第二章初等模型-Xidian
第2章初等模型精品PPT课件

Qk1T 1(12 k1 ldk k1 2 ldk )T 2d 1T2k1d2T 1k 1lT2k2d
室
f(h)
1
内
室
外
0.9
T1
T2
0.8
0.7
0.6
0.5
d
d 0.4
0.3 记h=l/d并令f(h)=
0.2
类似有
Q
k1
T1 T2 2d
Q
2
Q 2(k1l)/(k2d)
一般 k1 16 ~ 32 故 k2
O B(0,-b)
令:
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
汇合点由p此必关位系于式此即圆可上求。出P点的坐标和
θ2 的值。
y(ta)nxb(航母的路线方程) 本模型虽简单,但分析极清晰且易
再一步深入考虑
还应考虑回声传回来所需要的时间。为此,令石块下落 的真正时间 为t1,声音传回 来的时间记 为t2,还得解一个方程组:
h
g k
( t1
1 k
e kt 1
)
g k2
h 340 t2
这一方程组是非线性 的,求解不太容易, 为了估算崖高竟要去 解一个非线性主程组 似乎不合情理
t1
最小二乘法 插值方法
最小二乘法
设经实际测量已得 到n组数据(xi , yi),i=1,…, n。将数据画在平面直角坐标系中,见 图。 如果建模者判断 这n个点很象是分布在某条直线附近,令 该直线方程 为y=ax+b,进而利 用数据来求参 数a和b。由于该直线只是数据近似满足的关系式,故 yi-(axi+b)=0一般不成 立,但我们希望
数学建模第二章 初等模型

第二章 初等模型如果研究对象的机理比较简单,一般用静态、线性、确定性模型描述就能达到建模的目的时,我们基本上可以用初等数学的方法来构造和求解模型。
通过下面的几个实例我们能够看到,用很简单的数学方法就可以解决一些有趣的实际问题。
需要强调的是,衡量一个模型的优劣完全在于它的应用效果,而不是它看它采用了多么高深的数学方法。
进一步说,对于某个实际问题我们如果能够用初等方法和所谓的高等方法建立了两个模型,而它们的应用效果相差无几的话,那么受人们欢迎并采用的,一定是前者而非后者。
§2.1公平的席位分配设有A 、B 两个单位,各有人数1p 、2p 个,现在要求按人数选出q 个代表召开一次代表会议。
那么怎样分配这q 个席位呢?一般的方法是令:q p p p q 211*1+= q p p p q 212*2+= (2.1)若*1q ,*2q 恰好是两个整数,就以*1q ,*2q 分别作为A ,B 两个单位的席位数,即可以获得一个完全合理的分配方案。
当*1q ,*2q 不是两个整数时,那么怎样分配才合理呢?下面我们就来讨论这个问题。
首先给出一种自然的想法,也就是通常所执行的方法。
即由(2.1)式计算出的*1q ,*2q ,用][*i i q q =表示*i q 的整数部分。
当*1q -1q >*2q -2q 时,则用1q +1与2q 分别作为A ,B 两个单位的席位数;当*2q -2q >*1q -1q 时,则用1q 与2q +1分别作为A ,B 两个单位的席位数;而当*2q -2q =*1q -1q 时,就只能由A ,B 两个单位协商来确定那多余的一个席位了。
这个方法的优点是简单、方便,并被很多人所接受,同时也容易推广到m (m >2)个单位的席位分配问题。
但是这个分配方案是存在弊病的,它有明显的不合理性。
例1 某学校有3个系共200名学生,其中甲系100名,乙系60名,丙系40名。
若学生代表会议设20个席位,公平而又简单的席位分配办法是按学生人数的比例分配,显然甲乙丙三系分别应占有10、6、4个席位。
第二章初等模型.ppt

1032
632
Q1
2
5304.5,Q2
1984.5, 2
Q3
342 2
578,
由此,第4个席位应该给甲系,此时n1 2, 再计算Q1
值:
2019-10-10
感谢你的欣赏
21
1032 Q1 2 3 1768.17,
而Q2 , Q3 值没有变化,因此得到第5个席位给乙系. 由
3.玻璃材料均匀,热传导系数是常数。
2019-10-10
感谢你的欣赏
28
建模
由假设,热传导过程遵从下面的物理定律:
厚度为d的均匀介质,两侧温度差为T ,则单位时间
由温度高的一侧流过单位面积的热量 Q与T 成正比,与
d 成反比,即
Q k T .
⑴
d
其中k 为热传导系数。
2019-10-10
都达到最小.
2019-10-10
感谢你的欣赏
14
解模
设 A单位已有席位nA ,B单位有席位 nB,并假定 A吃
亏,即kA kB,因而rA nA, nB 有意义.
现考虑下一个席位的分配:
⑴席位分配给 A仍然是 A 吃亏,即 pA pB , nA 1 nB
毫无疑问,该席位应该分配给 A.
感谢你的欣赏
29
记双层窗内层玻璃的外侧温度是 Ta,外层玻璃的内侧
温度是Tb,玻璃的热传导系数为 k1,空气的热传导系数
为
k
,则由⑴式,单位时间单位面积的热量传导(热
2
量流失)为
Q1
k1
T1
d
Ta
k2 Ta
Tb l
k1 Tb
【教学课件】第二讲 初等模型

38km
3 Q3=5
• 污水处理,排入河流 •三城镇可单独建处理厂, 或联合建厂(用管道将污水 送)
Q~污水量,L~管道长度 建厂费用P1=73Q0.712 管道费用P2=0.66Q0.51L
假
联合建厂的话,污水处理厂建在下游城镇
设
记号
C(i):第i城镇建厂的费用(i=1,2,3)
C(i,j):第i、j城镇联合在j处建厂由于费用 (i、j=1,2,3)
模
mi n ( xi xi )2
i
型 s.t. xi B
xi xi
若令 xi Bbi
第i 方的边际效益
xi xi 1n(xi B)
xi 1nbi bi B n
例 .b(4,5,7),B11 4)最小距离解
x (7 ,6 ,4 ),x i B 6 , 2)协商解
xx(2 ,2 ,2 )(5 ,4 ,2 )
城1 C(1)-x1=210.3, 城2 C(2)-x2=127.9, 城3 C(3)-x3=217.8
合作对策的应用 例 派别在团体中的权重
90人的团体由3个派别组成,人数分别为40, 30, 20人。 团体表决时需过半数的赞成票方可通过。
若每个派别的成员同时投赞成票或反对票,用Shapley 合作对策计算各派别在团体中的权重。
Shapley合作对策小结
优点:公正、合理,有公理化基础。
缺点:需要知道所有合作的获利,即要定义I={1,2,…n}的所有 子集(共2n-1个)的特征函数,实际上常做不到。
如n个单位治理污染, 通常知道第i方单独治理的投资yi 和n方共 同治理的投资Y, 及第i方不参加时其余n-1方的投资zi (i=1,2, …n). 确定共同治理时各方分担的费用。
数学建模第二章初等模型

市场稳定问题
在市场经济下,当商品“供不应求”时,价格逐渐长升高,经营者会 觉得有利可图而加大生产量。然而,一旦生产量达到使市场“供过于求”, 价格立即会下跌,生产者会立即减产以避免损失,这样又极有可能造成又 一轮新的供不应求。我们关心的问题是:如此循环,市场上的商品的数量 与价格是否会趋于稳定? 所谓“需求”,指在一定条件下,消费者愿意购买并且有支付能力购 买的商品量。设p表示商品价格,q表示商品量,假设商品量q主要取决于 商品价格p,则称函数 q=f(p) 为需求函数。 需求函数q=f(p)一般是单调减少函数。因q=f(p)为单调减少函数,所 以存在反函数p=f-1(q),我们也称它为需求函数,见下图。
a, b 模型求解:我们来求步长
(1) 由图
为何值,使式 (4) 最小。
所表示,重心离开 B 点上升到最高点所需时间为
t
b 2v
(5)
1 2 gb2 h gt 2 2 8v
由
(1),(2),(3)
及
(5)
式,
(4)
式化成
2 (a b)bmg 1 W m, v2 2 2 8v
又完成一个大步所需时间为
跑步时如何节省能量
• 问题的提出:我们每个人都有跑步的经历, 有人会因此而疲惫不堪,但是有谁会想:怎 样跑步能使我们消耗的能量最少? • 模型假设:为解决上述问题,我们做下述假 设:
(1 )跑步所花费的时间分成两部分:第一部分为两 条腿同时离地的时间;在第二部分时间内一条腿 或两条腿同时落地。这样,人体重心的运动轨迹 如图(1)。
a b v
,因此单位时间内消耗的能量为
2 W bmg m, v3 P a b 8v 2(a b) v
(6)
《初等分析优化模型》PPT课件

n年末残值 15000
解:该型轿车在不同使用期限的年等额总成本如下表所示:
资产恢复 使用期 成本 限n K0-Ln ① 1 2 3 4 5* 6 7 ② 15000 22500 26250 28125 29000 29000 29000 年等额资产 恢复成本 (K0-Ln)/n ③ 15000 11250 8750 7031 5800 4833 4143 年度运 营成本 Cj ④ 5000 6000 7000 9000 11500 14000 17000 使用期限 内营运成 本累计 C
•
• • • • •
n——设备使用期限,在设备经济寿命计算中,n是一个自变量;
j——设备使用年度,j的取值范围为1到n; ACn——n年内设备的年平均总成本; K0——购置成本; Cj ——在n年使用期间的第j年度设备的运营成本; Ln ——设备在第n年的净残值。
• 如果设备的经济寿命为m年,则m应满足 如下不等式:
设备更新应遵循的原则
•
• • • •
(1)设备更新应当结合企业的经济条件,有计划、有重点、有 步骤地进行。 (2)要做好调查摸底工作,根据企业的实际需要和可能,安排 设备的更新工作。注意克服生产薄弱环节,提高企业的综合生产 能力。 (3)有利于提高生产的安全程度,有利于减轻工人劳动强度, 防止环境污染。 (4)更新设备要同加强原有设备的维修和改造结合起来,如改 造后能达到生产要求的,可暂不更新。 (5)讲求经济效益,做好设备更新的技术经济分析工作。主要 包括确定设备的最佳更新周期、计算设备投资回收期等。
运筹与优化模型
第二章 初等分析优化模型
2013年3月
第二章 初等分析优化模型
• 设备更新问题的数学模型 • 确定性存储问题数学模型 • 随机性存储问题数学模型
第二章初等模型.ppt

pB nA
pA nB
上式等价于
p
2 A
pB2
.
nA nA 1 nB nB 1
⑺
引入
Qi
ni
pi2
ni 1
,
i A, B,
⑻
2019-8-29
谢谢您的观赏
18
则在⑵⑶的情况下,席位应分配给Qi 值大的那一方。
在情况⑴,由于
所以,
pA pB , nA 1 nB
QA
Q1 / Q2
0.06 0.03 0.02
24
6h
2019-8-29
谢谢您的观赏
35
模型应用
该模型具有一定的应用价值。尽管双层玻璃窗会增加 制作工艺上的成本,但它在降低热量流失上的功效是相
当可观的。通常,建筑规范要求 h l / d 4,按照该
模型,Q1 / Q2 3% ,即双层玻璃窗比同样多的玻璃材
k1 4103 8103 J / cm s kw h,
2019-8-29
谢谢您的观赏
33
不流动、干燥空气的热传导系数为
k2 2.5104 J / cm s kw h,
所以
k1 16 32. k2
取最保守的估计,即取 k1 / k2 16,由⑷,⑹得
2019-8-29
谢谢您的观赏
28
建模
由假设,热传导过程遵从下面的物理定律:
厚度为d的均匀介质,两侧温度差为T ,则单位时间
由温度高的一侧流过单位面积的热量 Q与T 成正比,与
d 成反比,即
Q k T .
⑴
d
其中k 为热传导系数。
2019-8-29
2(初等模型)

~状态转移律
dk D, S k S 按照以上规 使状态 问题: 求决策 ,0 ) 律由初始状态 S1 ( 3,3)经过有限步到达状态 S n 1 ( 0 .
当然n 越小越好.
(3,2) (0,1) (3,1) (0,2) • 穷举法 S1 (3,3) d1 (1,0) S 2 ( 2,3) ( 2,2) (1,1) (1,3) ( 2,0) (3,3)循环 (0,1) (0,2) (3,4) S2 (3,2) d 2 (1,0) S 3 ( 4,2) ( 4,3) (1,1) ( 2,0) (5,2)
室 内 T1
Ta T b d l d
室 外 T2
Q1
墙
k2~空气的热传导系数
T1 Ta Ta Tb Tb T2 Q1 k1 k2 k1 d l d
T1 T2 k1 l Q1 k1 , sh , h d ( s 2) k2 d
建模 记单层玻璃窗传导的热量Q2
T1 T2 T1 T2 Q1 k1 Q2 k1 d ( s 2) 2d
2 2 3
4
结论 动物的体重与躯干长度的4次方成正 比.当然,比例系数与动物的种类有关.
评注 (1)类比法是建模中常用的一种方法.在 这个模型中将动物躯干类比作弹性梁实属一个大 胆的假设,其可信程度自然应该用实际数据仔细 检验. 但是这种充分发挥想象力,把动物躯干长度 与体重的关系这样一个看来无从下手的问题,转 化为已经有确切研究成果的弹性梁在自重下挠曲 问题的作法,是值得借鉴的. (2)使用该模型时,要注意其条件.在建立此 模型时,我们是把四足动物的躯干视为圆柱体 的,也就是说,对于躯干太不近似圆柱体的四 足动物,该模型就不适用了,比如乌龟.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
和挺举。52 表中给出了1到09 1977年底为14止1 九个
重量级的56世界纪录。120.5
151
60
130
161.5
显然,运动67员.5 体重越大,他1能41举.5 起的重量也越1大80,但举重
再一步深入考虑
还应考虑回声传回来所需要的时间。为此,令石块下落 的真正时间 为t1,声音传回来的时间记 为t2,还得解一个
方程组:相用对方thh于法1 石二t3块先kg24速求(0tt度一132.,次91k声h,e音令速kt1t度2=) 要h/3快k4g02得,多校这非解为竟非似,正一线不了要线乎我t方性太估去性不,们的程容算解主合求可,组易崖一程情石求是,高个组理
0.6 0.5 d 0.4d
一般 k1 16 ~ 32 故 Q 1
k2
Q 1 8l / d
记h0=.3l/d并令f(h)= 1
此函数的图形为
0.2
8h 1
0.1
考 取虑h=到3或美040 观,和1即使l=2用3d上(3或的4方d4)便,,5 此h不时6必房取7屋得热过8量大的9,损例失1如0不h,超可过
解相应方程组,求得:
x y 其分中 别为(x和ix,yi和i) yi
的平均值
x O
a
b
n i 1
(
xi
x)(
n i 1
(
xi
y ax
yi x) 2
y)
例1(举重成绩的比较)
举重重量是级一(种上限一体般人都能看懂成的绩运动,它共分
九个重量重级),有两抓种举(主公要斤的) 比赛挺举方(法公:斤)抓举
k2
若设k=0.05并仍设 t=4秒,则可求 得h≈73.6米。
进一步深入考虑
多测几次,取平均
听到回将声e-再kt用按泰跑勒表公,式计展算开得并到令的k时→间值0+中包,含即了可 反应时间
不妨设得平出均前反面应不时考间虑为空0气.1阻秒力,时假的如结仍果设。t=4秒,扣除反
应时间后应 为3.9秒,代入 式①,求得h≈69.9米。
令k=K/m,解得
v
dt
cekt
g
k
代入初始条件 v(0)=0,得c=-g/k,故有
v g g ekt
kk
再积分一次,得:
h
g
t
g k2
e kt
c
代入初始条 件h(0)=0,得到计算山崖高度的公式:
h g t g ekt g g (t 1 ekt ) g ①
k k2
k2 k k
初等模型
§2.1 舰 艇的会合
某航空母舰派其护卫舰去搜寻其跳伞的飞 行 员,护卫舰找到飞行员后,航母通知它尽快 返回与其汇合并通报了航母当前的航速与方 向,问护卫舰应怎样航行,才能与航母汇合。
Y
P(x,y)
记v2/ v1=a通常a>1
航母
则 | BP |2 a2 | AP |2 即:
A(0,b)
最小二乘法 插值方法
最小二乘法
设经实际测量已得 到n组数据(xi , yi),i=1,…, n。将数据 画在平面直角坐标系中,见 图。如果建模者判断 这n个点很
象是分布在某条直线附近,令 该直线方程 为y=ax+b,进而
利用数据来求参 数a和b。由于该直线只是数据近似满足的
如则关y果可系建作式模变,者量故y判替=断ya换ix-(变+使abx量i之+间b转)=的化0关一为i系n般线1 并[不性y此非成关i 式线立系对性,(或aa关但用和xi系我类b的而们似b偏是希方)导]其望2数法他均拟类最合型为小。的0,函数,
θ1
x2 (y b) 2 a2 [x2 (y - b)2 ]
O B(0,-b)
θ2 护卫舰
可化为:
X
x2
y
a a
2 2
2
11 b
4a 2b2 (a 2 1)2
令: h a2 1b, r 2ab
a2 1
a2 1
则上式可简记成 :
x2 ( y - h)2 r2
汇合由点此p必关位系于式此即圆可上求。出P
k1
Tb
T2 d
解得:
Ta
1 k1l k2d T1 T2
2 (k1l) /(k2d )
Q
k1
T1
(1
k1l k2d )T1 2 k1l k2d
d
T2
k1
d
T1
2
T2 k1l k2d
f(h)
室
室
1内
外
0.9 0.8 T1
T2 0.7
类似有
Q
k1
T1 T2 2d
Q
2
Q 2 (k1l) /(k2d )
块下落时间 t1≈t-t2将t1代入式①再算一次,得出 崖高的近似值。例如, 若h=69.9米,则 t2≈0.21 秒,故 t1≈3.69秒,求得 h≈62.3米。
§2.4 经验模型
当问题的机理非常不清楚难以直接利用其他知 识来建模时,一个较为自然的方法是利用数据 进行曲线拟合,找出变量之间的近似依赖关系 即函数关系。
h 1 gt 2 2
来计算。例如, 设t=4秒,g=9.81米/秒2,则可求得h≈78.5 米。
我学过微积分,我可以做 得更好,呵呵。
除去地球吸引力外,对石块下落影响最大的当 属空气阻
力。根据流体力学知识,此时可设空气阻力正比于石块下
落的速度,阻力系 数K为常数,因而,由牛顿第二定律可
得:
F m dv mg Kv
y
(tan 1 ) x
b(航母的路线方点程的)坐标和θ2 的值。
本模型虽简单,但分析
y (tan 2 )x b(护卫舰的路线极方清程晰且)易于实际应用
§2.2 双层玻璃的功效
在寒冷的北方, 许多住房的 玻璃窗都是双层 玻璃的,现在我们来建立一个简单 的数学模 型,研究一不下妨双可层以玻提璃出到以底下有假多设:大的功效。 比较两座其1他、条设件室完内热全量相的同流的失房是屋热,传导它们 的 差异仅仅在引 流窗起。户的不,同不。存在户内外的空气对
2、室内温 度T1与户外温 度T2均 为常数。 3、玻璃是均匀的,热传导系数 为常数。
室 设玻璃的热传导系数 为k1,空气的
室
内 热传导系数 为k2,单位时间通过单
外
Ta
位面积由温度高的一侧流向温度低 T1 的一侧的热量为Q
T2
Tb
由热传导公式 Q=kΔT/d
dl
d
Q
k1
T1
d
Ta
k2 Ta
Tb l
单层玻璃窗时的 4%-3% 。
§2.3 崖高的估算
假如你站在崖顶且身上带着一只具有跑表功 能的计算器,你也许会出于好奇心想用扔下 一块石头听回声的方法来估计山崖的高度, 假定你能准确地测定时间,你又怎样来推算 山崖的高度呢,请你分析一下这一问题。
我有一只具有跑 表功能的计算器。
方法一
假定空气阻力不计,可以直接利用自由落体运动的公式