仪器分析石墨炉原子吸收实验报告
原子吸收实验报告

原子吸收实验报告一实验目的1、理解仪器原理和应用2、了解仪器构成3、了解分析过程二实验仪器及其构成本实验所用仪器为:ZEEmit600石墨炉原子吸收光谱仪AAS仪器由光源、原子化系统(类似样品容器)、分光系统及检测系统构成。
1光源对AAS光源的要求:a)发射稳定的共振线,且为锐线b)强度大,没有或只有很小的连续背景c)操作方便,寿命长一般采用空心阴极灯,其组成为:阳极(吸气金属)、空心圆筒形(使待测原子集中)阴极(W+待测元素)、低压惰性气体(谱线简单、背景小)。
工作过程:高压直流电(300V)---阴极电子---撞击隋性原子---电离(二次电子维持放电)---正离子---轰击阴击---待测原子溅射----聚集空心阴极内被激发----待测元素特征共振发射线。
2原子化器原子化器是将样品中的待测组份转化为基态原子的装置。
包括:火焰原子化器和石墨炉原子化器。
火焰原子化器由四部分组成:a)喷雾器;b)雾化室;c)燃烧器;d)火焰。
石墨炉原子化器包括电源、保护系统和石墨管三部分。
a)电源:10~25V,500A。
用于产生高温。
b)保护系统:保护气(Ar)分成两路,管外气——防止空气进入,保护石墨管不被氧化。
管内气——流经石墨管两端及加样口,可排出空气并驱除加热初始阶段样品产生的蒸汽。
冷却水——金属炉体周围通水,以保护炉体。
c)石墨管:多采用石墨炉平台技术。
在管内置一放样品的石墨片,当管温度迅速升高时,样品因不直接受热(热辐射),因此原子化时间相应推迟。
或者说,原子化温度变化较慢,从而提高重现性。
另外,从经验得知,当石墨管孔隙度小时,基体效应和重现性都得到改善,因此通常使用裂解石墨作石墨的材料。
原子化过程可分为四个阶段,即干燥、灰化、原子化和净化。
干燥:去除溶剂,防止样品溅射灰化:使基体和有机物尽量挥发除去原子化:待测物化合物分解为基态原子,此时停止通Ar,延长原子停留时间,提高灵敏度净化:样品测定完成,高温去残渣,净化石墨管3分光系统同其它光学分光系统一样,原子吸收光度计中的分光系统亦包括出射、入射狭缝、反射镜和色散原件(多用光栅)。
仪器分析石墨炉原子吸收实验报告

仪器分析石墨炉原子吸收实验报告实验目的:1.学习和掌握使用石墨炉原子吸收光谱仪进行定性和定量分析的基本原理和方法。
2.了解石墨炉原子吸收光谱仪的工作原理和操作步骤。
3.进行标准曲线法的定量分析实验,测定样品中的特定元素的含量。
实验原理:石墨炉原子吸收光谱仪是一种常用的分析仪器,它可以用于确定样品中特定元素的含量。
其工作原理是:当样品溶液通过石墨炉加热时,样品中的元素会被蒸发并形成原子态。
然后,利用吸收光谱法测量原子态特定波长的吸光度,进而计算出样品中特定元素的含量。
实验步骤:1.准备工作:根据实验需要,准备好所需的样品和标准溶液,并稀释到适当的浓度。
2.仪器调试:打开石墨炉原子吸收光谱仪,进行仪器的调试和校准工作。
检查仪器的工作状态和光路是否正常。
3.标准曲线法测定:首先,通过加入一定量的标准溶液到石墨炉中建立标准曲线。
根据不同的元素和样品类型,选择合适的吸收波长和光强,以获得准确的测量结果。
4.样品测定:将待测样品溶液注入石墨炉中,根据实验需要选择相应的加热程序和测量参数,并进行样品测定。
连续测量一系列浓度的样品,得到样品的吸光度值。
5.数据处理和分析:根据标准曲线,计算样品中特定元素的浓度。
根据实际情况进行样品的稀释和综合分析,得出最终结果。
实验结果:根据实验的测量结果,可以得到一系列吸光度和浓度的数据。
利用标准曲线和线性回归分析方法,可以计算出样品中特定元素的浓度。
根据实验目的,可以判断实验是否成功,并分析实验结果的合理性和准确性。
实验讨论:1.实验过程中要注意避免操作中的误差,如容器的清洁、标准品的配制、取样和吸光度的测量等。
2.实验中要选择合适的波长和吸光度范围,以保证测量结果的准确性和可靠性。
3.在样品稀释和吸光度测量时要进行多次重复操作,以提高数据的精确性和可靠性。
4.实验结束后要及时对仪器进行清洗和维护,以确保仪器的长期稳定和正常工作。
总结:通过本次实验,我们学会了使用石墨炉原子吸收光谱仪进行定性和定量分析的基本原理和方法。
微波消解-石墨炉原子吸收光谱法测定紫菜中的铅的研究报告

微波消解-石墨炉原子吸收光谱法测定紫菜中的铅的研究报告本次实验是利用微波消解-石墨炉原子吸收光谱法,对紫菜中的铅进行测定。
紫菜作为一种海藻,因经常受到海水中的铅等重金属污染而备受关注,因此需要对其铅含量进行检测,以保障人们的食品安全。
实验流程:1.制备样品:取少量紫菜,粉碎后取其中约0.2g放入50mL刻度瓶中,并用1 mL的浓稀盐酸和0.5 mL的过氧化氢将其混合。
2.微波消解:将刻度瓶盖好,置于微波消解仪中,按微波消解仪使用说明书操作,加热过程中实时观察瓶中样品的消解情况,待反应结束后取出刻度瓶,冷却并用去离子水补充至刻度线。
3.原子吸收光谱法测定:取微波消解后的样品,用去离子水稀释至合适的体积,用紫外-可见分光光度计测定其吸光值,根据铅的标准曲线,计算出其质量浓度。
实验结果:在微波消解过程中,样品颜色逐渐变淡,直至完全消解。
用原子吸收光谱法测定紫菜中铅的含量,得到吸光度为0.311,根据标准曲线计算出铅的质量浓度为0.036 mg/L。
实验结论:本次实验成功地通过微波消解-石墨炉原子吸收光谱法,对紫菜中的铅进行了测定。
实验结果表明,紫菜中铅的含量较低,符合国家相关标准。
该方法具有快速、准确、灵敏度高等优点,对于海产品中的铅等重金属的检测,具有重要意义。
实验结果表明,测定的紫菜中铅的含量为0.036mg/L。
在国家食品安全标准中,铅的限量标准为0.1mg/kg,按照该标准计算,本实验测得的结果显然符合国家标准。
通过微波消解-石墨炉原子吸收光谱法对紫菜中铅的测定,可以发现该方法具有以下优点:操作简单、成本低、实验时间短、准确度高、灵敏度高,且能够同时检测多种元素,因此这种检测方法受到越来越多人的青睐。
然而,微波消解-石墨炉原子吸收光谱法也存在一些局限性,如样品数量有限、不同样品成分复杂等问题,这些问题都需要在操作实验时予以注意。
总体而言,本次实验的结果显示,紫菜中的铅含量较低,符合食品安全标准,这为人们的食品安全提供了有力的保障。
原子吸收石墨炉法测定食品中镍

原子吸收石墨炉法测定食品中镍摘要:目的:建立一种行之有效的方法来测定食品中的镍。
方法:在基体改进剂硝酸钯 - 磷酸二氢铵存在下,在2700℃原子化温度下及232.19nm波长下测定镍的吸光度值。
结果: 在镍含量为 8.0~40.0 ng/ml 范围内有良好线性关系,回归方程为y =1.686x—0.0009,检出限为0.0196mg/kg,RSD为4.16%~4.54%,回收率为86.3%~99.4%。
结论:该法消除了基体干扰,操作简便、结果稳定,可用于食品中镍的测定。
关键词: 石墨炉原子吸收; 基体改进剂; 镍镍是人体内必需的微量元素之一,参与多种酶的合成和生命代谢过程,进入人体后主要留存于脊髓、脑及五脏中,具有促进红细胞再生、刺激生血等功能。
镍也是一种重金属,摄入过量会发生中毒,导致癌变或其他病变。
镍及其化合物被广泛用于各种制造业、印染和制革行业等。
工业“三废’中含有镍及其化合物可对周围环境及食品造成污染,因此加强食品中镍的测定是必要的.本法采用硝酸钯和磷酸二氢铵作为基体改进剂来提高灰化温度消除基体干扰,并以氘灯扣除背景,对食品中镍的测定方法进行了介绍和讨论。
1、材料与方法1.1、仪器、AA240FS原子吸收仪,附镍空心阴极灯、聚四氟乙烯消解罐、可调式控温电热板、高氯酸、磷酸二氢铵、硝酸、硝酸钯、25ml 容量瓶,镍国家级标准储备液 GSB04-1740-2004,用1%硝酸逐级稀释至1.0 μg/ml以上试剂均为优级纯或基准试剂,所有器皿均用1+3 硝酸浸泡过夜,用去离子水冲洗干净晾干备用。
1.2 、仪器工作条件波长230.19nm,高压325.5V,狭缝 0.2nm,元素灯电流4mA,扣除背景 ( 灯电流80mA) ,石墨炉升温程序。
首先,第一步是在140℃的温度下,进行30s的干燥,第二步是在1000℃的温度下,进行20s的灰化,其次在2700℃的温度下,进行5s的原子化,最后一步是在2800℃的温度下,进行4s的净化。
石墨实验吸附性实验报告(3篇)

第1篇一、实验目的通过本实验,了解石墨的吸附性能,探究不同条件下石墨对特定物质的吸附能力,并分析吸附机理。
二、实验原理石墨作为一种具有多孔结构的碳材料,具有优异的吸附性能。
实验中,我们将利用石墨对某些特定物质的吸附作用,通过测量吸附前后物质浓度的变化,来评估石墨的吸附能力。
三、实验材料与仪器1. 实验材料:- 石墨粉末- 待吸附物质(如染料、金属离子等)- 稀释液- 容量瓶- 恒温水浴锅- 精密天平- 离心机2. 实验仪器:- 紫外可见分光光度计- 磁力搅拌器- 移液器四、实验步骤1. 准备石墨吸附剂:称取一定量的石墨粉末,用蒸馏水充分搅拌,使石墨粉末充分分散,静置一段时间后,取上层清液作为吸附剂。
2. 准备待吸附物质溶液:根据实验要求,配置一定浓度的待吸附物质溶液。
3. 吸附实验:将配置好的待吸附物质溶液与石墨吸附剂按一定比例混合,放入恒温水浴锅中,在特定温度下搅拌一定时间。
4. 吸附后处理:将吸附后的溶液取出,离心分离,取上层清液,用紫外可见分光光度计测定待吸附物质的浓度。
5. 数据处理:计算吸附前后待吸附物质的浓度变化,评估石墨的吸附能力。
五、实验结果与分析1. 实验结果:| 待吸附物质 | 吸附前浓度(mg/L) | 吸附后浓度(mg/L) | 吸附率(%)|| :--------: | :--------------: | :--------------: | :--------: || 染料A | 10.0 | 0.8 | 92.0 || 染料B | 15.0 | 1.2 | 92.0 || 金属离子C | 20.0 | 1.5 | 92.5 |2. 结果分析:从实验结果可以看出,石墨对染料A、染料B和金属离子C均有良好的吸附性能,吸附率均在90%以上。
这说明石墨具有较好的吸附能力,可用于去除水中的污染物。
六、实验结论1. 石墨具有优异的吸附性能,可用于去除水中的污染物。
2. 石墨对染料和金属离子具有良好的吸附能力,吸附率较高。
仪器分析实验原子发射与原子吸收光谱法

火焰的燃助比变化也会导致测量灵敏度的变化。同样,变化的大小也因火焰种类和元素的 性质而定。即使是相同种类的火焰,燃助比不同,也会引起最佳测量高度的改变,从而使测量 灵敏度发生变化。从图 155-2 可看出燃烧器高度与燃助比两个条件的相互依赖关系。
当仪器的光学及电学部分处于稳定的工作状态时,就可根据操作规程对分析条件进行选
4
三、仪器和试剂
仪器:AA300 型原子吸收分光光度计(美国 PE 公司);10mL 比色管:6 支;25mL 比色 管:1 支;100mL 容量瓶:1 个;5mL 分度吸量管:2 支
试剂:钙标准溶液:100μg·mL-1;镧溶液:10 mg·mL-1。若去离子水的水质不好,会 影响钙的测定灵敏度和校准曲线的线性关系,加入适量的镧可消除这一影响。
本实验以乙炔气为燃气,空气为助燃气。
四、实验步骤
(1)测试溶液的制备 ① 条件试验溶液的配制:将 100 μg·mL-1的Ca2+标液稀释成浓度约为 2-3μg·mL-1的 Ca2+试液 100mL,摇匀。此溶液用于分析条件选择实验。 ② 标准溶液的配制:用分度吸量管取一定体积的 100μg·mL-1Ca2+标液于 25mL比色管 中,用去离子水稀释至 25mL刻度处,其浓度应为 10μg·mL-1。于 6 支 10mL比色管中分别加 入一定体积的 10μg·mL-1Ca2+标液,用去离子水稀释至 10mL刻度处,摇匀。配成浓度分别 为 0、0.5、1.0、2.0、2.5、3.0μg·mL-1的Ca2+标准系列溶液,用于制作校准曲线。 (2)分析条件的选择 本实验只对燃烧器高度和燃助比这两个条件进行选择。在原子吸收光谱仪中,整个原子化 器的上、下、前、后位置和燃烧器头的旋转角度都是可调的。从光源发出的光,其光路是不变 的。若改变原子化器的上、下位置,就相当于入射光穿过了火焰的不同部位,如图 155-1 所示。 通常原子化器旁装有一标度尺,可读出高度变化的相对值。由于火焰燃烧性质和温度分布的不 均匀性,在H1、H2和H3位置测定的吸光度值会有一些差别。差别的大小因火焰种类和元素性 质而异。钙在火焰中易形成氧化物,若在火焰的还原区或高温区,就可避免或减少氧化钙的形 成,使钙的自由原子数目增多。燃烧器高度的选择就是在寻找原子化的最佳的区域。
石墨分析实验报告总结(3篇)

第1篇一、实验背景石墨作为一种重要的碳质材料,在工业、科研等领域具有广泛的应用。
本实验旨在通过对石墨样品的分析,了解其化学组成、结构特性以及相关性能,为石墨的进一步研究和应用提供数据支持。
二、实验目的1. 确定石墨样品的化学组成。
2. 分析石墨的结构特性。
3. 评估石墨的性能指标。
4. 探讨石墨的制备方法和应用前景。
三、实验方法本实验主要采用以下方法进行石墨分析:1. 化学分析方法:通过X射线荧光光谱(XRF)和原子吸收光谱(AAS)等手段,对石墨样品进行化学组成分析。
2. 结构分析方法:采用X射线衍射(XRD)和扫描电子显微镜(SEM)等手段,对石墨的结构特性进行分析。
3. 性能分析方法:通过电学测试、力学测试等方法,评估石墨的性能指标。
4. 制备方法研究:探讨不同制备方法对石墨性能的影响。
四、实验结果与分析1. 化学组成分析:XRF和AAS结果表明,石墨样品主要由碳元素组成,并含有少量杂质,如硅、铝、铁等。
2. 结构特性分析:XRD和SEM结果表明,石墨样品具有良好的层状结构,层间距约为0.34纳米。
石墨烯层间存在少量缺陷,如石墨烯层间的空隙、石墨烯层内的杂质等。
3. 性能指标分析:电学测试结果显示,石墨样品的电阻率为0.05Ω·m,导电性能良好。
力学测试结果显示,石墨样品的弯曲强度为150MPa,具有良好的力学性能。
4. 制备方法研究:通过对比不同制备方法制备的石墨样品,发现微机械剥离法制备的石墨样品具有更好的结构特性和性能。
五、实验结论1. 本实验成功地对石墨样品进行了化学组成、结构特性和性能指标分析。
2. 石墨样品具有良好的层状结构,层间距约为0.34纳米,并含有少量杂质。
3. 石墨样品具有良好的导电性能和力学性能。
4. 微机械剥离法制备的石墨样品具有更好的结构特性和性能。
六、实验讨论1. 本实验采用多种分析方法对石墨样品进行了全面分析,为石墨的进一步研究和应用提供了数据支持。
原子吸收演示实验报告

一、实验目的1. 了解原子吸收光谱仪的基本构造和原理。
2. 掌握原子吸收光谱分析样品的预处理方法。
3. 学会应用原子吸收光谱法进行金属元素的定量分析。
4. 熟悉实验操作流程和注意事项。
二、实验原理原子吸收光谱法(AAS)是一种基于原子蒸气对特定波长的光产生吸收作用来测定金属元素浓度的分析方法。
当金属元素原子蒸气被光源发出的特定波长的光照射时,部分原子会吸收光能,跃迁到激发态。
当激发态原子回到基态时,会释放出与吸收光相对应的特定波长的光。
通过测量该特定波长的光强度,可以计算出样品中金属元素的浓度。
三、实验仪器与试剂1. 仪器:原子吸收分光光度计、金属样品、标准溶液、试剂、移液器、容量瓶、烧杯、酒精灯、洗瓶、滤纸等。
2. 试剂:盐酸、硝酸、氢氧化钠、金属标准溶液、待测样品溶液等。
四、实验步骤1. 样品预处理a. 称取一定量的待测样品,用盐酸溶解,煮沸去除干扰物质。
b. 将溶液转移至容量瓶中,用蒸馏水定容至刻度线。
c. 用移液器吸取一定量的标准溶液,加入烧杯中,用盐酸溶解,煮沸去除干扰物质。
d. 将标准溶液转移至容量瓶中,用蒸馏水定容至刻度线。
2. 标准曲线绘制a. 在原子吸收分光光度计上,选择合适的波长和灯电流。
b. 调整仪器,使仪器稳定。
c. 依次测量标准溶液的吸光度,记录数据。
d. 以标准溶液浓度为横坐标,吸光度为纵坐标,绘制标准曲线。
3. 待测样品分析a. 在原子吸收分光光度计上,选择合适的波长和灯电流。
b. 调整仪器,使仪器稳定。
c. 测量待测样品溶液的吸光度,记录数据。
d. 在标准曲线上,根据待测样品溶液的吸光度,查得金属元素的浓度。
五、实验结果与分析1. 标准曲线绘制结果a. 标准曲线呈线性关系,相关系数R²大于0.99。
b. 标准曲线的线性范围为1-10mg/L。
2. 待测样品分析结果a. 样品中金属元素的浓度为3.5mg/L。
b. 与标准曲线法测定的结果相符。
六、实验总结1. 本实验成功演示了原子吸收光谱法的基本原理和操作流程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原子吸收法测定水中的铅含量
课程名称:仪器分析实验实验项目:原子吸收法测定水中的铅含量
原子吸收法测定水中的铅含量
一、实验目的
1. 加深理解石墨炉原子吸收光谱法的原理
2. 了解石墨炉原子吸收光谱法的操作技术
3. 熟悉石墨炉原子吸收光谱法的应用
二、方法原理
石墨炉原子吸收光谱法,采用石墨炉使石墨管升至2000℃以上的高温,让管内试样中的待测元素分解形成气态基态原子,由于气态基态原子吸收其共振线,且吸收强度与含量成正比,故可进行定量分析。
它是一种非火焰原子吸收光谱法。
石墨炉原子吸收法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g,并可直接测定固体试样。
但仪器较复杂、背景吸收干扰较大。
在石墨炉中的工作步骤可分为干燥、灰化、原子化和除残渣4个阶段。
在选择最佳测定条件下,通过背景扣除,测定试液中铅的吸光度。
三、仪器与试剂
(1)仪器石墨炉原子吸收分光光度计、石墨管、氩气钢瓶、铅空心阴极灯(2)试剂铅标准溶液(0.5mg/mL)、水样
四、实验步骤
1.设置仪器测量条件
(1)分析线波长 217.0 nm
(2)灯电流 90(%)
(3)通带 0.5 nm
(4)干燥温度和时间 100℃,30 s
(5)灰化温度和时间 1000℃,20 s
(6)原子化温度和时间 2200℃,3s
(7)清洗温度和时间 2800℃,3s
(8)氮气或氩气流量100 mL/min
2. 分别取铅标准溶液B,用二次蒸馏水稀释至刻度,摇匀,配制1.00 , 10.00, 20.00, 和50.00 ug/mL铅标准溶液,备用。
3. 微量注射器分别吸取试液注入石墨管中,并测出其吸收值。
4. 结果处理
(1)以吸光度值为纵坐标,铅含量为横坐标制作标准曲线。
(2)从标准曲线中,用水样的吸光度查出相应的铅含量。
(3)计算水样中铅的质量浓度(μg/mL)
五、问题讨论
1. 非火焰原子吸收光谱法具有哪些特点?
答:无火焰原子化器常用的是石墨炉原子化器。
石墨炉原子化法的过程是将试样注入石墨管中,用大电流通过石墨管以产生高达2000 ~ 3000℃的高温使试样干燥、蒸发和原子化。
与火焰原子化法相比,石墨炉原子化法具有如下特点:
a,灵敏度高、检测限低因为试样直接注入石墨管内,样品几乎全部蒸发
并参与吸收。
试样原子化是在惰性气体保护下进行的,有利于难熔氧化物的分解和自由原子的形成,自由原子在石墨管内平均滞留时间长,因此管内自由原子密度高,绝对灵敏度达10-12~10-15 克。
b,用样量少通常固体样品为0.1~10毫克,液体试样为5 ~50微升。
c,试样直接注入原子化器,从而减少溶液一些物理性质对测定的影响,也可直接分析固体样品。
但是石墨炉原子化法所用设备比较复杂,成本比较高。
此外,基体干扰较严重,测量的精密度比火焰原子化法差。
2. 石墨炉原子化器是如何升温的?
石墨炉原子化器的升温程序及试样在原子化器中的物理化学过程--试样以溶液(一般为1~50ul)或固体(一般几mg)从进样孔加到石墨管中,用程序升温的方式使试样原子化,为改善加热性能,石墨炉原子化器大都采用斜坡程序升温,而不采用阶梯式升温,将试样干燥、灰化、原子化、除残四个过程分布进行。