高中数学知识点精讲精析 定积分
高二数学定积分知识点总结

高二数学定积分知识点总结一、定积分的概念1.1 定积分的引入在高中数学中,我们学过了不定积分的概念和性质,定积分就是在这个基础上引入的。
当我们对一个函数进行积分时,如果我们要计算的量是函数在一个区间上的面积或者体积,那么我们就需要用到定积分。
定积分可以看做是一个变量的特定区间上的累积和。
1.2 定积分的定义设函数f(x)在区间[a, b]上有定义,将[a, b]分成n等分,每个小区间的长度为Δx=n(b-a),在第i个小区间上任取一点ξi,则f(x)在[a, b]上的定积分为:∫[a,b]f(x) dx=lim{n→∞}∑{i=1}^{n}f(ξi)Δx其中lim{n→∞}表示当n趋向于无穷大时的极限。
1.3 定积分的几何意义定积分的几何意义即函数f(x)在[a, b]上的定积分就是函数y=f(x)与x轴所围区域的有向面积。
1.4 定积分的性质(1)定积分的线性性质:∫[a,b][f(x)+g(x)] dx=∫[a,b]f(x) dx+∫[a,b]g(x) dx(2)定积分的估值性质:若f(x)在[a, b]上连续,则必定存在α∈[a, b],使得∫[a,b]f(x)dx=f(α)(b-a)1.5 定积分的计算定积分的计算主要是通过不定积分的计算来实现。
通过不定积分求出F(x)的原函数后,即可得到∫[a,b]f(x) dx=F(b)-F(a)。
二、定积分的应用2.1 定积分的物理意义定积分在物理学中有着重要的应用,它可以用来计算物体的质量、重心、压力、力矩等。
在力学中,定积分常用来计算物体的质心以及转动惯量等。
2.2 定积分的几何应用定积分可以用来求曲线与坐标轴所围成的曲边梯形或者曲边梯形的面积,也可以用来计算曲线的弧长、曲线旋转体的体积等几何问题。
2.3 定积分的工程应用在工程问题中,定积分可以用来计算各种曲线的长度、曲线所围成的区域面积、曲线所绕成的物体的体积等。
2.4 定积分的经济应用在经济学中,定积分可以用来计算总收益、总成本、总利润等与变量有关的经济指标。
高中数学定积分知识点

高中数学定积分知识点高中数学中的定积分,是一个重要的数学概念。
它在微积分中起到了至关重要的作用,不仅仅是理论上的基础,也是解决实际问题的关键工具。
在本文中,我们将探讨一些关于高中数学定积分的知识点,帮助读者更好地理解和应用这一概念。
首先,我们需要明确定积分的定义和基本性质。
定积分可以理解为一个函数在某个区间上的累积效应。
它可以表示为函数f(x)在[a, b]区间上的面积或曲线下方的积分值。
定积分的计算有多种方法,其中一种常见的方法是使用黎曼和来逼近。
定积分有一些基本的性质,其中包括线性性质、可加性质、保号性质等。
这些性质使我们能够更加灵活地使用定积分来求解各种问题。
此外,定积分还有一个重要的应用是计算曲线的弧长。
通过定积分,我们可以精确地计算出曲线的弧长,而不需要使用近似方法。
在应用定积分解决实际问题时,我们通常需要先建立一个数学模型。
这个模型可以是一个函数,描述了变量之间的关系。
然后,我们可以使用定积分来求解这一函数在某个区间上的累积效应,得到我们想要的结果。
例如,在物理学中,我们可以使用定积分来计算物体的质量、面积、体积等。
除了常见的计算求解问题,定积分还有一些更深入的概念和应用。
例如,定积分可以用来计算函数的平均值。
通过将函数在某个区间上的定积分除以区间的长度,我们可以得到函数在该区间上的平均值。
这对于理解函数在一个区间内的变化趋势是非常有帮助的。
此外,定积分还可以用于求解微分方程。
微分方程是描述自然现象中变化的方程,定积分可以帮助我们从微分方程的解中得到更多的信息。
例如,通过将微分方程转化成定积分的形式,我们可以求解出函数的图像、特定点的坐标等。
值得一提的是,高中数学中的定积分只是微积分的一个基础,对于后续的学习和研究,定积分还有更多的应用和拓展。
通过进一步学习和研究,我们可以了解到曲线的曲率、曲线下的曲面积分等更加复杂的概念和方法。
综上所述,高中数学中的定积分是一个非常重要的概念,它不仅仅是理论上的基础,也是解决实际问题的关键工具。
定积分的知识点总结

定积分的知识点总结一、定积分的基本概念定积分是微积分学中的重要概念,可以用来计算曲线下的面积,曲线的弧长,质心等物理量。
定积分的基本思想是将曲线下的面积划分为无穷多个微小的矩形,然后求和得到整体的面积。
定积分的符号表示为∫。
对于一个函数f(x),在区间[a, b]上的定积分表示为:∫[a, b]f(x)dx其中,a和b为区间的端点,f(x)为函数在该区间上的取值。
定积分表示在区间[a, b]上的函数f(x)所确定的曲线下的面积。
二、定积分的计算方法1. 黎曼和定积分的计算基本思想是将曲线下的面积划分为很多个小矩形,然后对这些小矩形的面积求和。
这就是定积分的计算方法。
在实际计算中,根据黎曼和的定义,我们可以将区间[a, b]等分为n个小区间,每个小区间长度为Δx=(b-a)/n,然后在每个小区间上取一个样本点xi,计算f(xi)Δx的和:∑[i=1,n]f(xi)Δx当n趋近于无穷大时,这个和就可以逼近定积分的值。
这就是黎曼和的基本思想。
2. 定积分的几何意义定积分可以用来计算曲线下的面积,也可以用来计算曲线的弧长。
对于一个函数f(x),其在区间[a, b]上的定积分表示的是曲线y=f(x)和x轴之间的面积。
这个面积就是曲线下的面积。
如果函数f(x)在区间[a, b]上非负且连续,那么函数y=f(x)、直线x=a、x=b以及x轴所围成的区域的面积就是∫[a, b]f(x)dx。
3. 定积分的物理意义定积分还可以用来计算物理量,比如质量、质心等。
在物理学中,可以用定积分来计算物体的质量、质心等物理量。
对于一个连续的物体,将其质量密度函数表示为ρ(x),则物体的质量可以表示为定积分:M=∫[a, b]ρ(x)dx三、定积分的性质1. 线性性定积分具有线性性质,即∫[a, b](c1f1(x)+c2f2(x))dx=c1∫[a, b]f1(x)dx+c2∫[a, b]f2(x)dx。
其中c1、c2为常数,f1(x)、f2(x)为函数。
定积分的计算知识点总结

定积分的计算知识点总结一、定积分的定义。
1. 概念。
- 设函数y = f(x)在区间[a,b]上连续,用分点a=x_0将区间[a,b]等分成n个小区间,每个小区间长度为Δ x=(b - a)/(n)。
在每个小区间[x_i - 1,x_i]上取一点ξ_i(i =1,2,·s,n),作和式S_n=∑_i = 1^nf(ξ_i)Δ x。
当nto∞时,如果S_n的极限存在,则称这个极限为函数y = f(x)在区间[a,b]上的定积分,记作∫_a^bf(x)dx,即∫_a^bf(x)dx=limlimits_n→∞∑_i = 1^nf(ξ_i)Δ x。
- 这里a与b分别叫做积分下限与积分上限,区间[a,b]叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积表达式。
2. 几何意义。
- 当f(x)≥slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形的面积。
- 当f(x)≤slant0时,∫_a^bf(x)dx表示由曲线y = f(x),直线x = a,x = b以及x 轴所围成的曲边梯形面积的相反数。
- 当f(x)在[a,b]上有正有负时,∫_a^bf(x)dx表示位于x轴上方的曲边梯形面积减去位于x轴下方的曲边梯形面积。
二、定积分的基本性质。
1. 线性性质。
- ∫_a^b[k_1f(x)+k_2g(x)]dx = k_1∫_a^bf(x)dx + k_2∫_a^bg(x)dx,其中k_1,k_2为常数。
2. 区间可加性。
- ∫_a^bf(x)dx=∫_a^cf(x)dx+∫_c^bf(x)dx,其中a < c < b。
3. 比较性质。
- 如果在区间[a,b]上f(x)≥slant g(x),那么∫_a^bf(x)dx≥slant∫_a^bg(x)dx。
- 特别地,<=ft∫_a^bf(x)dxright≤slant∫_a^b<=ftf(x)rightdx。
(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)

(山东专用)高考数学一轮复习专题16定积分与微积分基本定理(含解析)一、【知识精讲】1.定积分的概念与几何意义 (1)定积分的定义如果函数f (x )在区间[a ,b ]上连续,用分点将区间[a ,b ]等分成n 个小区间,在每个小区间上任取一点ξi (i=1,2,…,n ),作和式∑n i =1f (ξi )Δx =∑n i =1b -a n f (ξi ),当n →∞时,上述和式无限接近于某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛ab f (x )d x =在⎠⎛ab f (x )d x 中,a ,b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.(2)定积分的几何意义f (x ) ⎠⎛abf (x )d x 的几何意义f (x )≥0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积f (x )<0表示由直线x =a ,x =b ,y =0及曲线y =f (x )所围成的曲边梯形的面积的相反数f (x )在[a ,b ]上有正有负表示位于x 轴上方的曲边梯形的面积减去位于x 轴下方的曲边梯形的面积2.(1)⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数).(2)⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x .(3)⎠⎛ab f (x )d x =⎠⎛ac f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ).3.微积分基本定理一般地,如果f (x )是在区间[a ,b ]上的连续函数,且F ′(x )=f (x ),那么⎠⎛ab f (x )d x =F (b )-F (a ).这个结论叫做微积分基本定理,又叫做牛顿—莱布尼茨公式.可以把F (b )-F (a )记为F (x )⎪⎪⎪b a ,即⎠⎛a b f (x )d x =F (x )⎪⎪⎪ba)=F (b )-F (a ). [微点提醒]函数f (x )在闭区间[-a ,a ]上连续,则有 (1)若f (x )为偶函数,则⎠⎛-a a f (x )d x =2⎠⎛0a f (x )d x .(2)若f (x )为奇函数,则⎠⎛-aa f (x )d x =0. 二、【典例精练】 考点一 定积分的计算【例1】 (1)⎠⎛0π(cos x +1)d x =________.(2) (2012【答案】 (1)π 【解析】(1)⎠⎛0π(cos x +1)d x =(sin x +x )⎪⎪⎪π0=π.(2) 【解法小结】 运用微积分基本定理求定积分时要注意以下几点: (1)对被积函数要先化简,再求积分;(2)若被积函数为分段函数的定积分,依据定积分“对区间的可加性”,先分段积分再求和; (3)对于含有绝对值符号的被积函数,要先去掉绝对值符号再求积分. 考点二 定积分的几何意义角度1 利用定积分的几何意义计算定积分【例2-1】 (1)计算:⎠⎛01(2x +1-x 2)d x =________.(2) (2013请根据以下材料所蕴含的数学思想方法,计算:.【答案】 (1)π4+1 【解析】 (1)由定积分的几何意义知,⎠⎛011-x 2d x 表示以原点为圆心,以1为半径的圆的面积的14,所以⎠⎛11-x 2d x =π4,又⎠⎛012x d x =x 2⎪⎪⎪10=1,所以⎠⎛01(2x +1-x 2)d x =π4+1.(2)从而得到如下等式:答案角度2 利用定积分计算平面图形的面积【例2-2】 (2014 )A .2 D .4 【答案】D【解法小结】 1.运用定积分的几何意义求定积分,当被积函数的原函数不易找到时常用此方法求定积分. 2.利用定积分求曲边梯形面积的基本步骤:画草图、解方程得积分上、下限,把面积表示为已知函数的定积分(注意:两曲线的上、下位置关系,分段表示的面积之间的关系). 考点三 定积分在物理中的应用【例3】 (1)物体A 以v =3t 2+1(m/s)的速度在一直线l 上运动,物体B 在直线l 上,且在物体A 的正前方5 m 处,同时以v =10t (m/s)的速度与A 同向运动,出发后,物体A 追上物体B 所用的时间t (s)为( ) A.3B.4C.5D.6(2)设变力F (x )作用在质点M 上,使M 沿x 轴正向从x =1运动到x =10,已知F (x )=x 2+1且方向和x 轴正向相同,则变力F (x )对质点M 所做的功为________ J(x 的单位:m ,力的单位:N).【答案】 (1)C (2)342【解析】(1)因为物体A 在t 秒内行驶的路程为⎠⎛0t (3t 2+1)d t ,物体B 在t 秒内行驶的路程为⎠⎛0t 10t d t .所以⎠⎛0t (3t 2+1-10t )d t =(t 3+t -5t 2)⎪⎪⎪t0=t 3+t -5t 2=5.整理得(t -5)(t 2+1)=0,解得t =5.(2)变力F (x )=x 2+1使质点M 沿x 轴正向从x =1运动到x =10所做的功为W =⎠⎛110F (x )d x =⎠⎛110(x 2+1)d x =⎝ ⎛⎭⎪⎫13x 3+x ⎪⎪⎪101=342(J).【解法小结】 定积分在物理中的两个应用(1)变速直线运动的位移:如果变速直线运动物体的速度为v =v (t ),那么从时刻t =a 到t =b 所经过的位移s =⎠⎛ab v (t )d t .(2)变力做功:一物体在变力F (x )的作用下,沿着与F (x )相同方向从x =a 移动到x =b 时,力F (x )所做的功是W =⎠⎛ab F (x )d x .【思维升华】1.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关.2.⎠⎛a b f (x )d x 、⎠⎛a b |f (x )|d x 与|⎠⎛ab f (x )d x |在几何意义上有不同的含义,由于被积函数f (x )在闭区间[a ,b ]上可正可负,也就是它的图象可以在x 轴上方、也可以在x 轴下方、还可以在x 轴的上下两侧,所以⎠⎛ab f (x )d x表示由x 轴、函数f (x )的曲线及直线x =a ,x =b (a ≠b )之间各部分面积的代数和;而|f (x )|是非负的,所以⎠⎛a b |f (x )|d x 表示在区间[a ,b ]上所有以|f (x )|为曲边的正曲边梯形的面积;而|⎠⎛a b f (x )d x |则是⎠⎛ab f (x )d x的绝对值,三者的值一般情况下是不相同的. 【易错注意点】1.若定积分的被积函数是分段函数,应分段积分然后求和.2.若积分式子中有几个不同的参数,则必须先分清谁是被积变量.3.定积分的几何意义是曲边梯形的面积,但要注意:面积非负,而定积分的结果可以为负. 三、【名校新题】1.(2019·西安调研)定积分⎠⎛01(2x +e x)d x 的值为( )A.e +2B.e +1C.eD.e -1【答案】C【解析】 ⎠⎛01(2x +e x )d x =(x 2+e x )⎪⎪⎪10)=1+e 1-1=e.2.(2019·郑州模拟)汽车以v =(3t +2) m/s 做变速运动时,在第1 s 至第2 s 之间的1 s 内经过的路程是( ) A.132m B.6 mC.152m D.7 m【答案】A【解析】 s =⎠⎛12(3t +2)d t =⎝ ⎛⎭⎪⎫32t 2+2t ⎪⎪⎪21=32×4+4-⎝ ⎛⎭⎪⎫32+2=10-72=132(m). 3.(2018·青岛月考)直线y =4x 与曲线y =x 3在第一象限内围成的封闭图形的面积S ,正确的是( ) A.S =⎠⎛02(4x -x 3)d xB.S =⎠⎛02(x 3-4x )d xC.S =⎠⎛02⎝⎛⎭⎪⎫3y -y 4d yD.S =⎠⎛02⎝ ⎛⎭⎪⎫y 4-3y d y【答案】A【解析】 两函数图象的交点坐标是(0,0),(2,8),故对x 积分时,积分上限是2、下限是0,由于在[0,2]上,4x ≥x 3,故直线y =4x 与曲线y =x 3所围成的封闭图形的面积S =⎠⎛02(4x -x 3)d x ⎝⎛⎭⎪⎫同理对y 积分时S =⎠⎛08⎝ ⎛⎭⎪⎫3y -y 4d y .4.(2019·安阳模拟)若a =⎠⎛02x 2d x ,b =⎠⎛02x 3d x ,c =⎠⎛02sin x d x ,则a ,b ,c 的大小关系是( )A.a <c <bB.a <b <cC.c <b <aD.c <a <b【答案】D【解析】 由微积分基本定理a =⎠⎛02x 2d x =⎝ ⎛⎭⎪⎫13x 3⎪⎪⎪20=83,b =⎠⎛02x 3d x =⎝ ⎛⎭⎪⎫14x 4⎪⎪⎪20=4,c =⎠⎛02sin x d x =(-cos x )⎪⎪⎪20=1-cos 2<2,则c <a <b .5.(2019届江西九江高三第一次十校联考)M=dx,T=sin 2xdx,则T 的值为( )A. B.- C.-1 D.1【答案】 A【解析】先求出M=6.(2019届山东日照一中第二次质量达标检测)在函数y=cos x,x∈的图象上有一点P(t,cos t),若该函数的图象与x轴、直线x=t,围成图形(如图阴影部分)的面积为S,则函数S=g(t)的图象大致是( )【答案】 B【解析】因为g(t)==,所以图像是B.7.(2019届吉林长春实验中学上学期期中,6)设f(x)=则f(x)dx等于( )A. B. C. D.0【答案】 A【解析】原式=8.(2018山东菏泽第一次模拟)若(n∈N*)的展开式中含有常数项,且n的最小值为a,则dx=( )A.36πB.C.D.25π【答案】 C【解析】可求出a=5,由定积分的几何意义知:所求定积分为半径为5的半圆的面积,为.9.(荆州市2019届高三联考)已知函数234567()1234567x x x x x xf x x=+-+-+-+,若函数()(3)h x f x=-的零点都在区间(,)(,,)a b a b a b Z <∈内,当b a -取最小值时,(21)bax dx -⎰等于( )A .3B .4C .5D .6【答案】:B 【解析】234562326326()1(1)(1)(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=-+--++=--++,可知当1x ≤时,()0f x '>成立,又2345624232()11(1)(1)1(1)(1)f x x x x x x x x x x x x x x x x x '=-+-+-+=--++-+=+--+,可知当1x >时,()0f x '>成立,所以对任意R x ∈,()0f x '>,()f x 单调递增,所以函数()f x 只有一个零点,(0)10f =>,111111(1)0234567f -=------<,所以()f x 的零点位于区间(1,0)-,所以函数 ()(3)h x f x =-的零点位于区间(2,3),即2,3a b ==,所以32(21)(21)bax dx x dx -=-⎰⎰322()624x x =-=-=10.(2019·昆明诊断)若⎠⎛a0x 2d x =9,则常数a 的值为________.【答案】-3【解析】 ⎠⎛a0x 2d x =13x 3⎪⎪⎪0a =-13a 3=9,∴a 3=-27,a =-3.11.(2019·济南模拟)设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________. 【答案】49【解析】封闭图形如图所示,则⎠⎛0a x d x =23x 32⎪⎪⎪a0=23a 32-0=a 2,解得a =49.12.(2019·广州调研)设f (x )=⎩⎨⎧1-x 2,x ∈[-1,1),x 2-1,x ∈[1,2],则⎠⎛-12f (x )d x 的值为________.【答案】π2+43。
(完整版)定积分知识点汇总

(完整版)定积分知识点汇总定积分是高中数学教学的重点难点之一,也是高数的基础知识。
我们通过汇总定积分的相关知识点,帮助同学们更好地掌握定积分的相关知识,以便在考试中取得好的成绩。
一、定积分的定义定积分是对函数在一定区间上的积分,也就是函数在此区间上的面积。
1. 定积分与区间的选取无关,即如果函数在 $[a,b]$ 上是可积的,则定积分$\int_a^b f(x) \mathrm{d}x$ 的值是唯一的。
2. 定积分具有可加性,即对于任意的 $c \in [a,b]$,有 $\int_a^b f(x)\mathrm{d}x = \int_a^c f(x) \mathrm{d}x + \int_c^b f(x) \mathrm{d}x$。
三、定积分的求解方法1. 函数曲线与坐标轴相交的情况:对于函数曲线与 $x$ 轴相交的区间,可以根据定义式直接求出该区间内的面积。
对于函数曲线与 $y$ 轴相交的区间,则要将积分区间平移后,再根据定义式计算面积。
2. 利用基本积分法和牛顿-莱布尼茨公式:可以利用基本积分法求出一个函数的原函数,然后利用牛顿-莱布尼茨公式,即$\int_a^b f(x) \mathrm{d}x = F(b) - F(a)$,其中 $F(x)$ 是 $f(x)$ 的一个原函数。
3. 利用换元积分法:换元积分法是利用一些特殊的代换,将积分式转化为某些基本形式的积分。
常见的代换包括:$u=g(x), x=h(u)$ 和 $\mathrm{d}u = f(x) \mathrm{d}x$。
分部积分法是将原积分式做一个变形,转化成两个积分乘积的形式,从而更容易求解。
5. 利用定积分的对称性:如积分区间对于 $0$ 对称,或者函数具有四象限对称性等,可以根据对称性减少计算量。
1. 几何应用:用定积分可以求解函数曲线与坐标轴围成的图形的面积、体积和质心等几何特征。
利用定积分可以求解质点运动的速度、加速度、位移和质量等物理量。
定积分知识点汇总

定积分知识点汇总关键信息项:1、定积分的定义2、定积分的几何意义3、定积分的基本性质4、定积分的计算方法5、定积分的应用1、定积分的定义11 定积分的概念定积分是微积分的重要概念之一。
如果函数 f(x) 在区间 a, b 上连续,用分点 a = x₀< x₁< x₂<< xₙ = b 将区间 a, b 分成 n 个小区间,在每个小区间 xᵢ₋₁, xᵢ上任取一点ξᵢ(i = 1, 2,, n),作和式∑f(ξᵢ)Δxᵢ,当 n 无限增大且Δxᵢ的最大值趋于零时,如果和式的极限存在,这个极限就叫做函数 f(x) 在区间 a, b 上的定积分,记作∫ₐᵇf(x)dx 。
12 定积分的几何定义如果在区间 a, b 上函数 f(x) 连续且非负,那么定积分∫ₐᵇf(x)dx 表示由曲线 y = f(x) 、直线 x = a 、 x = b 和 x 轴所围成的曲边梯形的面积。
如果函数 f(x) 在区间 a, b 上连续且有正有负,那么定积分∫ₐᵇf(x)dx 表示介于 x 轴上方和下方的面积的代数和。
2、定积分的几何意义21 以 x 轴上方的面积为正,x 轴下方的面积为负当函数图像在 x 轴上方时,对应的定积分值为正,表示该部分区域的面积;当函数图像在 x 轴下方时,对应的定积分值为负,表示该部分区域面积的相反数。
22 定积分表示曲线围成的面积对于一般的连续函数,定积分的值等于曲线与 x 轴之间所围成的有向面积。
3、定积分的基本性质31 线性性质若函数 f(x) 和 g(x) 在区间 a, b 上可积,k 为常数,则∫ₐᵇkf(x)dx =k∫ₐᵇf(x)dx ,∫ₐᵇf(x) ± g(x)dx =∫ₐᵇf(x)dx ±∫ₐᵇg(x)dx 。
32 区间可加性若函数 f(x) 在区间 a, c 和 c, b 上都可积,其中 a < c < b ,则∫ₐᵇf(x)dx =∫ₐᶜf(x)dx +∫ᶜᵇf(x)dx 。
高三定积分知识点总结

高三定积分知识点总结高三阶段,定积分是数学学科中重要的一部分,掌握定积分的知识点对学生来说至关重要。
在这篇文章中,我将对高三阶段定积分的知识点进行总结和归纳,以便帮助同学们更好地复习和掌握这一部分内容。
一、定积分的概念定积分是微积分的重要概念之一,它可以理解为曲线与坐标轴之间的有界区域的面积。
定积分的基本概念包括定积分的上下限、积分区间的分割以及极限等。
二、定积分的计算方法1. 函数的原函数在计算定积分的过程中,首先需要找到被积函数的原函数,也就是导函数。
通过求导反过来求解原函数,即可得到被积函数的原函数。
2. 定积分的基本计算方法定积分的基本计算方法包括积分的线性性质、定积分的区间可加性、换元积分法等。
这些方法能够简化定积分的计算过程,使得计算更加方便快捷。
3. 特殊函数的定积分计算对于一些特殊函数,如指数函数、对数函数、三角函数等,需要掌握相应的定积分计算公式和技巧,以便能够快速准确地计算出定积分的结果。
三、定积分的应用1. 几何应用定积分在几何中有着广泛的应用。
通过定积分,可以计算曲线和坐标轴之间的面积、曲线的弧长以及曲线的旋转体体积等几何问题。
2. 物理应用定积分在物理学中也有着重要的应用。
例如,通过定积分可以计算物体的质量、质心位置、重心位置以及力学和流体力学中的有关问题。
3. 经济和金融应用定积分在经济学和金融学中也有广泛的应用。
例如,通过定积分可以计算收益曲线下的总收益、消费曲线下的总消费等经济和金融问题。
四、定积分的性质1. 积分的性质定积分具有线性性质、区间可加性、保号性等性质。
这些性质在定积分的计算过程中起到了重要的作用,可以帮助我们更好地理解和运用定积分。
2. 无穷定积分无穷定积分是定积分的一种特殊形式,其中上下限存在无穷大的情况。
掌握无穷定积分的计算方法和性质,可以更好地解决一些复杂的数学问题。
五、定积分的应用举例在高三阶段,定积分的应用举例如下:1. 计算曲线下的面积,如椭圆的面积、抛物线的面积等;2. 计算曲线的弧长,如圆的弧长、正弦曲线的弧长等;3. 计算平面图形的重心位置和质心位置,如矩形的质心位置、三角形的重心位置等;4. 计算物体的质量和质量分布情况,如线密度、面密度和体密度的计算等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5 定积分1. 定积分的概念定义1 设)(x f 在],[b a 上有界, 在],[b a 中任意插入若干个分点b x x x x x a n n =<<<<<=-1210把区间],[b a 分割成n 个小区间],[10x x , ],[21x x , , ],[1n n x x -, 各小区间的长度依次为,011x x x -=∆ ,122x x x -=∆1,--=∆n n n x x x .在每个小区间],[1i i x x -上任取一点),(1i i i i x x ≤≤-ξξ 作函数值)(i f ξ与小区间长度i x ∆的乘积i i x f ∆)(ξ),,2,1(n i =, 并作和式,)(1∑=∆=ni i i n x f S ξ记},,,,max{21n x x x ∆∆∆= λ如果不论对],[b a 怎样的分法, 也不论在小区间],[1i i x x -上点i ξ怎样取法, 只要当0→λ时, 和n S 总趋于确定的极限I , 我们就称这个极限I 为函数)(x f 在区间],[b a 上的定积分, 记为∑⎰=→∆==ni i i bax f I dx x f 1)(lim )(ξλ,其中)(x f 叫做被积函数, dx x f )(叫做被积表达式, x 叫做积分变量, ],[b a 叫做积分区间.2.求定积分过程中的辩证思维定积分中的极限方法可以使有关常量与变量、近似与精确、变与不变等矛盾的对立双方相互转化,从而化未知为已知,体现了对立统一法则.同时也体现了否定之否定法则: 为求总量U ,在取极限过程中,当∞→n 时,一方面使积分和∑=∆ni i i x f 1)(ξ中的积分元素ii x f ∆)(ξ转化为总量U 的微分,)(dx x f dU = 这是对总量U 的否定,这次否定的结果得到了U 的微分,dU 这是对总量U 的无限项细分;另一方面,当∞→n 时,积分和∑=∆ni i i x f 1)(ξ转化为对微分dU 的无限项相加,这是对dU 的否定,这一次否定的结果得到了总量U ,这是对dU 的无限积累.正是由于求定积分过程中包含着丰富的辨证思维,才使得高等数学 —— 主要是微积分 —— 巧妙地、有效地解决了初等数学所不能解决的问题. 3.定积分的近似计算矩形法的几何意义非常明确,就是用小矩形的面积近似作为小曲边梯形的面积,总体上用阶梯形的面积作为整个曲边梯形面积的近似值 4.定积分在几何中的应用(1)在直角坐标系下计算平面图形的面积 方法一面积元素dA =dx x x )]()([12ϕϕ-,面积A =x x x bad )]()([12ϕϕ-⎰第一步:在D 边界方程中解出y 的两个表达式)(1x y ϕ=,)(2x y ϕ=. 第二步:在剩下的边界方程中找出x 的两个常数值a x =,b x =;不够时由)(1x ϕ)(2x ϕ=解出, b x a ≤≤,)()(21x y x ϕϕ≤≤,面积S =x x x ba d )]()([12ϕϕ-⎰方法二面积元素dA =dy y y )]()([12ϕϕ-,面积A =y y y dcd )]()([12ϕϕ-⎰第一步:在D 边界方程中解出x 的两个表达式)(1y x ϕ=,)(2y x ϕ=.第二步:在剩下的边界方程中找出y 的两个常数值c y =,d y =;不够时由)(1y ϕ)(2y ϕ=解出,d y c ≤≤,)()(21y x y ϕϕ≤≤,面积S =y y y dcd )]()([12ϕϕ-⎰)(2)在曲边梯形)(x f y =、0=y 、a x =、b x =(b a x f <≥,0)()中,如果曲边)(x f y =的方程为参数方程为⎩⎨⎧==)()(t y t x φϕ,则其面积dx y A ba⎰= =dt t t )(')(ϕφβα⎰,其中)(),(βϕαϕ==b a(3)极坐标系下计算平面图形的面积。
极坐标曲线)(θρρ=围成的面积的计算方法: 解不等式0)(≥θρ,得到βθα≤≤。
面积=θθρβαd 2)]([21⎰ (4)平行截面面积为已知的空间物体的体积过x 轴一点x 作垂直于x 轴的平面,该平面截空间物体的 截面面积为)(x A ,b x a ≤≤,则该物体的体积dx x A V ba )(⎰=(5)旋转体体积在],[b a 上0)(≥x f ,曲线)(x f y =、直线0,,===y b x a x 围成的曲边梯形 1)绕x 轴旋转一周形成旋转体,其截面面积)()(2x f x A π=, 旋转体体积⎰=ba dx x f V )(2π。
2)绕y 轴旋转一周形成旋转体:位于区间[x,x+dx]上的部分绕y 轴旋转一周而形成的旋转体体积)()()(22x f x x f dx x v ππ-⋅+≈∆dx x xf )(2π≈,原曲边梯形绕y 轴旋转一周形成的旋转体体积dx x xf V ba)(2⎰=π。
(6)平面曲线的弧长表中当)(θr r =时,θcos r x =,θsin r y =,θθθθsin )(cos )(''r r x -=,θθθθcos )(sin )(''r r y +=,弧微分θd y x ds 22''+=θd r r 22'+=。
1 求22-=x y ,12+=x y 围成的面积 【解析】⎪⎩⎪⎨⎧+=-=1222x y x y ,1222+=-x x ,1-=x ,3=x 。
当31<<-x 时1222+<-x x ,于是 面积⎰--=+-=--+=31313223210)331()]2()12[(x x x dx x x2 计算4,22-==x y x y 围成的面积 【解析】由25.0y x =,4+=y x 得,4,2=-=y y ,当42<<-y 时 45.02+<y y 面积=⎰--+422]5.04[dy y y =18。
3 求x 轴与摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x ,π20≤≤t 围成的面积【解析】面积⎰⋅-=π202)cos 1(dt t a ⎰++-=π202)22cos 1cos 21(dt tt aπ202)22cos 1sin 223(t t t a ++-=23a π=4 星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos (0>a )围成的面积.【解析】面积⎰⎰-==adt t t t a ydx 02232)sin )(cos 3(sin 44π=⎰=-20364283)sin (sin 12ππa dt t t a5 一空间物体的底面是长半轴10=a ,短半轴5=b 的椭 圆,垂直于长半轴的截面都是等边三角形,求此空间体的体积。
【解析】截面面积)1001(2533221)(2x y y x A -⋅=⋅= ⎰-==1010325)(dx x A V ⎰-=-1010233100)1001(dx x6.摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )20(π≤≤t 与x 轴围成的图形【解析】1)绕x 轴旋转形成的旋转体体积 dx y V a 220⎰=ππdt t a 3320)cos 1(-=⎰ππ3a π=dt t t t )cos cos 3cos 31(3220-+-⎰π=225a π 2)绕y 轴旋转形成的旋转体体积 πππ2220=⋅=⎰ydx x V adt t t t a 2320)cos 1)(sin (--⎰π=dt t t a 2203)cos 1([2-⎰ππ])cos 1(sin 220dt t t -⋅-⎰π336a π=3)绕a y 2=旋转形成的旋转体的截面面积)4(])2()2[(22y a y y a a -=--ππ。
绕a y 2=旋转形成的旋转体体积dx y a y V a)4(20-=⎰ππdt t t t a )cos 1)(cos 3)(cos 1(320-+-=⎰ππdt t t t a )cos cos cos 53(32203++-=⎰ππ327a π=7. 求心形线)cos 1(4ϕρ+=与射线0=ϕ、2/πϕ=围成的绕极轴旋转形成的旋转体体积【解析】心形线的参数方程为x )cos (cos 42ϕϕ+=,)cos 1(sin 4ϕϕ+=y ,旋转体体积dx y V 280⎰=π=ϕϕϕϕϕππd )cos 21(sin )cos 1(sin 642202/+⋅+-⎰=π1608.求摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x )0)(20(>≤≤a t π的长【解析】dt t a dx )cos 1(-=,tdt a dy sin =,a dt t a dy dx ds 2)1cos 21(222=+-=+=dt t2sin 。
弧长a t a dt t a s 82cos 42sin 22020=-==⎰ππ9.摆线⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 上求分摆线第一拱成1:3的点的坐标【解析】设A 点满足要求,此时c t =。
根据例2摆线第一拱成弧长a 8,a ds 2=dt t2sin 。
由条件弧OA 的长为a 2,即a dt t a c 22sin 20=⎰,32π=c ,点A 的坐标为)23,)2332((a a -π 10. 求星形线323232a y x =+的全长【解析】星形线的参数方程为⎪⎩⎪⎨⎧==ta y ta x 33sin cos ,π20≤≤t ,tdt t a dx sin cos 32-=,tdt t a dy 2sin cos 3=,t t t t a ds 4224sin cos sin cos 3+=dt t t a dt |cos sin |3=.弧长a tdt t a s 6cos sin 3420==⎰πa t 6sin 202=π。
11. 求对数螺线ϕρ2e =上0=ϕ到πϕ2=的一段弧长【解析】 ϕρ22'e =,弧长ϕρρπd s 2'220+=⎰=ϕϕπd e 2205⎰=)1(254-πe。