切线理论:混沌理论的特性
混沌理论在物理学中的应用研究

混沌理论在物理学中的应用研究引言:混沌理论是指研究复杂、难以预测的非线性动态系统的一种理论。
物理学作为科学的基石,混沌理论在其中扮演着重要的角色。
本文旨在探讨混沌理论在物理学领域的应用研究,并分析其对科学的影响。
一、混沌的定义与特征混沌是指一种看似无规律、但又不完全随机的系统运动状态。
它具有以下几个特征:1. 灵敏依赖于初始条件:微小的初始条件变化会导致系统演化出现巨大差异。
2. 非周期性:混沌系统的运动不以周期性方式重复。
3. 分形结构:混沌系统的运动轨迹呈现出分形的几何特征。
二、混沌理论在天体物理学中的应用天体物理学旨在研究宇宙中的宏观天体,而混沌理论在其中有着重要的应用,例如:1. 日地系统的混沌运动:太阳风与地球磁场的相互作用存在着混沌现象,混沌理论可用于描述太阳风的扩散效应。
2. 星系的演化:在星系的形成过程中,混沌理论揭示了星系的结构形成和星系演化的内在机制。
3. 天体力学问题:混沌理论在分析行星运动、卫星轨道以及衡量天体轨道稳定性等问题上有其应用价值。
三、混沌理论在热力学中的应用热力学是研究热与能量转化的科学,混沌理论对热力学也有着重要的应用:1. 经典热力学的动力学:通过混沌理论的研究,我们可以更好地理解气体分子的运动规律以及热力学系统的稳定性条件。
2. 混沌热力学系统的熵产生:混沌系统热力学性质的熵产生过程与经典热力学的熵产生有所不同,混沌理论为探索这一领域提供了新的视角。
3. 非平衡态热力学:混沌理论为非平衡态热力学提供了理论基础,使科学家能够更好地研究非平衡态热力学过程。
四、混沌理论在量子力学中的应用量子力学是研究微观粒子的运动行为和性质的科学,混沌理论也在其中发挥着重要的作用:1. 量子混沌:通过混沌理论的应用,我们可以研究量子系统中的混沌现象,揭示微观领域中量子混沌的产生与演化规律。
2. 量子控制:混沌理论为量子控制提供了新的思路,通过混沌系统中受控制的参数调节,可以实现对量子态的控制和操控。
第十九章 混沌理论方法

(3)混沌存在于确定论或决定论的框 ) 架内, 架内,对预测的可能性做了与以往不同的 解释,扩展了决定论的范围( 解释,扩展了决定论的范围(但是决定论 形式和内容都应该修改)。 形式和内容都应该修改)。
2、混沌理论与决定论和可预测性问题 、
· 预测有时间尺度和预测起点 · 混沌的不可预测性来自它的对初始条 件敏感性,并在长期演化中发生作用。 件敏感性,并在长期演化中发生作用。
(2)混沌理论具有重要的应用前景: )混沌理论具有重要的应用前景: · 应用于干旱预测 · 水利研究 · 大脑研究 应该研究混沌,并通过混沌研究, 应该研究混沌,并通过混沌研究,掌 握判断混沌的方法, 握判断混沌的方法,研究混沌性质的方 并且应用于科学实践。 法,并且应用于科学实践。
3、混沌理论所揭示的混沌边 、 缘研究的是一个系统中的各种因素从无真正静 止在某一个状态中, 止在某一个状态中,但也没有动荡至 解体的那个地方 · 就是生命有足够的稳定性来支撑自己 的存在, 的存在,又有足够的创造性的那个地 方 · 复杂系统能自发的调整和存活的地带 · 是一个具有不稳定性的地方
一、非线性动力学混沌的
涵义
1、非线性动力学混沌的定义 、 (1)最早创立混沌理论著名气象学家洛 ) 伦兹: 伦兹: · 混沌指敏感地依赖于初始条件的内 在变化的系统 · 看起来是随机发生的,而实际上其 看起来是随机发生的, 行为是由精确的法则决定。 行为是由精确的法则决定。
帕卡德: (2)混沌理论创始人诺曼 帕卡德: )混沌理论创始人诺曼·帕卡德 · 这种现象有三个名称:蝴蝶效应,对 这种现象有三个名称:蝴蝶效应, 初始条件的敏感性依赖以及信息增 殖。 · 混沌是一种初始状态微小的差别随系 统的演化越变越大的、随机的、 统的演化越变越大的、随机的、不可 预测的运动方式 · 它的行为所表现出来的方程式很简 单,但确是不可推导的
混沌系统理论 ppt课件

D log N(r) 或 log(1/ r)
DlimlogN(r) r0 log1(/ r)
一般地,我们就把这样定义的容量维叫做豪斯道夫 维数,把豪斯道夫维数是分数的物体称为分形,把此
时的D 值称为该分形的分形维数,简称分维。也有人
把该维数称为分数维。
奇怪吸引子
奇怪吸引子又叫分形吸引子,因为它们都是相空间的分形点集, 不能用传统的规则几何图形表示。一个耗散系统的相空间当时间 趋于无穷大时,如果收缩到一个非整数维的点集,这就是一个奇 怪吸引子。
混沌系统理论 ppt课件
蝴蝶效应
1979年12月,洛伦兹在华盛顿的美国科学促进会的一次 演讲中提出:一只南美洲的蝴蝶,偶尔扇动几下翅膀,在两 周以后可以引起美国德克萨斯州的一场龙卷风。
此效应说明,事物发展的结果, 对初始条件具有极为敏感的依赖 性,初始条件的极小偏差,将会 引起结果的极大差异,甚至会呈 现一种混沌状态。
dz d
bz
xy
x -对流的翻动速率 y -比例于上流与下流液体之间的温差 z-是垂直方向的温度梯度
无量纲因子
b-速度阻尼常数
r -相对瑞利数 r = R/RC。
这是一个三维系统,x、y、z为状态变量,σ、r、b为控 制参量。 Nhomakorabea伦兹方程
在r 较小的情况下,系统是稳定的,随着的r 增加,系统 趋于复杂,出现不稳定的极限环,在r =28时达到混沌 状态。所以, σ = 10 ,b = 8/3 ,r = 28 时利用 Matlab编程,得到下图:
xn1axn(1xn)
它经常被用来描述没有世代交叠的昆虫群体的繁殖 演化,称为虫口模型。a为控制参数,虫口数x为状 态变量,xn为第n代虫口数,虫口模型给出第n代虫 口与第n+1代虫口的关系,知道n代虫口就可以按 逻辑斯蒂方程计算第n+1代虫口。
混沌学的发展简史及其三大主要特性概述

混沌学的发展简史及其三大主要特性概述为什么天气变化存在着不可预测性呢?商品价格的长短期变化之间有什么关系呢?气体、流体在由平稳向湍流变化过程中存在着哪些中间状态?为什么两个形式与意义极不同的方程,迭代所出现的倍周期参数收敛的比率却完全相同呢?人们在对这些问题的研究中,诞生了一门崭新的科学——混沌学。
1混沌学的发展史(一) 混沌现象的发现1903年,美国数学家Poincare J.H.在《科学与方法》中提出了Poincare猜想。
该猜想将动力学系统与拓扑学两大领域结合,指出混沌存在的可能性,从而成为世界上最先了解存在混沌可能性的人。
到了20世纪60年代,人们开始探索科学上那些莫测之谜,使混沌学得到飞速发展。
美国气象学家Lorenz E.用一台原始的计算机研究气候的变化。
1963年,他在《大气科学》上发表了“决定性非周期流”一文,清楚地描述了对初始条件的敏感性这一混沌的基本性态,即著名的“蝴蝶效应”。
可以说,是天气预报和气象学的研究扣开了混沌学的大门。
Lorenz E.也因此成为“混沌学之父”。
20世纪70年代,科学家开始考虑许多不同种类的不规则之间有什么联系。
生理学家研究人类心脏、生态学家探索种群体增减规律、经济学家研究股票价格升降、气象学家研究云彩的形状和雷电的径迹、医学家研究血管在显微镜下所看到的交叉缠绕、天文学家研究星星在银河中的簇集等,都发现其中存在着混沌现象。
(二) 混沌理论的诞生1970年美国科学史家Kuhn T.S.的《科学革命的结构》一书,对混沌理论的发展起到推波助澜的作用。
特别是1975年,马里兰大学的中国学者李天岩和美国数学家Yorke J.在《美国数学》上发表了“周期三意味着混沌”一文,深刻地揭示了从有序到混沌的演化过程。
随之,1976年美国生物学May R.在《自然》杂志上发表了“具有极复杂的动力学的简单数学模型”一文,它向人们表明了混沌理论的惊人信息,简单的确定的数学模型竟然也可以产生看似随机的行为。
混沌系统理论

混沌理论的特征
分形几何理论诞生于20世纪70年代中期,创始人是美国数学家--曼德布罗特(B.B.Mandelbrot),他1982年出 版的《大自然的分形 几何学》 (The Fractal Geometry of Nature)是这一学科经典之作。
康托尔三分集
谢尔宾斯基地毯
分 形 项 链
D即维数
D = logk/logλ
λ 其中:
为线度的放大倍数
k为“体积”的放大倍数
由于这样定义的维数D是一个分式所得出的比值,因此人们称之为 分数维。
容量维
柯尔莫戈洛夫(Kolmogorov)曾给分维这样定义:
对于d 维空间中的一个小集合E,我们可以用一些直径r的 d 维小球去覆盖它,如果完全覆盖所需的小球数目的最小值为 N(r) , 则该子集的柯尔莫戈洛夫容量维为:
实际上,混沌学研究从另一方面增加了人 们的预见能力。
貌似无序的高级有序性
混沌现象给人们的第一印象往往是混乱 不 堪,毫无规则,但混沌不等于混乱,是一种 貌似无序的复杂有序。 混沌绝不是简单地无序,而是被无序掩盖 着的高级有序,貌似无序的复杂有序,有人 称其为混沌序。
逻辑斯蒂方程的有序性
倒分叉
周期窗口
长期行为的不可预见性
由于其内在非线性机制造成对初值的敏感 依赖性,混沌系统的长期行为是不可预测的。 任何实际系统的初始条件都不可能绝对精确 地确定,误差是不可避免的。
混沌是由确定性系统产生的,它的短期行 为是可以预测的。
只要系统处于混沌区,我们就无法对它的 长期行为作出预测,但是混沌运动并非绝对 不可预测。
lim inf fn(x)fn(y)0
则称 f ( x ) 描述的系统为混沌系统,S 为 f 的混沌集。
混沌的定义基本特征

2.1.2混沌的基本特征混沌理论是近代非线性动力学中重要的组成部分,虽然混沌的定义多繁复杂,但混沌还是有自己的一些与其他非线性系统所没有的基本特征,具体表现为如下[37,38,39]:(1)对初始条件的敏感性经典学说认为:确定性的系统只要初始条件给定,方程的解也就随之确定了。
一个随时间确定性变化或具有微弱随机性的变化系统,称为动力系统,它的状态可由一个或几个变量数值确定。
在动力系统中,两个几乎完全一致的状态经过充分长时间后会变得毫无一致,恰如从长序列中随机选取的两个状态那样,这种系统被称为敏感地依赖于初始条件,这就是系统对初值的敏感,还有混沌的敏感表现在一些控制参数的变化。
1972年洛伦兹在华盛顿科学进步协会上的报告上指出:“在巴西的一只蝴蝶拍打翅膀会引发得克萨斯州的一场龙卷风”。
这就是著名的“蝴蝶效应”。
这句话的意思是说任意一个微小的扰动可能会引起世界另一边天气的变化,这种微小的扰动如同蝴蝶扇一下翅膀,都有可能发生巨大的改变。
这一现象的指出就是对混沌初值敏感性的最好的诠释。
(2)整体稳定局部不稳定稳定性是有关扰动现象的。
如果一个动力系统中发生轻微的变化,这个系统还会保持它的运动状态,保持它的能力和属性。
混沌的整体稳定性指一个微小的扰动也不会改变系统原有的性能。
一个系统并不能只是绝对的稳定,还要有局部的稳定,这样这个系统才能进化。
局部不稳定性表现在混沌对初值的敏感依赖性,一个微小的初值变化就会引起系统局部的不稳定。
(3)奇怪吸引子及其分形奇怪吸引子将混沌运动的特征初始条件的敏感性和确定性的随机直观地反映出来。
在耗散系统当中,当连续流在收缩体积时,一边沿这些地方压缩,另一边又沿其他地方延伸。
不过连续流是固定在一个有界的区域内,这种伸缩和折叠过程会使运动轨道在奇怪吸引子上产生混沌运动。
可见,奇怪吸引子是轨道不稳定和耗散系统相体积收缩两种因素的内在性质同时发生的现象[40]。
它的几何特性由分形来刻画,具有大尺度与小尺度之间的相似性,具有无穷无尽自相似的精细图案,具有分数维数。
混沌理论

混沌理论简介混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。
混沌理论是一种兼具质性思考与量化分析的方法。
混沌理论的主导思想是,宇宙本身处于混沌状态,在其中某一部分中似乎并无关联的事件间的冲突,会给宇宙的另一部分造成不可预测的后果。
这意味着,系统具有放大作用。
一个微小的运动经过系统的放大,最终影响会远远超过该运动的本身。
所以,当有人说,因为英国的一只蝴蝶扇了一下翅膀,中国可能会遭受一场台风时,他的观点里就包含着混沌理论的思想。
两个基本的概念:第一,未来无法确定。
如果你某一天确定了,那是你撞上了。
第二,事物的发展是通过自我相似的规律来实现的。
看见云彩,知道他是云彩,看见一座山,就知道是一座山,凭什么?就是自我相似。
有三个原则:1、能量永远会遵循阻力最小的途径。
2、始终存在着通常不可见的根本结构,这个结构决定阻力最小的途径。
3、这种始终存在而通常不可见的根本结构,不仅可以被发现,而且可以被改变。
起因混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。
所谓「差之毫厘,失之千里」正是此一现象的最佳批注。
具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。
但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。
混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。
如股票市场的起伏、人生的平坦曲折、教育的复杂过程。
混沌理论的特性混沌理论有以下几个特性:1,随机性.2,敏感性. 3,分维性. 4,普适性.5,标度律.运用混沌理论在教育行政、课程与教学、教育研究、教育测验等方面已经有些许应用的例子。
混沌理论(Chaostheory)

混合理论attractor近代物理与新认识论1992, 3, 26吴文成混沌──不测风云的背后混沌理论,是近二十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。
量子力学质疑微观世界的物理因果律,而混沌理论则紧接着否定了包括巨观世界拉普拉斯﹙Laplace﹚式的决定型因果律。
长久以来,世界各地的物理学家都在探求自然的秩序,但对无秩序如大气、骚动的海洋、野生动物数目的突兀增减及心脏跳动和脑部的变化,却都显得相当的无知。
但是在七O年代,美国与欧洲有少数科学家开始穿越混乱去打开一条出路。
包括物学家、物理学家及化学家等等,所有的人都在找寻各种俯拾皆是的混沌现象──袅绕上升的香烟烟束爆裂成狂乱的烟涡、风中来回摆动的旗帜、水龙头由稳定的滴漏变成零乱、复杂不定的天气变化与大崩盘的全球股市──的规则与一些简单模式中所隐藏令人惊讶的复杂行为。
十年之后,混沌已经变成一项代表重塑科学体系的狂飙运动,四处充斥为着混沌理论而举行的会议和印行的期刊。
它跨越了不同科学学门的界线,因为它是各种系统的宏观共相,它将天南地北各学门的思想家聚集一堂。
年轻的科学家相信他们正面临物理学改朝换代的序幕。
他们觉得物理学这行已经被高能粒子和量子力学这些华丽而抽象的名词主宰得够久,直到混沌革命──可以连接微观和宏观上百万物体集体行为之间的深深鸿沟的新起科学──开始时,顶尖物理学家才发现自己心安理得地回归到属于人类尺度的某些现象。
混沌理论的近代研究,逐渐领悟到自己正抗拒科学走向化约主义的趋势。
相当简单的数学方程式可以形容像天气或瀑布一样粗暴难料的系统,只要在开头输入小差异,很快就会造成南辕北辙的结果,这个现象被称为「对初始条件的敏感依赖」。
例如蝴蝶效应──今天北京一只蝴蝶展翅翩翩对空气造成扰动,可能导致下个月纽约的大风暴──使得科学家始终无法模拟天气这个复杂系统,更不用说去精确地预测天气。
许多学科中,都背负着牛顿式决定论的担子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
切线理论:混沌理论的特性
混沌理论有以下几个特性:
(1)随机性:体系处于混沌状态是由体系内部动力学随机性产生的不规则性行为,常称之为内随机性.例如,在一维非线性映射中,即使描述系统演化行为的数学模型中不包含任何外加的随机项,即使控制参数、韧始值都是确定的,而系统在混沌区的行为仍表现为随机性。
这种随机性自发地产生于系统内部,与外随机性有完全不同的来源与机制,显然是确定性系统内部一种内在随机性和机制作用。
体系内的局部不稳定是内随机性的特点,也是对初值敏感性的原因所在。
(2)敏感性:系统的混沌运动,无论是离散的或连续的,低维的或高维的,保守的或耗散的。
时间演化的还是空间分布的,均具有一个基本特征,即系统的运动轨道对初值的极度敏感性。
这种敏感性,一方面反映出在非线性动力学系统内,随机性系统运动趋势的强烈影响;另一方面也将导致系统长期时间行为的不可预测性。
气象学家洛仑兹提出的所谓"蝴蝶效应"就是对这种敏感性的突出而形象的说明。
(3)分维性:混沌具有分维性质,是指系统运动轨道在相空间的几何形态可以用分维来描述。
例如Koch 雪花曲线的分维数是1.26;描述大气混沌的洛伦兹模型的分维数是2.06体系的混沌运动在相空间无穷缠绕、折叠和扭结,构成具有无穷层次的自相似结构。
(4)普适性:当系统趋于混沌时,所表现出来的特征具有普适意义。
其特征不因具体系统的不同和系统运动方程的差异而变化。
这类系统都与费根鲍姆常数相联系。
(5)标度律:混沌现象是一种无周期性的有序态,具有无穷层次的自相似结构,存在无标度区域。
只要数值计算的精度或实验的分辨率足够高,则可以从中发现小尺寸混沌的有序运动花样,所以具有标度律性质。
例如,在倍周期分叉过程中,混沌吸引子的无穷嵌套相似结构,从层次关系上看,具有结构的自相似,具备标度变换下的结构不变性,从而表现出有序性。
更多细致的技术面讲解,请关注合时代的后续内容。