路插接件是电路系统重要组成部分,其提供可分离的界面用以连接两个次电子系统,使电路内被阻断处或孤立不通的电路之间电流流通,实现电路预定的功能。

按照用途主要可分为线-线和线-用电器插接件两类。

典型插接件结构包括护套(Connector Hous⁃ings)、端子(Terminals)和二次锁定(Secondary Locks),典型主流插接件结构示意如图1所示。

主流插接件特点如下。

a.美系插接件特点:以德尔福、YAZAKI为代表,趋向USCAR,端子多为单层;b.欧系插接件特点:以TYCO德国、MOLEX德国、FCI等为代表,结构复杂,技术先进,端子多为双层,头部宽度与美系类似;c.日系插接件特点:以 YAZAKI、SUMITOMO、KET、TYCO韩/日为代表,结构简单,成本控制好,端子多为单层;d.国内插接件特点:多仿制欧美德日产品,端子趋向日系单层。

电路插接件插接目的是通过公、母侧护套的安装配合实现公、母侧端子的连接。

插接件分别通过外层护套、端子倒角等实现插接过程,公、母端护套通过先期的导向定位与防错结构实现插入配合;插入过程公侧端子通过公侧端子的倒角与母侧护套的倒向孔进行插接定位,实现公、母侧端子的先期导入。

关于汽车连接器护套端子退位问题的几点分析

关于汽车连接器护套端子退位问题的几点分析随着汽车电子化程度的不断提高,汽车连接器这一重要组件的作用也越来越大。

汽车连接器护套端子是连接汽车电子设备的重要部分,它的质量直接关系到整个汽车电子系统的稳定性和可靠性。

然而在使用过程中,护套端子会出现一些问题,其中最常见的就是端子退位问题。

为了避免这种情况的发生,下面就来进行一些分析。

1. 原因分析端子退位的原因可能是多重的,比如:连接器制造精度不符合要求、工艺不规范、组装质量差、使用寿命过长、外部环境影响等。

连接器制造精度不符合要求可能会导致端子与护套安装不够牢固,在长时间的摩擦、振动下,端子就会发生退位。

而工艺不规范、组装质量差,则可能会导致端子位置不准确,无法很好的与护套契合,从而引发端子退位问题。

使用寿命过长也是端子退位的一个重要原因,随着使用时间和次数增加,端子和护套之间的摩擦力不断减小,就容易发生退位的现象。

环境的因素也能对端子退位产生影响,例如在潮湿的环境中,连接器出现锈蚀或者电子设备受潮,也会引起退位问题。

2. 防范措施由于端子退位的原因多种多样,那么如何防范呢?我们可以从以下几个方面入手。

首先,选择优质的连接器产品,这样能够确保连接器的制造精度符合要求,从根本上避免端子退位的问题。

其次,寻找专业的组装技术,保证连接器组装的质量无可挑剔。

工具的选择、组装顺序的合理安排、套装部品和连接器的材料质量等方面都需要保证,以尽可能避免出现端子退位的情况。

第三,加强损坏部分的检测。

对汽车连接器护套端子的损坏情况进行检测,以便及时进行更换,保证连接器的使用寿命和稳定性。

第四,加强使用环境的维护。

特别是在潮湿的环境中,应该加强设备的涂层保护,杜绝连接器端子处漏入水分等危险。

除此之外,还应该保证设备的使用环境湿度和温度的适宜性,尽可能减少连接器出现老化等问题。

综上所述,汽车连接器护套端子退位问题是很常见的现象,但是通过选择优质材料和组装技术,加强使用维护,可以有效地避免这种情况的发生,确保整个汽车电子系统的稳定性和可靠性,减少对汽车使用者造成的负面影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线束插接器用于汽车电路各连接点的连接,是汽车上的重要零件,其品质好坏直接影响到电力或信号的传输效果。

插接器在汽车中占的成本比例较小,但在汽车使用中若出现品质问题,往往产生严重的后果,且维修成本大幅增加,因此,插接器的品质越来越得到汽车制造商及零部件供应商的重视。

端子退针是线束插接器比较常见的一种失效形式。

端子退针是指插接器完成装配后,端子与护套非正常分离,从而使插接器功能丧失。

此种失效形式的形成原因一般包括3个方面:①端子在护套中的保持力不合格;②对插干涉;③产品应用问题。

本文根据这3个方面的原因对插接器端子退针进行分析并提出解决方案。

1.端子在护套中的保持力不合格
端子在护套中的保持力是指沿轴向使端子与护套分离所需的力。

为避免出现端子退针的现象,插接器的性能试验标准对端子在护套中的保持力做了严格规定:①规格不大于2.8的插接器保持力大于40N;②规格大于2.8的插接器保持力大于60N。

实践中较多端子退针现象的产生都是因为保持力不满足规定。

一般来说,端子在护套中的保持力不合格的原因有:结构设计问题及材料选择问题。

1.1结构设计问题
结构设计问题主要是指端子和护套的挂接结构设计。

这种挂接结构一般是一种弹性结构,分为护套上采用弹性结构和端子上采用弹性结构。

1.1.1护套上采用弹性结构
护套上采用弹性结构,将端子和护套装配所需要的弹性结构设计在护套上,在端子和护套装配过程中,通过护套弹舌(设计在护套上的弹性结构)受力变形,实现端子和护套的装配。

在端子和护套装配到位后,护套弹舌由于受力解除而恢复至原始状态。

该护套弹舌和设计在端子上的挂台结构的配合,保证护套对端子的有效定位。

护套弹舌的剪切强度决定了端子在护套中的保持力。

剪应力计算公式如下:
式中:τ———材料所受的剪应力;F———材料剪切方向受力;A———剪切面积;[τ]——材料的许用屈服剪应力。

由公式(1)可知:材料剪切方向承受的最大力与材料的剪切面积成正比,与材料的许用剪应力成正比。

护套弹舌设计时,当材料选定后,材料的许用屈服剪应力即固定不变,要保证产品满足端子在护套中的保持力(剪切方向受力)要求,需保证护套弹舌的剪切面积满足要求值。

实践中由于考虑到端子和护套的设计间隙,因此剪切面积应按极限恶劣情况计算。

端子和护套的设计间隙应能保证在极限恶劣情况下计算出的剪切面积所能承受的屈服剪应力大于要求的端子在护套中的保持力。

1.1.2端子上采用弹性结构
端子上采用弹性结构是指将端子和护套装配所需要的弹性结构设计在端子上,在端子和护套装配过程中,通过端子弹舌(设计在端子上的弹性结构)受力变形,实现端子和护套的装配。

在端子和护套装配到位后,端子弹舌由于受力解除而恢复为原始状态。

该端子弹舌和设计在护套上的挂台结构的配合,保证护套对端子的有效定位。

端子弹舌的屈服强度决定了端子在护套中的保持力。

由公式(1)可知:端子弹舌设计时,当材料选定后,材料的许用剪应力即固定不变,要保证产品满足端子在护套中的保持力(剪切方向受力)要求,需保证端子弹舌的剪切面积满足要求值。

实践中由于考虑到端子和护套的设计间隙,除考虑端子弹舌的剪切面积(材料厚度和弹舌宽度)外,应保证极限恶劣情况下,端子弹舌与设计在护套上的挂台结构具有完整的配合。

1.2 材料选择问题
1.2.1护套材料选择
插接器护套常用材料有:聚酰胺(俗称尼龙)、聚对苯二甲酸丁二醇酯(PBT)、ABS等。

对于护套弹舌结构,一般主要考虑材料的韧性,根据满足韧性要求的材料的许用屈服剪应力设计弹舌结构的尺寸。

需要强调的是,材料的许用屈服剪应力应按材料经受插接器可能存在的高温老化、温度-湿度循环、化学液体腐蚀等试验后的允许值计算。

如果按试验后的许用屈服剪应力值设计弹舌结构无法满足要求,则应考虑更换材料或使用二次锁结构(图2)来解决。

当插接器初始保持力正常,试验后保持力不合格出现退针时,一般是因为按使用材料的初始许用屈服剪应力设计了弹舌结构造成的。

1.2.2端子材料选择
插接器端子常用材料有:紫铜、黄铜、青铜。

根据它们的硬度情况又可分为软、半硬、硬3种状态。

这3种材料中,紫铜应用较少,一般用于接地孔式或叉式接头等。

黄铜和青铜应用较多。

黄铜的导电性能比青铜好,而青铜的硬度和弹性比黄铜好。

当使用端子弹舌结构时,一般应使用青铜。

使用黄铜材料经常会出现保持力不足的现象。

2 端子对插干涉
端子对插干涉是指插接器的公端和母端在对插过程中,由于公端子插入母端子非有效区域,从而使插接器出现端子退针等功能丧失现象的失效形式。

一般来说,端子对插干涉的原因有:①结构设计问题;②端子插拔力问题。

2.1 结构设计问题
涉及到端子对插干涉的插接器结构设计问题主要有:插接器的中心距设计问题(包括尺寸错误或公差过大等)、端子和护套配合间隙设计问题(包括间隙过大或过小)等。

当结构设计存在问题时会出现插接器对插过程中公端子和母端子不对中,这种不对中出现在x方向时(图3),会出现公端子顶在面B的顶部或面C上,程度较轻时会造成插接器插拔力偏大,程度严重时会造成插接器插接过程出现端子退针。

这种不对中出现在y方向时(图4),会出现不应该的母端子露出部分,公端子易顶在母端子露出部分,程度较轻时会造成插接器插拔力偏大,程度严重时会造成插接器插接过程出现端子退针。

例如,某汽车厂总装车间发动机舱熔断丝盒与线束对插装配过程中,曾经出现线束端插接器端子频繁退件且插入力较大,退针发生比率为15%,插入力大发生比例为全部。

经对问题件分析,发现由于与线束端对插的相应熔断丝盒结构中心距设计问题,造成对插过程中公端子和母端子不对中,从而造成线束端插接器与熔断丝盒装配过程中插入力较大且线束端插接器端子部分退针。

对熔断丝盒相应结构改进设计后,该问题得以解决。

2.2 端子插拔力问题
由于装配性能的要求,插接器端子插拔力应越小越好,而过小的插拔力将使插接器的接触电阻增大,导电能力降低。

因此,合适的端子插拔力是在保证插接器电性能的前提下满足插接器装配性能的
要求。

为提高端子的导电能力,实践中经常会出现端子的插拔力被加大,一般情况下,这会导致装配困难。

而当端子插拔力大于端子在护套中的保持力时,则可能导致插接器对插过程中的端子退针。

3 产品应用问题
涉及到插接器端子退件的产品应用问题,主要是指在线束生产过程中出现的可能造成端子退针的问题。

一般包括端子压接问题和端子装配问题。

“香蕉”端子是端子压接过程常出现的问题。

是指由于不当压接导致的端子过度弯曲,使端子的接合区和压接区的中心线不平行,见图5。

过度弯曲的程度较轻时会造成插接器的插拔力增大,影响装配性能;程度严重时会导致插接器对插过程中公端子无法插入母端子的有效插入区域,从而造成端子退针。

例如,某汽车厂总装车间后尾灯与线束对插装配过程中,曾经出现线束端插接器端子频繁退针,发生比率为20%,经对问题件分析,发现由于端子的不当压接,出现部分端子过度弯曲(香蕉端子),从而造成线束端插接器与后尾灯装配过程中线束端插接器端子退针。

对端子压接调整后,该问题得以解决。

4 结论
连接器端子退针的原因包括3个方面:
①端子在护套中的保持力不合格———一般是设计原因、制造原因或使用材料的原因造成的;
②对插干涉———一般是设计原因或制造原因造成的;
③产品应用问题———主要是在产品使用过程中不合适的使用方法造成的。

实际使用时,如果出现端子退针的情况,应先分析形成问题的原因,有针对性地加以解决。

相关文档
最新文档