平面向量公式及易错点

平面向量公式及易错点
平面向量公式及易错点

平面向量公式

设a=(x,y),b=(x',y')。

1、向量的加法

向量的加法满足平行四边形法则和三角形法则。

AB+BC=AC。

a+b=(x+x',y+y')。

a+0=0+a=a。

向量加法的运算律:

交换律:a+b=b+a;

结合律:(a+b)+c=a+(b+c)。

2、向量的减法

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0

AB-AC=CB. 即“共同起点,指向被减”

a=(x,y) b=(x',y') 则a-b=(x-x',y-y').

4、数乘向量

实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。

当λ>0时,λa与a同方向;

当λ<0时,λa与a反方向;

当λ=0时,λa=0,方向任意。

当a=0时,对于任意实数λ,都有λa=0。

注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。

当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;

当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。

数与向量的乘法满足下面的运算律

结合律:(λa)?b=λ(a?b)=(a?λb)。

向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.

数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.

数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。

3、向量的的数量积

定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记

作〈a,b〉并规定0≤〈a,b〉≤π

定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos 〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。

向量的数量积的坐标表示:a?b=x?x'+y?y'。

向量的数量积的运算律

a?b=b?a(交换律);

(λa)?b=λ(a?b)(关于数乘法的结合律);

(a+b)?c=a?c+b?c(分配律);

向量的数量积的性质

a?a=|a|的平方。

a⊥b 〈=〉a?b=0。

|a?b|≤|a|?|b|。

向量的数量积与实数运算的主要不同点

1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。

2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。

3、|a?b|≠|a|?|b|

4、由|a|=|b| ,推不出a=b或a=-b。

4、向量的向量积

定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b 按这个次序构成右手系。若a、b共线,则a×b=0。

向量的向量积性质:

∣a×b∣是以a和b为边的平行四边形面积。

a×a=0。

a‖b〈=〉a×b=0。

向量的向量积运算律

a×b=-b×a;

(λa)×b=λ(a×b)=a×(λb);

(a+b)×c=a×c+b×c.

注:向量没有除法,“向量AB/向量CD”是没有意义的。

向量的三角形不等式

1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣;

①当且仅当a、b反向时,左边取等号;

②当且仅当a、b同向时,右边取等号。

2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。

①当且仅当a、b同向时,左边取等号;

②当且仅当a、b反向时,右边取等号。

定比分点

定比分点公式(向量P1P=λ?向量PP2)

设P1、P2是直线上的两点,P 是l 上不同于P1、P2的任意一点。则存在一个实数 λ,使 向量P1P=λ?向量PP2,λ叫做点P 分有向线段P1P2所成的比。

若P1(x1,y1),P2(x2,y2),P(x,y),则有

OP=(OP1+λOP2)(1+λ);(定比分点向量公式)

x=(x1+λx2)/(1+λ),

y=(y1+λy2)/(1+λ)。(定比分点坐标公式)

我们把上面的式子叫做有向线段P1P2的定比分点公式

三点共线定理

若OC=λOA +μOB ,且λ+μ=1 ,则A 、B 、C 三点共线

三角形重心判断式

在△ABC 中,若GA +GB +GC=O,则G 为△ABC 的重心

[编辑本段]向量共线的重要条件

若b≠0,则a//b 的重要条件是存在唯一实数λ,使a=λb 。

a//b 的重要条件是 xy'-x'y=0。

零向量0平行于任何向量。

[编辑本段]向量垂直的充要条件

a ⊥

b 的充要条件是 a?b=0。

a ⊥

b 的充要条件是 xx'+yy'=0。

零向量0垂直于任何向量.

平面向量易错点

湖南 周友良 周芬

在平面向量的复习中,首先要掌握其基本概念与运算.如果不能正确理解向量的基础知识,或在某些概念及公式的理解上存在模糊认识,就会造成一些表面看起来正确而实际上错误的判断,使解题思路走入误区,现例举如下,望同学们引起注意.

一、对两向量夹角的定义理解不清而致错

例1 在边长为1的正三角形ABC 中,求AB BC BC CA CA AB ++ 的值. 错解:cos 60cos 60cos 60AB BC BC C A C A AB AB BC BC C A C A AB ++=++ 1

1

1

32222

=++=. 分析:两向量夹角的定义的前提是其起点要重合.向量AB 与BC ,BC 与C A ,C A 与

AB 的夹角通过平移后发现都不是60°,而是120°.这是由于对两向量夹角的定义理解不透造成的. 正解:cos120cos120cos120AB BC BC CA CA AB AB BC BC CA CA AB ++=++

11132222

??????=-+-+-=- ? ? ???????.

注意:向量a 与b 的夹角为锐角的充要条件是0 a b >且a 与b 不共线.这里,a 与b 不共线不能忽略.

二、对向量的数量积理解不透彻而致错

例2 向量a 、b 都是非零向量,且向量3a +b 与7-5a b 垂直,4-a b 与7-2a b 垂直,求a 与b 的夹角.

错解:由题意,得(3)(7)0-5= a +b a b ,①

()(7)-4-2= a b a b ,②

将①、②展开并相减,得24623 a b =b ,③

∵≠0b ,故1

2a =b ,④

将④代入②,得22=a b ,

则=a b ,

设a 与b 夹角为θ,则21

12

cos 2θ2=== b a b a b b .

∵0180θ ≤≤,∴60θ= .

分析:上面解法表面上是正确的,但却存在着一个理解上的错误,即由③得到④,错把数的乘法的消去律运用在向量的数量积运算上.由于向量的数量积不满足消去律,所以即使≠0b ,也不能随便约去.

正解:设向量a 、b 的夹角为θ,由上面解法有2

2 a b =b ,代入①式、②式均可得22=a b ,则=a b , ∴1

cos 2

θ== a b

a b . 又∵0θ180 ≤≤,∴60θ=

三、混淆点的坐标与向量的坐标而致错

例3 判断A B C △的形状:(12)A -,,(35)B -,,(52)C -,.

错解:∵1(3)(2)5130?-+-?=-<,1(5)(2)290?-+-?=-<,(3)(5)52250-?-+?=>, ∴A B C △为钝角三角形.

分析:把点的坐标误认为向量的坐标,得出错误的结论.事实上,由点的坐标可以确定有关向量的坐标,再通过计算向量的数量积,精确判断出三角形的形状.

正解:(64)C A =- ,,(23)C B = ,,

∵62(4)30C A C B =?+-?= ,∴CA CB ⊥.

故A B C △为直角三角形.

总之,对平面向量基本概念的理解要正确、全面、到位,除上面分析的几个易错点外,还要注意向量垂直的概念是针对两非零向量而言的,明确向量平行与线段平行的区别等问题.复习时要从正反两方面透彻分析,达到从本质上把握的目的.

常用地一些矢量运算公式

常用的一些矢量运算公式 1.三重标量积 如a ,b 和c 是三个矢量,组合 ()a b c ??叫做他们的三重标量积。三重标量积等于这三 个矢量为棱边所作的平行六面体体积。在直角坐标系中,设坐标轴向的三个单位矢量标记为 (),,i j k ,令三个矢量的分量记为()()1 2 3 1 2 3 ,,,,,a a a a b b b b 及()1 2 3 ,,c c c c 则有 ( )() 123123123123 123123 c c c i jk a b c a a a c i c j c k a a a b b b b b b ??=?++= 因此,三重标量积必有如下关系式: ()()()a b c b c a c a b ??=??=??即有循环法则成立,这就是说不改变三重标量积中三个矢量顺序的组合,其结果相等。 2.三重矢量积 如a ,b 和c 是三个矢量,组合 ( ) a b c ??叫做他们的三重标量积,因有 ()()()a b c a c b c b a ??=-??=?? 故有中心法则成立,这就是说只有改变中间矢量时,三重标量积符号才改变。三重标量积有一个重要的性质(证略):() ()()a b c a b c a c b ??=-?+? (1-209) 将矢量作重新排列又有:()()() a b c b a c b a c ?=??+? (1-210) 3.算子( a ? ) ? 是哈密顿算子,它是一个矢量算子。( a ? )则是一个标量算子,将它作用于标量φ ,即 ()a φ?是φ在a 方向的变化速率的a 倍。如以无穷小的位置矢量 d r 代替以上矢量a ,则 ()dr φ ?是φ在位移方向 d r 的变化率的 d r 倍,即 d φ 。 () ()d dr dr φφφ=?=? 若将 () dr ?作用于矢量v ,则 ()dr v ?就是v 再位移方向 d r 变化率的 d r 倍,既为速度矢量 的全微分() dv dr v =? 应 用 三 重 矢 量 积 公 式 ( 1-209 ) ()()() 00()()()() a b a b a b b a a b b a a b ???=???+???=??-??-??+??

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。 (5)若AB CD =,则A 、B 、C 、D 四点构成平行四边形。 (6)若a 与b 共线, b 与c 共线,则a 与c 共线。 (7)若ma mb =,则a b =。

高中数学-公式-平面向量

平面向量 1.两个向量平行的充要条件,设a =(x 1,y 1),b =(x 2,y 2),λ为实数。(1)向量式:a ∥b (b ≠0)?a =λb ;(2)坐标式:a ∥b (b ≠0)?x 1y 2-x 2y 1=0; 2.两个向量垂直的充要条件, 设a =(x 1,y 1),b =(x 2,y 2), (1)向量式:a ⊥b (b ≠0)?a b =0; (2)坐标式:a ⊥b ?x 1x 2+y 1y 2=0; 3.设a =(x 1,y 1),b =(x 2,y 2),则a b θ=x 1x 2+y 1y 2;其几何意义是a b 等于a 的长度与b 在a 的方向上的投影的乘积; 4.设A (x 1,x 2)、B(x 2,y 2),则S ⊿AOB =1 2212 1y x y x -; 5.平面向量数量积的坐标表示: (1)若a =(x 1,y 1),b =(x 2,y 2),则a b =x 1x 2+y 1y 2221221)()(y y x x -+-=; (2)若a =(x,y),则a 2=a a =x 2+y 2,22y x a += ; 十、向量法 1、设直线、m l 的方向向量分别是、 a b ,平面αβ、的法向量分别是、u v ,则: (1)线线平行:l ∥m ?a ∥b ?=a kb (2)线面平行:l ∥α?a ⊥u 0?=a u (3)面面平行:////αβ??=u v u kv 注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合. 2、设直线、m l 的方向向量分别是、 a b ,平面αβ、的法向量分别是、u v ,则: (1)线线垂直:⊥?l m a ⊥b 0?=a b (2)线面垂直:α⊥?l a ∥u ?=a ku

向量公式大全

向量公式大全 『ps.加粗字母表示向量』1.向量加法 羈AB+BC=AC a+b=(x+x',y+y') a+0=0+a=a 运算律: 交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) 2.向量减法 罿AB-AC=CB 即“共同起点,指向被减”

如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 a=(x,y) b=(x',y') 则a-b=(x-x',y-y'). 3.数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣ 当λ>0时,λa与a同方向 当λ<0时,λa与a反方向 当λ=0时,λa=0,方向任意 当a=0时,对于任意实数λ,都有λa=0 『ps.按定义知,如果λa=0,那么λ=0或a=0』实数λ

向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍 数乘运算律: 结合律:(λa)?b=λ(a?b)=(a?λb) 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b②如果a≠0且λa=μa,那么λ=μ 4.向量的数量积

定义:已知两个非零向量a,b作OA=a,OB=b,则∠AOB称作a和b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 两个向量的数量积(内积、点积)是一个数量,记作a?b若a、b不共线,则a?b=|a|?|b|?c os〈a,b〉若a、b共线,则a?b=+-∣a∣∣b∣ 向量的数量积的坐标表示:a?b=x?x'+y?y' 向量数量积运算律 a?b=b?a(交换律) (λa)?b=λ(a?b)(关于数乘法的结合律) (a+b)?c=a?c+b?c(分配律) 向量的数量积的性质 a?a=|a|2 a⊥b〈=〉a?b=0

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》专项训练及解析答案

新数学《三角函数与解三角形》高考知识点 一、选择题 1.在ABC ?中,060,10,A BC D ∠==是边AB 上的一点,2,CD CBD =?的面积为 1, 则BD 的长为( ) A .32 B .4 C .2 D .1 【答案】C 【解析】 1210sin 1sin 25 BCD BCD ???∠=∴∠= 2 2 2 2102210425 BD BD ∴=+-??? =∴=,选C 2.在ABC ?中,角,,A B C 的对边分别为,,a b c ,且ABC ?的面积25cos S C =,且 1,25a b ==,则c =( ) A .15 B .17 C .19 D .21 【答案】B 【解析】 由题意得,三角形的面积1 sin 25cos 2 S ab C C ==,所以tan 2C =, 所以5cos C = , 由余弦定理得2222cos 17c a b ab C =+-=,所以17c =,故选B. 3.如图,边长为1正方形ABCD ,射线BP 从BA 出发,绕着点B 顺时针方向旋转至 BC ,在旋转的过程中,记([0,])2 ABP x x π ∠=∈,BP 所经过的在正方形ABCD 内的区 域(阴影部分)的面积为()y f x =,则函数()f x 的图像是( )

A . B . C . D . 【答案】D 【解析】 【分析】 根据条件列()y f x =,再根据函数图象作判断. 【详解】 当0,4x π?? ∈???? 时,()112y f x tanx ==??; 当,42x ππ?? ∈ ??? 时,()11112y f x tanx ==-??; 根据正切函数图象可知选D. 【点睛】 本题考查函数解析式以及函数图象,考查基本分析识别能力,属基本题. 4.上世纪末河南出土的以鹤的尺骨(翅骨)制成的“骨笛”(图1),充分展示了我国古代高超的音律艺术及先进的数学水平,也印证了我国古代音律与历法的密切联系.图2为骨笛测量“春(秋)分”,“夏(冬)至”的示意图,图3是某骨笛的部分测量数据(骨笛的弯曲忽略不计),夏至(或冬至)日光(当日正午太阳光线)与春秋分日光(当日正午太阳光线)的夹角等于黄赤交角.

(word完整版)四年级《三角形试题分析及易错题分析》

四年级数学三角形考题分析与易错题分析 以盘龙区小学2016学年下学期期末四年级数学试题进行分析:三角形这一单元知识占11%,所考知识点主要有:锐角三角形、直角三角形、钝角三角形,等腰三角形等边三角形的定义,三角形三边的关系,高的做法,会求三角形和多边形的内角和。如: 近三年考题分析 4、请你想办法求出下面这个多边形的内角和。

考查目的:三角形内角和和钝角三角形的特征。 15.画出下面三角形指定边上的高。 考查目的:三角形高的含义,会正确画不同三角形指定底边上的高。 掌握高的方法。 16、等腰三角形的一个内角是60°,其他两个内角各是多少度?这是()三角形。考查目的:综合三角形内角和、等腰三角形的特点及等边三角形的特点解决问题。

三角形单元检测卷 一、填空(40分) 个钝角三角形,()个等腰三角形。 7、在一个三角形的三个角中,一个是50度,一个是80度,这个三角形既是()三角形,又是()三角形。 二、选择(18分) 1.下面第()组中的三根小棒不能拼成一个三角形。 2.一个三角形的两边长分别为3 cm和7 cm,则此三角形的第三边的长可能是()。 A.3 cm B.4 cm C.7 cm 3.下面各组角中,第()组中的三个角能组成三角形。 A.60°,70°,90° B.50°,50°,50° C.80°,95°,5° 4.钝角三角形的两个锐角之和()90°。 A.大于 B.小于 C.等于 5、一个等腰三角形中,其中一底角是75度,顶角是()。 A、75度 B、45度 C、30度 D、60度 6、下面长度的小棒中(单位:cm),能围成三角形的是()。 A. 3.5、7.5、4 B . 5、2.8、6 C. 10、4.2、5.6 三、判断(8分) 1、一个内角是80度的等腰三角形,一定是一个钝角三角形。() 2、等腰三角形一定是等边三角形。() 3、等腰三角形一定是锐角三角形。()

向量公式汇总

向量公式汇总 平面向量 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 3、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。

实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)b=λ(ab)=(aλb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 4、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作ab。若a、b不共线,则ab=|a||b|cos〈a,b〉;若a、b共线,则ab=+-∣a∣∣b∣。 向量的数量积的坐标表示:ab=xx'+yy'。 向量的数量积的运算律 ab=ba(交换律); (λa)b=λ(ab)(关于数乘法的结合律); (a+b)c=ac+bc(分配律);

高考数学压轴专题(易错题)备战高考《三角函数与解三角形》难题汇编及答案

【高中数学】单元《三角函数与解三角形》知识点归纳 一、选择题 1.若,2παπ??∈ ??? ,2cos2sin 4παα?? =- ???,则sin 2α的值为( ) A .7 8 - B . 78 C .18 - D . 18 【答案】A 【解析】 【分析】 利用二倍角公式及两角差的正弦公式化简得到cos sin αα+=,再将两边平方利用二倍角正弦公式计算可得; 【详解】 解:因为2cos2sin 4παα?? =- ??? 所以( ) 22 2cos sin sin cos cos sin 4 4 π π αααα-=- 所以()())2cos sin cos sin cos sin 2 αααααα-+= - ,cos sin 02παπαα??∈-≠ ??? Q , 所以cos sin 4 αα+= 所以()2 1cos sin 8αα+=,即22 1cos 2cos sin sin 8αααα++=,11sin 28 α+= 所以7sin 28 α=- 故选:A 【点睛】 本题考查两角和差的正弦公式、二倍角公式的应用,属于中档题; 2.已知ABC V 的三条边的边长分别为2米、3米、4米,将三边都增加x 米后,仍组成一个钝角三角形,则x 的取值范围是( ) A .102 x << B . 1 12 x << C .12x << D .01x << 【答案】D 【解析】 【分析】

根据余弦定理和三角形三边关系可求得x 的取值范围. 【详解】 将ABC V 的三条边的边长均增加x 米形成A B C '''V , 设A B C '''V 的最大角为A '∠,则A '∠所对的边的长为()4x +米,且A '∠为钝角,则 cos 0A '∠<, 所以()()()()()2222342340x x x x x x x ?+++<+? +++>+??>? ,解得01x <<. 故选:D. 【点睛】 本题考查利用余弦定理和三角形三边关系求参数的取值范围,灵活利用余弦定理是解本题的关键,考查计算能力,属于中等题. 3.小赵开车从A 处出发,以每小时40千米的速度沿南偏东40?的方向直线行驶,30分钟后到达B 处,此时,小王发来微信定位,显示他自己在A 的南偏东70?方向的C 处,且A 与C 的距离为15 3千米,若此时,小赵以每小时52千米的速度开车直线到达C 处接小王,则小赵到达C 处所用的时间大约为( ) ( ) 7 2.6≈ A .10分钟 B .15分钟 C .20分钟 D .25分钟 【答案】B 【解析】 【分析】 首先根据题中所给的条件,得到30BAC ∠=?,20AB =,153AC =,两边和夹角,之后应用余弦定理求得5713BC =≈(千米),根据题中所给的速度,进而求得时间,得到结果. 【详解】 根据条件可得30BAC ∠=?,20AB =,153AC =, 由余弦定理可得2222cos30175BC AB AC AB AC ?=+-??=, 则5713BC =≈(千米),

平面向量公式

平面向量公式 1.向量三要素:起点,方向,长度 2.向量的长度=向量的模 3.零向量:? ??方向任意长度为 .20.1 4.相等向量:?? ?长度相等 方向相同 .2.1 5.向量的表示:AB ()始点指向终点 6.向量的线性加减运算法则: ()()???? ?=-=+终点指向始点 始点指向终点, CB AC AB AC BC AB ,21 7.实数与向量的积: ()()a a λμμλ=.1 ()a a a μλμλ+=+.2 ()b a b a λλλ+=+.3 4.()y x a λλλ,=? 5.a b b a ?=? 6.()()b a b a ??=?λλ 7.()c b c a c b a ?+?=?+ 注;()()c b a c b a ≠? 8.定理:向量b 与非零向量a 共线的充要条件是有且只有一个实数 λ,使得: a b λ= 9.平面向量基本定理:如果e 1 ,e 2是同一平面内的两个不共线向量,那么对于这一平面 : e e a 2211λλ+= 10.坐标的运算: ()1?? ? ? ?+ =y x a ?y x a 22 +=

()2已知;A ()y x 11+,B () y x 22+?() ( )() ?? ???+=--=--y y x x y y x x AB AB 1212.2,.12 2 1212 ()3已知;()y x a 11,= ,()y x b 22,= () ()?? ???+?=?±±=±?和它们对应坐标的乘积的两个向量的数量积等于y y x x y y x x b a b a 21212 121.2,.1 ()4已知;()y x a 11,=//()y x b 22,=01 2 2 1 =?-?y x y x (横纵交错乘积之差为0) ()5已知;已知;()y x a 11,=⊥ ()y x b 2 2 ,= 02 1 2 1 =?+??y y x x (对应坐标乘积之和为0) 10.数量积b a ?等于a 的长度a 与b 在a 的方向上的投影θcos ?b 的乘积: θcos ??=?b a b a ()的夹角与为b a θ 变形?b a b a ?= θcos 11.线段的定比分点: 设()x x p 211, ,()y x p 222, ,P ()y x ,是不同于直线p 2 1,上 的任意两点;即有: p p p p 21λ=?? ? ???外在点内 在点p p p p p p 212 100λλ (其中p 为定比分点;λ为定比。) (1).线段的定比分点“定比”λ=p p p p 2 1 (终点 分点分点 始点→→)

平面向量的运算法则

平面向量运算法则 (1)实数与向量的运算法则:设λ、μ为实数,则有: 1)结合律:a a )()(λμμλ=。 2)分配律:a a μλμλ+=+)(,b a b a λλλ+=+)(。 (2)向量的数量积运算法则: 1)a b b a ??=。 2))()()(b a b a b a b a λλλλ===???。 3)c b c a c b a ???+=+)(。 (3)平面向量的基本定理。 21,e e 是同一平面内的两个不共线向量,则对于这一平面内的任何一向量a ,有且仅有一对实数21,λλ,满足2211e e a λλ+=。 (4)a 与b 的数量积的计算公式及几何意义:θcos ||||b a b a =?,数量积b a ?等于a 的长度||a 与b 在a 的方向上的投影θcos ||b 的乘积。 (5)平面向量的运算法则。 1)设a =11(,)x y ,b =22(,)x y ,则a +b =1212(,)x x y y ++。 2)设a =11(,)x y ,b =22(,)x y ,则a -b =1212(,)x x y y --。 3)设点A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--。 4)设a =(,),x y λ∈R ,则a λ=(,)x y λλ。 5)设a =11(,)x y ,b =22(,)x y ,则a ?b =1212()x x y y +。 (6)两向量的夹角公式: cos θ=(a =11(,)x y ,b =22(,)x y )。 (7)平面两点间的距离公式:

【精选】八年级数学三角形解答题易错题(Word版 含答案)

【精选】八年级数学三角形解答题易错题(Word 版 含答案) 一、八年级数学三角形解答题压轴题(难) 1.直线MN 与直线PQ 垂直相交于O ,点A 在直线PQ 上运动,点B 在直线MN 上运动. (1)如图1,已知AE 、BE 分别是∠BAO 和∠ABO 角的平分线,点A 、B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB 的大小. (2)如图2,已知AB 不平行CD ,AD 、BC 分别是∠BAP 和∠ABM 的角平分线,又DE 、CE 分别是∠ADC 和∠BCD 的角平分线,点A 、B 在运动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值. (3)如图3,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于E 、F ,在△AEF 中,如果有一个角是另一个角的3倍,试求∠ABO 的度数. 【答案】(1)135°;(2)67.5°;(3)60°, 45° 【解析】 【分析】 (1)根据直线MN 与直线PQ 垂直相交于O 可知∠AOB=90°,再由AE 、BE 分别是∠BAO 和∠ABO 的角平分线得出1BAE OAB 2∠=∠,1 ABE ABO 2 ∠=∠,由三角形内角和定理即可得出结论; (2)延长AD 、BC 交于点F ,根据直线MN 与直线PQ 垂直相交于O 可得出∠AOB=90°,进而得出OAB OBA 90∠+∠=? ,故PAB MBA 270∠+∠=?,再由AD 、BC 分别是∠BAP 和∠ABM 的角平分线,可知1BAD BAP 2∠= ∠,1 ABC ABM 2 ∠=∠,由三角形内角和定理可知∠F=45°,再根据DE 、CE 分别是∠ADC 和∠BCD 的角平分线可知 CDE DCE 112.5∠+∠=?,进而得出结论; (3))由∠BAO 与∠BOQ 的角平分线相交于E 可知 1EAO BAO 2∠=∠,1 EOQ BOQ 2 ∠=∠ ,进而得出∠E 的度数,由AE 、AF 分别是∠BAO 和∠OAG 的角平分线可知∠EAF=90°,在△AEF 中,由一个角是另一个角的3倍分四种情况进行分类讨论. 【详解】 (1)∠AEB 的大小不变, ∵直线MN 与直线PQ 垂直相交于O ,

高中数学平面向量公式

1、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b。若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣。 向量的数量积的坐标表示:a?b=x?x'+y?y'。 向量的数量积的运算律 a?b=b?a(交换律); (λa)?b=λ(a?b)(关于数乘法的结合律); (a+b)?c=a?c+b?c(分配律); 向量的数量积的性质 a?a=|a|的平方。 a⊥b 〈=〉a?b=0。 |a?b|≤|a|?|b|。 向量的数量积与实数运算的主要不同点 1、向量的数量积不满足结合律,即:(a?b)?c≠a?(b?c);例如:(a?b)^2≠a^2?b^2。 2、向量的数量积不满足消去律,即:由a?b=a?c (a≠0),推不出b=c。 3、|a?b|≠|a|?|b| 4、由|a|=|b| ,推不出a=b或a=-b。 2、向量的向量积 定义:两个向量a和b的向量积(外积、叉积)是一个向量,记作a×b。若a、b不共线,则a×b的模是:∣a×b∣=|a|?|b|?sin〈a,b〉;a×b的方向是:垂直于a和b,且a、b和a×b按这个次序构成右手系。若a、b共线,则a×b=0。向量的向量积性质: ∣a×b∣是以a和b为边的平行四边形面积。 a×a=0。 a‖b〈=〉a×b=0。 向量的向量积运算律 a×b=-b×a; (λa)×b=λ(a×b)=a×(λb); (a+b)×c=a×c+b×c. 注:向量没有除法,“向量AB/向量CD”是没有意义的。 3、向量的三角形不等式 1、∣∣a∣-∣b∣∣≤∣a+b∣≤∣a∣+∣b∣; ①当且仅当a、b反向时,左边取等号; ②当且仅当a、b同向时,右边取等号。 2、∣∣a∣-∣b∣∣≤∣a-b∣≤∣a∣+∣b∣。 ①当且仅当a、b同向时,左边取等号; ②当且仅当a、b反向时,右边取等号。 4、定比分点

(重点)平面向量数量积公式的应用(可编辑修改word版)

F D C A a B 1 O - A 1 b B 平面向量数量积公式的应用 向量的数量积是我们学习向量中的一种新的运算,它是两个向量之间的乘法关系,它们的积是数量,因此,数量积公式充分把向量与数结合在一起,为我们解题提供了一种新的思维方式。下面谈谈数量积公式在解题中的应用。 一、解决平面几何问题: 1. 长度问题 例 1:设 AC 是平行四边形 ABCD 的长对角线,从 C 引 AB 、AD 的垂线 CE 、CF ,垂足分别为 E 、F ,如图所示,求证: AB ? AE + AD ? AF = AC 2 。 B E 2. 垂直问题 例 2:如图所示,四边形 ADCB 是正方形,P 是对角线 DB 上一点,PFCE 是矩形,证明: PA ⊥ EF 。 3. 夹角问题 例 3:求等腰直角三角形两直角边上的中线所成的钝角。 二、解决三角问题: 1. 证明一些公式: 例 4: 对 于 任 意 实 数 , Y , 求 证 : cos(+ ) = cos cos - sin sin 。 X y A B P E D O F C x y A E O C D B x

2. 证明三角恒等式: 例 5:已知 、 为锐角, 且 3sin 2 + 2 s in 2 = 1 , A 5 3sin 2- 2 s in 2= 0 ,求证:+ 2= 。 2 A 6 A 4 A 7 e A 3 A 1 A 2 3. 求三角函数值: 2 例 6:求值: cos 7 + cos 4+ c os 6。 7 7 4. 解与三角形有关的问题: 例 7:在锐角△ABC 中,已知cos A + cos B - cos( A + B ) = 3 ,求角 C 的值。 2 三、证明等式: 一般来说,等式的证明都要进行恒等运算,但应用向量的有关知识和运算,并且简单明了。 例 8:设(x 2 + y 2 )(a 2 + b 2 ) = (ax + by )2 ( ab ≠ 0 ),求证: x = y a b

平面向量知识点总结归纳

平面向量知识点总结归纳 1、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 2、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式:a b a b a b -≤+≤+ . ⑷运算性质:①交换律:a b b a +=+ ;②结合律:()() a b c a b c ++=++ ; ③00a a a +=+= . ⑸坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y +=++ . 3、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y = ,()22,b x y = ,则()1212,a b x x y y -=-- . b a C B A a b C C -=A -AB =B

设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =-- . 4、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ . ①a a λλ= ; ②当0λ>时,a λ 的方向与a 的方向相同;当0λ<时,a λ 的方向与a 的方向相 反;当0λ=时,0a λ= . ⑵运算律:①()()a a λμλμ= ;②()a a a λμλμ+=+ ;③() a b a b λλλ+=+ . ⑶坐标运算:设(),a x y = ,则()(),,a x y x y λλλλ== . 5、向量共线定理:向量() 0a a ≠ 与b 共线,当且仅当有唯一一个实数λ,使 b a λ= . 设()11,a x y = ,()22,b x y = ,其中0b ≠ ,则当且仅当12210x y x y -=时,向量a 、 () 0b b ≠ 共线. 6、平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于 这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+ .(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底) 7、分点坐标公式:设点P 是线段12P P 上的一点,1P 、2P 的坐标分别是()11,x y , ()22,x y ,当12λP P =PP 时,点P 的坐标是1212,11x x y y λλλ λ++?? ?++??. 8、平面向量的数量积: ⑴() cos 0,0,0180a b a b a b θθ?=≠≠≤≤ .零向量与任一向量的数量积为0. ⑵性质:设a 和b 都是非零向量,则①0a b a b ⊥??= .②当a 与b 同向时, a b a b ?= ;当a 与b 反向时,a b a b ?=- ;22a a a a ?== 或a .③ a b a b ?≤ . ⑶运算律:①a b b a ?=? ;②()()()a b a b a b λλλ?=?=? ;③() a b c a c b c +?=?+? . ⑷坐标运算:设两个非零向量()11,a x y = ,()22,b x y = ,则1212a b x x y y ?=+ .

高中数学必修4第二章 平面向量公式及定义

平面向量公式 1、向量的加法 向量的加法满足平行四边形法则和三角形法则. AB+BC=AC. a+b=(x+x',y+y'). a+0=0+a=a. 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c). 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0.0的反向量为0 AB-AC=CB.即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣. 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意. 当a=0时,对于任意实数λ,都有λa=0. 注:按定义知,如果λa=0,那么λ=0或a=0. 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩. 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍. 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb). 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λ b. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b.②如果a≠0且λa=μa,那么λ=μ. 3、向量的的数量积 定义:已知两个非零向量a,b.作OA=a,OB=b,则角AOB称作向量a和向量b的夹角,记作〈a,b〉并规定0≤〈a,b〉≤π 定义:两个向量的数量积(内积、点积)是一个数量,记作a?b.若a、b不共线,则a?b=|a|?|b|?cos〈a,b〉;若a、b共线,则a?b=+-∣a∣∣b∣. 向量的数量积的坐标表示:a?b=x?x'+y?y'. 向量的数量积的运算律 a?b=b?a(交换律);

1解三角形易错题解析

1解三角形易错题解析

易错题解析 例题1 在不等边△ABC中,a为最大边,如果a b c 222 <+,求A 的取值范围。 错解:∵a b c b c a 2222220 <++-> ,∴。则 cos A b c a bc = +- > 222 2 0,由于cosA在(0°,180°)上为减函数 且cos90090 °,∴° =< A 又∵A为△ABC的内角,∴0°<A<90°。 辨析:错因是审题不细,已知条件弱用。题设是a为最大边,而错解中只把a看做是三角形的普通一条边,造成解题 错误。 正解:由上面的解法,可得A<90°。 又∵a为最大边,∴A>60°。因此得A的取值范围是(60°,90°)。 例题2 在△ABC中,若a b A B 2 2 = tan tan ,试判断△ABC的形状。 错解:由正弦定理,得sin sin tan tan 2 2 A B A B =即 sin sin sin cos cos sin sin sin 2 2 00 A B A A B B A B =>> ·,∵, ∴,即 sin cos sin cos sin sin A A B B A B == 22。 ∴2A=2B,即A=B。故△ABC是等腰三角形。

21360239 3R a A = ==sin sin °。∴a b c A B C R ++++== sin sin sin 2239 3 。 例题4 在△ABC 中,c = +62 ,C =30°,求a +b 的最大值。 错解:∵C =30°,∴A +B =150°,B =150°-A 。 由正弦定理,得a A b A sin sin()sin =-= +15062 30°°∴a A =+262()sin , b A =+-262150()sin() ° 又∵sin sin()A A ≤-≤11501,°∴a b +≤+++=+262262462()()() 。 故a b +的最大值为462( ) +。 辨析:错因是未弄清A 与150°-A 之间的关系。这里A 与 150°-A 是相互制约的,不是相互独立的两个量,sinA 与sin(150°-A)不能同时取最大值1,因此所得的结果也是错误的。 正解:∵C =30°,∴A +B =150°,B =150°-A 。 由正弦定理,得a A b A sin sin()sin =-= +1506230°° 因此a b A A +=++-262150( )[sin sin()] ° 2(62)sin 75cos(75)62 4(62) cos(75)(843)cos(75)843 A A A =-+=-=+-≤+·°°·°° ∴a +b 的最大值为843+。 例题5 在△ABC 中,已知a =2,b =22,C =15°,求A 。

(完整版)高考平面向量公式(教师)

第七辑 平面向量专题 一,基本概念 1,向量的概念:有大小有方向的量称为向量。 2,向量的表示:几何表示为有向线段(如图);字母表示为a 或者AB 。 3,向量的大小:即是向量的长度(或称模) 4,零向量:长度为0的向量称为零向量,记为,零向量方向是任意的。 5,单位向量:长度为一个单位的向量称为单位向量,一般用、 1= 1= 6,平行向量(也称共线向量):方向相同或相反的向量称为平行向量,规定零向量与任意向量平行。若平行于,则表示为∥。 7,相等向量:方向相同,大小相等的向量称为相等向量。若a 与b 相等,记为a =b 8,相反向量:大小相等,方向相反的向量称为相反向量。若a 与b 是相反向量,则表示为=-;向量-= 二,几何运算 1,向量加法: (1)平行四边形法则(起点相同),可理解为力的合成,如图所示: (2)三角形法则(首尾相接),可理解为:位移的合成,如图所示, (3)两个向量和仍是一个向量; (4)向量加法满足交换律、结合律:a b b a +=+,)()(c b a c b a ++=++ (5)加法几种情况(加法不等式): = << = 2,减法: (1)两向量起点相同,方向是从减数指向被减数,如图=- (2)两向量差依旧是一个向量; (3)减法本质是加法的逆运算:CB CA AB CB AC AB =+?=- 3,加法、减法联系: (1)加法和减法分别是平行四边行两条对角线,AC AD AB =+,=- (2=,则四边形ABCD 为矩形 B A a C B A ? a b a b a b b a +

4,实数与向量的积: (1)实数λ与向量a 的积依然是个向量,记作a λ,它的长度与方向判断如下: 当0>λ时,a λ与a 方向相同;当0<λ时,a λ与a 方向相反;当0=λ时,0=a λ;当0=a 时,0=a λ ;=λ(2)实数与向量相乘满足:)()(λμμλ= μλμλ+=+)( λλλ+=+)( 5,向量共线: (1)向量与非零向量共线的充要条件是:有且只有一个实数λ,使得λ= (2)如图,平面内C B A ,,三点共线的重要条件是存在三个不为零的实数q n m ,,, 使得=++n m q ,且0=++q n m ,反之也成立。 (3)AC AB λ=,则OC OA OB λλ+-=)1((证明略) 6,向量的数量积 (1 )数量积公式:= ?=?θθcos cos (2)向量夹角θ:同起点两向量所夹的角,范围是[] 0180,0∈θ (3)零向量与任一向量的数量积为0,即00=?a (4 )数量积与夹角关系:b a ≤?≤ 00=θ 00900<<θ 090=θ 0018090<<θ 0180=θ =? 0>?> 0=? >?>0 =?(5 = θcos 称为b 在a = θcos a 在b 的方向上的投影 (6)重要结论:直角三角形ABC 中,2 =? (7)向量数量积的运算律: 2a = e =(向量e 为与a 方向相同的单位向量) ?=? )()()(λλλ?=?=? =?+)(?+? 2222)(+?+=+ 2222)(+?-=- 2 2)()(-=-?+ b a b a b a b a b a

向量公式大全83635

向量公式 设a=(x,y),b=(x',y')。 1、向量的加法 向量的加法满足平行四边形法则和三角形法则。 AB+BC=AC。 a+b=(x+x',y+y')。 a+0=0+a=a。 向量加法的运算律: 交换律:a+b=b+a; 结合律:(a+b)+c=a+(b+c)。 2、向量的减法 如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减” a=(x,y) b=(x',y') 则 a-b=(x-x',y-y'). 4、数乘向量 实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣?∣a∣。 当λ>0时,λa与a同方向; 当λ<0时,λa与a反方向; 当λ=0时,λa=0,方向任意。 当a=0时,对于任意实数λ,都有λa=0。 注:按定义知,如果λa=0,那么λ=0或a=0。 实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。 当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍; 当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。 数与向量的乘法满足下面的运算律 结合律:(λa)?b=λ(a?b)=(a?λb)。 向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa. 数对于向量的分配律(第二分配律):λ(a+b)=λa+λb. 数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。②如果a≠0且λa=μa,那么λ=μ。 3、向量的的数量积 定义:已知两个非零向量a,b。作OA=a,OB=b,则角AOB称作向量a和向量b

样稿 《三角函数、解三角形》部分易错题提醒

《三角函数、解三角形》部分易错题提醒 (315800 浙江宁波北仑职业高级中学)王瑛 三角函数及解三角形是高中数学的重要内容,也是各地高考的热点.但由于这部分内容公式多、概念广,解题方法与技巧多样,所以经常会出现遗漏条件、忽视范围及忘记分类等等问题,所以针对该部分常见错误与遗漏,归纳举例如下,望同学们能从中有所收获. 一、三角函数的概念、同角三角函数的关系式及诱导公式 1. 因“忽视轴线角、象限角表示中k的讨论”而导致错误 【例1】已知α为第三象限角,则 2 α 是第 象限角,α2是第 象限角. 【解析】α 是第三象限角,即Z k k k ∈+<<+,2 3 22ππαππ Z k k k ∈+<<+∴,4 3 22ππαππ,Z k k k ∈+<<+,34224ππαππ 当k 为偶数时,2α为第二象限角;当k 为奇数时,2 α 为第四象限角; 而α2的终边落在第一、二象限或y 轴的非负半轴上. 【评注】k 为整数,故不要忘记分奇数与偶数进行讨论.对于Z k k k ∈+<<+,34224ππαππ,不要疏忽终边落在y 轴的非负半轴上这种特殊情况. 【变式】已知βαsin 2sin =,βαtan 3tan =,求αcos 的值. 提示:若tan 0a ,tan 0b 则βββαααcos 3 2 tan 3sin 2tan sin cos === ,∴αβc os 23c os =.又因为 =βsin αsin 21,所以1cos 23sin 212 2 =?? ? ??+??? ??αα,∴46cos ±=α.若0tan =α,0tan =β,即 πβαk ==(Z k ∈).此时1cos ±=α也满足题意,答案为4 6cos ± =α或1±. 2. 因对“三角函数线的方向搞错”而导致错误 【例2】利用单位圆,求y =lg (1-2cos x )的定义域. 【解析】由1-2cos x >0 得cos x < 22 .如图1, 利用余弦线可知函数的定义域为:x ∈(2k π+π4,2k π+7π 4 )(k ∈ Z) 【评注】余弦线是以原点为起点,以终边与单位圆交点向x轴所引垂线的垂足为终点的一条有向线段 .余弦线若与x轴正方向一致的为正,反之为负. 【变式】已知sin sin ,αβ>那么下列命题正确的是( ) A .若α、β是第一象限角,则cos cos , αβ> 图1

相关文档
最新文档