高中数学知识点精讲精析 微积分
高等数学一-微积分总结-知识归纳整理

导数微分学微分微积分不定积分积分学定积分无穷级数第一章函数及其特性1.1 集合一、定义:由具有共同特性的个体(元素)组成。
二、表达方式:集合A,B,C……(大写字母)元素a,b,c……(小写字母)A={a,b,c}元素的罗列无重复,无顺序。
a属于A记作a∈A,1不属于A记作1∉A或1∈A三、分类有限集无限集空集Ф四、集合的运算1、子集:存在A、B两个集合,如果A中所有元素都在B中,则A叫做B的子集,A⊆B或B⊇A(空集是任何集合的子集)。
2、交集:存在A、B两个集合,由既在A中又在B中的元素组成的集合。
A B,A B⊆A,A B⊆B,Ф B=Ф(空集与任何集合的交集是Ф)。
3、并集:存在A、B两个集合,由所有在A、B中的元素组成的集合。
A B,A B⊇A,A B⊇B,Ф B=B。
4、补集:存在A、B两个集合,且A⊆B,由在B当中但不在A中的元素组成的集合,叫A的补集,B叫全集。
记作AB或A CB, ABA=Ф,ABA=B五、数、数轴、区间、邻域1、数实数虚数: 规定i2= -1,i叫虚数单位,ii3332==-2、数轴:规定了原点、正方向和单位长度的直线。
3、区间知识归纳整理(1)闭区间a ≤x ≤b,x ∈[a, b] (2)开区间a< x< b, x ∈(a, b) (3)半开区间a ≤x< b, x ∈[a, b)a< x ≤b, x ∈(a, b](4)无限区间 x ≤a, x ∈(-∞, a]x ≥b, x ∈[ b, +∞) x ∈R, x ∈(-∞, +∞)4、邻域:以x = x 0为圆心,以δ> 0(δ为非常小的正数)为半径作圆,与数轴相交于A 、B 两点,x 0 -δ< x 0 < x 0 +δ叫x 0的δ邻域。
例1 已知A={x ∈ -2≤x< 3},B={x ∈ -1< x ≤5},求A B , A B 解:A 、B 集合中x 的取值范围在数轴表示如下所以A B={x ∈ -1< x< 3}, A B={x ∈ -2≤x ≤5} 例2 已知A 、B 为两非空集合,则A B=A 是A=B 的[ (2) ] (1)充分条件 (2)充分必要条件 (3)必要条件 (4)无关条件注:如果A 成立,这么B 成立,即“A ⇒B ”,这么条件A 是B 成立的充分条件;如要使B 成立,必须有条件A ,但惟独A 不一定能使B 成立,则称A 是B 成立的必要条件;如果“A ⇒B ”,又有“B ⇒A ”,则称条件A 是B 成立的充分必要条件。
高考微积分知识点归纳

高考微积分知识点归纳微积分作为数学的一门重要分支,是高中数学中的一门重要课程,也是高考数学中的重点内容。
掌握微积分的核心知识点,对于顺利应对高考数学是至关重要的。
本文将归纳总结高考微积分的知识点,为大家进行复习提供一定的参考。
1. 函数与极限函数与极限是微积分学的基本概念之一。
在函数与极限这一章节中,核心的知识点主要有:(1) 函数的概念以及函数的性质,如奇偶性、周期性等;(2) 极限的概念,包括数列极限和函数极限;(3) 极限的运算法则,如极限的四则运算法则、复合函数的极限法则等;(4) 极限存在性的判定方法,如夹逼定理、单调有界准则等。
2. 导数与微分导数与微分是微积分学的核心知识点之一,也是高考中非常重要的内容。
在导数与微分这一章节中,重要的知识点包括:(1) 导数的概念及其几何意义,如切线的斜率、曲线的变化率等;(2) 常见函数的导数,如幂函数、指数函数、对数函数等;(3) 导数的性质与运算法则,如导数的四则运算法则、复合函数的导数法则等;(4) 高阶导数与高阶导数的计算方法;(5) 微分的概念及其应用,如利用微分近似计算、解决最优化问题等。
3. 积分与定积分积分与定积分也是微积分学的核心内容之一,它与导数具有密切的关系。
在积分与定积分这一章节中,重要的知识点包括:(1) 不定积分的概念与性质,如不定积分的线性性、基本积分表等;(2) 定积分的概念及其几何意义,如曲线下面积、曲线长度等;(3) 定积分的计算方法,如换元积分法、分部积分法、定积分性质的应用等;(4) 积分的应用,如求曲线的面积、求物体的体积、物理问题的应用等。
4. 微分方程微分方程是微积分学的一个重要分支,也是高考中的考点之一。
在微分方程这一章节中,重要的知识点有:(1) 常微分方程的分类与概念,如一阶微分方程、二阶线性微分方程等;(2) 常微分方程的求解方法,如分离变量法、齐次线性微分方程的求解法等;(3) 微分方程的应用,如人口模型、物理问题等。
高三微积分知识点归纳整理

高三微积分知识点归纳整理微积分是数学中的一个重要分支,也是高中数学的一部分。
在高三阶段,学生们将接触到更加深入的微积分知识,这些知识点将为他们后续的学习和考试提供基础。
为了帮助同学们更好地理解和掌握微积分的知识,下面将对高三微积分的一些重要知识点进行归纳整理。
一、导数与微分1. 导数的定义与性质:导数表示函数在某一点处的变化率。
导数的定义为:若函数f(x)在点x处的极限存在,则称此极限为函数f(x)在点x处的导数,记作f'(x)。
2. 常见函数的导数:常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 高阶导数与导数的运算:高阶导数表示对函数进行多次求导,导数的运算法则包括加法、减法、乘法、除法运算等。
4. 微分的定义:微分表示函数在某一点处的局部线性逼近。
微分的定义为:若函数f(x)在点x处的微分存在,则称此微分为函数f(x)在点x处的微分,记作df。
二、微分中值定理与应用1. 魏尔斯特拉斯中值定理:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一点c∈(a, b),使f'(c) = [f(b) - f(a)] / (b - a)。
2. 拉格朗日中值定理:若函数f(x)在闭区间[a, b]上连续,在开区间(a, b)上可导,则存在一点c∈(a, b),使f'(c) = [f(b) - f(a)] / (b -a)。
3. 柯西中值定理:若函数f(x)和g(x)在闭区间[a, b]上连续,在开区间(a, b)上可导且g'(x)≠0,则存在一点c∈(a, b),使[f'(c) / g'(c)] = [f(b) - f(a)] / (g(b) - g(a))。
4. 应用:利用微分中值定理可以证明函数的性质,解决一些极值、最值和曲线的切线问题。
三、不定积分与定积分1. 不定积分的概念:不定积分是函数的导数的逆运算,表示求函数的原函数。
高中数学微积分知识点

高中数学微积分知识点一、导数的概念与运算。
1. 导数的定义。
- 函数y = f(x)在x = x_0处的导数f^′(x_0)定义为f^′(x_0)=limlimits_Δ x→0(Δ y)/(Δ x)=limlimits_Δ x→0frac{f(x_0+Δ x)-f(x_0)}{Δ x}。
- 函数y = f(x)的导数f^′(x),y^′或(dy)/(dx),f^′(x)=limlimits_Δ x→0(f(x + Δ x)-f(x))/(Δ x)。
2. 导数的几何意义。
- 函数y = f(x)在点x_0处的导数f^′(x_0)的几何意义是曲线y = f(x)在点(x_0,f(x_0))处的切线斜率。
- 曲线y = f(x)在点(x_0,f(x_0))处的切线方程为y - f(x_0)=f^′(x_0)(x - x_0)。
3. 基本初等函数的导数公式。
- C^′=0(C为常数)- (x^n)^′=nx^n - 1(n∈ Q)- (sin x)^′=cos x- (cos x)^′=-sin x- (a^x)^′=a^xln a(a>0,a≠1)- (e^x)^′=e^x- (log_ax)^′=(1)/(xln a)(a>0,a≠1,x>0)- (ln x)^′=(1)/(x)(x>0)4. 导数的运算法则。
- (u± v)^′=u^′± v^′- (uv)^′=u^′v + uv^′- ((u)/(v))^′=frac{u^′v - uv^′}{v^2}(v≠0)二、导数的应用。
1. 函数的单调性。
- 设函数y = f(x)在某个区间内可导,如果f^′(x)>0,则y = f(x)在这个区间内单调递增;如果f^′(x)<0,则y = f(x)在这个区间内单调递减。
2. 函数的极值。
- 设函数y = f(x)在点x_0处可导,且在x_0处取得极值,那么f^′(x_0) = 0。
高考数学中的微积分知识点详解

高考数学中的微积分知识点详解数学是人类的一门重要学科,而微积分则是数学中的重要分支之一。
在高考数学中,微积分也是必须掌握的一部分。
下面,我们将对高考数学中的微积分知识点进行详细讲解。
一、导数和微分导数和微分是微积分中的两个重要概念。
导数是函数在某一点上的瞬时变化率,表示函数的斜率。
微分是函数在某一点上的微小变化量,表示函数的变化趋势。
导数和微分的计算可以根据基本导数公式和微分公式进行。
其中,基本导数公式包括:常数函数的导数为0,幂函数的导数为$nx^{n-1}$,指数函数的导数为$a^x\ln{a}$,对数函数的导数为$\frac{1}{x\ln{a}}$,三角函数的导数为$\cos{x}$、$\sin{x}$、$\tan{x}$的导数分别为$-\sin{x}$、$\cos{x}$、$\sec^{2}{x}$等。
微分公式包括:常函数的微分为0,幂函数的微分为$ndx^{n-1}dx$,指数函数的微分为$a^x\ln{a}dx$,对数函数的微分为$\frac{1}{x\ln{a}}dx$,三角函数的微分为$\cos{x}dx$、$\sin{x}dx$、$\tan{x}dx$的微分分别为$-\sin{x}dx$、$\cos{x}dx$、$\sec^{2}{x}dx$等。
二、函数的极值和最值函数的极值和最值是微积分中的另一个重要概念。
极值即函数的极大值和极小值,最值则是函数的最大值和最小值。
求函数的极值和最值需要使用函数的导数。
对于一个函数$f(x)$,其极值点满足$f'(x)=0$或不存在,而最值点则满足$f'(x)=0$或$f'(x)$不存在或$x$在函数的定义域的端点处。
求得极值和最值后还需要进行比较,得出函数的极大值和极小值,以及最大值和最小值。
三、函数的单调性和凸凹性函数的单调性和凸凹性也是微积分中的重要概念。
单调性反映的是函数值的增减趋势,而凸凹性反映的是函数值的增减速度的变化趋势。
高三微积分知识点归纳总结

高三微积分知识点归纳总结微积分是数学的一个重要分支,涉及到函数的极限、导数、积分等概念和技巧。
在高三学习微积分时,我们需要系统地掌握各种知识点,以应对高考的考试要求。
本文将对高三微积分的知识点进行归纳总结,帮助同学们加深对微积分的理解。
一、函数与极限1. 函数的概念:函数是一种映射关系,将自变量的取值对应到因变量的取值。
2. 极限的概念:函数在某一点的极限描述了函数在该点附近的变化趋势。
记作lim(f(x)),其中x趋近于某一值。
3. 极限的性质:极限存在与否与函数的定义域和性质密切相关,在计算极限时需要注意函数的特殊性。
二、导数1. 导数的概念:导数描述了函数在某一点处的变化速率,是刻画函数局部性质的重要工具。
记作f'(x)或者dy/dx。
2. 导数的计算方法:常用的计算导数的方法包括求导法则(如常数法则、幂函数法则、和差法则、乘积法则、商法则)和求导公式(如三角函数的导数、指数函数的导数)。
3. 相关的概念:导数还涉及到函数的单调性、极值以及凹凸性,这些概念在优化问题中十分重要。
三、积分1. 积分的概念:积分是求函数与坐标轴之间的“面积”或“累积量”的一个运算。
记作∫f(x)dx。
2. 不定积分与定积分:不定积分是对函数进行积分而得到的一类函数的集合,定积分则是对函数在某一区间上的积分结果。
3. 计算积分的方法:常用的计算积分的方法包括换元法、分部积分法以及简单的积分表。
四、微分方程1. 微分方程的概念:微分方程是描述函数与其导数之间关系的方程,它在自然科学和工程领域有广泛的应用。
2. 常微分方程与偏微分方程:常微分方程涉及到未知函数和其自变量的常导数,而偏微分方程则涉及到未知函数和其多个自变量的偏导数。
3. 常见的微分方程类型:常见的微分方程类型包括一阶线性微分方程、一阶可分离变量微分方程、二阶齐次线性微分方程等。
五、常见函数与曲线1. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等,在物理学、电工学等领域广泛应用。
高中数学微积分知识点总结(全)

高中数学微积分知识点总结(全)微积分是高中数学的一个重要分支,主要由导数、微分和积分三部分组成。
以下是微积分的常见知识点总结:导数- 导数的定义:$$ f'(x)=\lim_{\Delta x\to0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x\to0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$- 导数的计算公式:$$(cf(x))'=cf'(x)$$ $$(f(x)\pm g(x))'=f'(x)\pmg'(x)$$ $$(f(x)g(x))'=f(x)g'(x)+g(x)f'(x)$$ $$\left(\frac{f(x)}{g(x)}\right )'=\frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}$$- 导数的求解:- 可导函数的求法:$y=f(x)$可导的条件是必须存在极限$$ \lim_{\Delta x\to0}\frac{\Delta y}{\Delta x} $$- 可导函数的求导法则:函数导数等于其导函数,即求导公式。
微分- 微分的定义:$$ \Delta y=f'(x)\Delta x+\alpha(\Delta x)\Deltax=\text{d}x+f'(x)\Delta x $$ 其中$\alpha(\Delta x)$是$\Delta x$的高阶无穷小,$f'(x)\Delta x$称为函数$f(x)$在点$x$的微分。
- 微分的应用:线性近似、误差分析、微分中值定理。
积分- 定积分的定义:$$ \int_{a}^{b}f(x)\text{d}x=\lim_{\max\Delta x_i\to0}\sum_{i=1}^{n}f(\xi_i)\Delta x_i $$- 定积分的性质:线性性、区间可加性、不等式、介值定理、平均值定理。
高一微积分知识点的梳理总结

高一微积分知识点的梳理总结微积分是数学的一个重要分支,对于高中学生来说,研究微积分是必不可少的。
本文将对高一微积分的知识点进行梳理总结,以便给学生们提供一个清晰的研究框架和理解微积分的基础。
1. 函数与极限函数是微积分的基础概念,理解函数的性质和图像对于研究微积分至关重要。
在函数的基础上,我们进一步研究了极限的概念,它是微积分的核心概念之一。
- 函数的定义和性质- 函数的图像及其性质- 极限的概念和性质- 极限的计算方法2. 导数与微分导数是微积分中的重要概念,它描述了函数在某一点的变化率。
了解导数的性质和计算方法,可以帮助我们研究函数的变化规律。
- 导数的定义和性质- 导数的计算方法- 函数的凹凸性和拐点- 微分的概念和应用3. 积分与定积分积分是微积分中的另一个核心概念,它描述了函数在一定区间上的累积效应。
研究积分的性质和计算方法,可以帮助我们解决各种实际问题。
- 积分的定义和性质- 积分的计算方法- 定积分的概念和应用- 反常积分的概念和计算方法4. 微分方程微分方程是微积分的重要应用之一,它描述了变量之间的关系,并通常包含一些未知函数。
研究微分方程的解法,可以帮助我们解决各种实际问题。
- 微分方程的类型和解法- 一阶线性微分方程的解法- 高阶线性微分方程的解法- 微分方程的应用5. 应用题微积分的应用广泛而深入,我们可以将微积分知识应用于各种实际问题的解决中。
通过解决应用题,可以提高对微积分知识的理解和运用能力。
- 函数的最值和最优化问题- 积分的应用问题- 微分方程的应用问题- 应用题的解法和思路以上是高一微积分知识点的梳理总结,希望对学生们的学习有所帮助。
通过系统地学习和练习这些知识点,相信你们对微积分的理解会更加深入,并能够熟练地运用微积分解决各种实际问题。
祝愿大家在微积分学习中取得好成绩!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 微积分
积分是微分的逆运算,即知道了函数的导函数,反求原函数。
在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。
一个函数的不定积分(亦称原函数)指另一族函数,这一族函数的导函数恰为前一函数。
其中:[F(x) + C]' = f(x)
一个实变函数在区间[a,b]上的定积分,是一个实数。
它等于该函数的一个原函数在b的值减去在a的值。
积分integral 从不同的问题抽象出来的两个数学概念。
定积分和不定积分的统称。
不定积分是为解决求导和微分的逆运算而提出的。
例如:已知定义在区间I上的函数f(x),求一条曲线y=F(x),x∈I,使得它在每一点的切线斜率为F′(x)=f (x)。
函数f(x)的不定积分是f(x)的全体原函数(见原函数),记作。
如果F(x)是f(x)的一个原函数,则,其中C为任意常数。
例如,定积分是以平面图形的面积问题引出的。
y=f(x)为定义在[a,b]上的函数,为求由x=a,x=b ,y=0和y =f(x)所围图形的面积S,采用古希腊人的穷竭法,先在小范围内以直代曲,求出S的近似值,再取极限得到所求面积S,为此,先将[a,b]分成n等分:a=x0<x1<…<xn=b,取ζi∈[xi-1,xi],记Δxi=xi-xi-1,,则pn为S的近似值,当n→+∞时,pn的极限应可作为面积S。
把这一类问题的思想方法抽象出来,便得定积分的概念:对于定义在[a,b]上的函数y=f(x),作分划a=x0<x1<…<xn=b,若存在一个与分划及ζi∈[xi-1,xi]的取法都无关的常数I,使得,其中则称I为f(x)在[a,b]上的定积分,表为即称[a,b]为积分区间,f(x)为被积函数,a,b分别称为积分的上限和下限。
当f(x)的原函数存在时,定积分的计算可转化为求f(x)的不定积分:这是c牛顿莱布尼兹公式。