人教课标版高中数学必修2第一章 空间几何体空间几何体的表面积与体积教案8
人教版高中必修2第一章空间几何体课程设计

人教版高中必修2第一章空间几何体课程设计一、背景介绍人教版高中数学教材中,空间几何体是必修2的第一章内容,通过本章的学习,可以帮助学生建立三维空间的思维模型,进一步提高他们的数学学习能力。
本课程设计旨在通过有趣的教学方法和补充教材,提高学生对空间几何体的理解和掌握。
二、学习目标1.了解空间几何体的基本概念;2.掌握空间几何体的相关参数计算方法;3.能够进行空间几何体的分类和比较;4.能够在现实问题中应用空间几何体的相关知识。
三、教学内容1. 立体图形与空间几何体•立体图形的特点;•空间几何体的基本概念;•空间几何体的种类及特点。
2. 空间几何体的参数计算•空间几何体的体积计算;•空间几何体的表面积计算;•空间几何体的其他参数计算。
3. 空间几何体的分类•空间几何体的分类;•不同空间几何体的比较;•在实际问题中应用空间几何体的分类知识。
四、教学方法1. PBL教学法本课程采用问题驱动学习(PBL)教学法,通过引入实际问题,激发学生的学习兴趣,提高学生的自主学习能力和解决问题的能力。
2. 案例教学法在教学中引入具体案例,让学生在解决问题时更能理解和掌握所学知识。
同时,在案例解决过程中,要求学生能够进行创新和自主思考,培养他们的实际应用能力。
3. 交互式教学法教师与学生通过互动、讨论、合作等形式,共同探究问题,激发学生的学习兴趣,提高其学习效果。
五、教学流程第一部分:引入教学•介绍本章学习目标;•引入立体图形和空间几何体的概念;•通过图片、视频等形式展现空间几何体的特点和应用场景。
第二部分:教学过程•在课堂上呈现具体的例子,让学生更好地理解空间几何体的概念和应用;•引入问题来激发学生的学习兴趣,同时培养学生的自主思考和解决问题的能力;•给予学生足够的时间,让他们自主探索和发现,鼓励他们进行创新和思考。
第三部分:总结归纳•进行知识点的总结,强化学生对空间几何体的理解和掌握;•借助案例,让学生更深入地理解和掌握空间几何体的相关知识。
1.空间几何体的表面积与体积(通用)-人教A版必修二教案

空间几何体的表面积与体积(通用)-人教A版必修二教案一、教材内容概述在人教A版必修二数学教材中,第五章“空间几何体的计算”部分的第一节内容是空间几何体的表面积与体积的计算。
该部分介绍了如何计算立方体、长方体、正方体、棱台、圆柱、圆锥、球体等常见几何体的表面积与体积,并提供了相应的计算公式和实例练习。
二、教学目标本节课教学目标如下:1.了解常见空间几何体的表面积与体积的计算公式;2.能够熟练应用这些公式计算特定几何体的表面积与体积;3.发现常见空间几何体的几何特征与其表面积、体积的关系。
三、教学重点和难点1.熟练掌握各类几何体的表面积与体积的计算公式;2.能够正确应用公式进行计算;3.发现不同几何体的表面积、体积的计算方法与其几何特征的内在联系。
四、教学内容及安排本节课教学内容如下:1. 立方体、长方体、正方体的表面积与体积1.立方体的表面积和体积计算公式;2.长方体的表面积和体积计算公式;3.正方体的表面积和体积计算公式;4.练习题。
2. 棱台的表面积与体积1.棱台的表面积和体积计算公式;2.完全三视图,练习题。
3. 圆柱的表面积与体积1.圆柱的表面积和体积计算公式;2.练习题。
4. 圆锥的表面积与体积1.圆锥的表面积和体积计算公式;2.练习题。
5. 球体的表面积与体积1.球体的表面积和体积计算公式;2.练习题。
五、实施方法和步骤1.导入,介绍本节课的学习内容和目标;2.按照教学内容的安排,展开具体的讲解;3.针对不同类型几何体,进行基本概念的讲解,并介绍其表面积和体积的计算方法;4.使用白板、PPT等多种教学手段举例,提供思维拓展;5.针对性的设计练习和小组活动,检验学生的掌握程度;6.总结本节课的要点,强化学生对重点概念、公式和方法的掌握。
六、教学评价本节课的教学评价将包括以下方面:1.口头提问,检验学生对于概念、公式和计算方法的掌握情况;2.课后作业,提供一定数量和难度的习题,检验学生对教学内容的掌握程度;3.小组活动,培养学生的团队协作意识、沟通能力和创新思维。
高一数学必修2教案:1.3.2空间几何体的表面积和体积(教学设计)Word版

探究几种方法, 找出 形成归纳、
公式背后的理论依
猜想和证
据
明的科学
思维习惯
圆台的上、下底面半径分别为 r,r′,母线 为 l,其表面积 S= __________________.
根据台体的特征,如何求台体的体积? 由于圆台 ( 棱台 ) 是由圆锥 ( 棱锥 ) 截成的, 因此可以利用 两个锥体的体积差.得到圆台 ( 棱台 ) 的体积公式.
2 A.3
B.2
3 C. 2
1 D.2
环节四: 归 纳总结 , 知 识回顾
棱台的侧面展开是什么图形? 圆台的侧面展示是什么图形? 棱台和圆台的侧面积和体积公式
环节五: 作 业与测试
练习与测试
学生整理反思, 深化 认识
独立完成作业 限时完成测试
通过作业 与测试巩 固知识提 升应用能 力
类比得出圆台的体积
环节二: 例 题讲解
例 1 、已知一正四棱台的上底边长为 8cm,高为 3cm,求其体积。
4cm,下底边长为
例 2.如图,一个圆台形花盆盆口直径 20cm,盆底直径
为 15cm,底部渗水圆孔直径为 1.5cm,盆壁长 15cm.为
了美化花盆的外观,需要涂油漆.已知每平方米用
100
1.3 空间几何体的表面积和体积(第二课时)
【教学过程】
教学流程
教师活动
环节一: 问 题导入
类比棱柱、棱锥,思考: 棱台也是由多个平面图形围成的几何体, 什么?如何计算它的表面积?
它的展开图是
学生活动 结合已有知识进行 思考,引出新知识
设计意图 新旧知识 建立联系
环节二: 探 棱台侧面展开图 究过程
忆,加强应用方面的
A. 81π C. 14π
人教版高中数学必修二第一章 空间几何体全章教案

人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。
2.培养学生善于通过观察实物形状到归纳其性质的能力。
教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。
请列举一些空间几何体的实例。
二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。
那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。
思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。
高中数学必修2《空间几何体的表面积与体积》教案

⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 ⾼中数学必修2《空间⼏何体的表⾯积与体积》教案 1教学⺫标 1.知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积的求法. 2.能运⽤公式求解柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 2学情分析 通过学习空间⼏何体的结构特征,空间⼏何体的三视图和直观图,了解了空间⼏何体和平⾯图形之间的关系,从中反映出⼀个思想⽅法,即平⾯图形和空间⼏何体的互化,尤其是空间⼏何问题向平⾯问题的转化。
该部分内容中有些是学⽣已经熟悉的,在解决这些问题的过程中,⾸先要对学⽣已有的知识进⾏再认识,提炼出解决问题的⼀般思想——化归的思想,总结出⼀般的求解⽅法,在此基础上通过类⽐获得解决新问题的思路,通过化归解决问题,深化对化归、类⽐等思想⽅法的应⽤。
3重点难点 重点:知道柱体、锥体、台体侧⾯展开图,弄懂柱体、锥体、台体的表⾯积公式。
难点:会求柱体、锥体和台体的表⾯积,并知道柱体、锥体和台体表⾯积之间的关系. 4教学过程 4.1 第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? 1.3 空间⼏何体的表⾯积与体积 课时设计课堂实录 1.3 空间⼏何体的表⾯积与体积 1第⼀学时教学活动活动1【导⼊】第1课时 柱体、锥体、台体的表⾯积 (⼀)、基础⾃测: 1.棱⻓为a的正⽅体表⾯积为__________. 2.⻓、宽、⾼分别为a、b、c的⻓⽅体,其表⾯积为___________________. 3.⻓⽅体、正⽅体的侧⾯展开图为__________. 4.圆柱的侧⾯展开图为__________. 5.圆锥的侧⾯展开图为__________. (⼆).尝试学习 1.柱体的表⾯积 (1)侧⾯展开图:棱柱的侧⾯展开图是____________,⼀边是棱柱的侧棱,另⼀边等于棱柱的__________,如图①所⽰;圆柱的侧⾯展开图是_______,其中⼀边是圆柱的⺟线,另⼀边等于圆柱的底⾯周⻓,如图②所⽰. (2)⾯积:柱体的表⾯积S表=S侧+2S底.特别地,圆柱的底⾯半径为r,⺟线⻓为l,则圆柱的侧⾯积S侧=__________,表⾯积S表=__________. 2.锥体的表⾯积 (1)侧⾯展开图:棱锥的侧⾯展开图是由若干个__________拼成的,则侧⾯积为各个三⾓形⾯积的_____,如图①所⽰;圆锥的侧⾯展开图是_______,扇形的半径是圆锥的______,扇形的弧⻓等于圆锥的__________,如图②所⽰. (2)⾯积:锥体的表⾯积S表=S侧+S底.特别地,圆锥的底⾯半径为r,⺟线⻓为l,则圆锥的侧⾯积S侧=__________,表⾯积S表=__________. 3.台体的表⾯积 (1)侧⾯展开图:棱台的侧⾯展开图是由若干个__________拼接⽽成的,则侧⾯积为各个梯形⾯积的______,如图①所⽰;圆台的侧⾯展开图是扇环,其侧⾯积可由⼤扇形的⾯积减去⼩扇形的⾯积⽽得到,如图②所⽰. (2)⾯积:台体的表⾯积S表=S侧+S上底+S下底.特别地,圆台的上、下底⾯半径分别为r′,r,⺟线⻓为l,则侧⾯积S侧=____________,表⾯积S表=________________________. (三).互动课堂 例1:在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=a,∠AA1B1=∠AA1C1=60°,∠BB1C1=90°,侧棱⻓为b,则其侧⾯积为( ) A. B.ab C.(+)ab D.ab 例2:(1)若⼀个圆锥的轴截⾯是等边三⾓形,其⾯积为,则这个圆锥的侧⾯积是( )A.2πB.C.6πD.9π (2)已知棱⻓均为5,底⾯为正⽅形的四棱锥S-ABCD,如图,求它的侧⾯积、表⾯积. 例3:⼀个四棱台的上、下底⾯都为正⽅形,且上底⾯的中⼼在下底⾯的投影为下底⾯中⼼(正四棱台)两底⾯边⻓分别为1,2,侧⾯积等于两个底⾯积之和,则这个棱台的⾼为( ) A. B.2 C. D. (四).巩固练习: 1.⼀个棱柱的侧⾯展开图是三个全等的矩形,矩形的⻓和宽分别为6 cm,4 cm,则该棱柱的侧⾯积为________. 2.已知⼀个四棱锥底⾯为正⽅形且顶点在底⾯正⽅形射影为底⾯正⽅形的中⼼(正四棱锥),底⾯正⽅形的边⻓为4 cm,⾼与斜⾼的夹⾓为30°,如图所⽰,求正四棱锥的侧⾯积________和表⾯积________(单位:cm2). 3.如图所⽰,圆台的上、下底半径和⾼的⽐为1:4:4,⺟线⻓为10,则圆台的侧⾯积为( )A.81πB.100πC.14πD.169π (五)、课堂⼩结: 求柱体表⾯积的⽅法 (1)直棱柱的侧⾯积等于它的底⾯周⻓和⾼的乘积;表⾯积等于它的侧⾯积与上、下两个底⾯的⾯积之和. (2)求斜棱柱的侧⾯积⼀般有两种⽅法:⼀是定义法;⼆是公式法.所谓定义法就是利⽤侧⾯积为各侧⾯⾯积之和来求,公式法即直接⽤公式求解. (3)求圆柱的侧⾯积只需利⽤公式即可求解. (4)求棱锥侧⾯积的⼀般⽅法:定义法. (5)求圆锥侧⾯积的⼀般⽅法:公式法:S侧=πrl. (6)求棱台侧⾯积的⼀般⽅法:定义法. (7)求圆台侧⾯积的⼀般⽅法:公式法S侧=2(r+r′)l. 五、当堂检测 1.(2011·北京)某四棱锥的三视图如图所⽰,该四棱锥的表⾯积是( )A.32B.16+16C.48D.16+32 ⺴] 2.(2013·重庆)某⼏何体的三视图如图所⽰,则该⼏何体的表⾯积为( )A.180B.200C.220D.240 3.(2013⼲东)若⼀个圆台的正视图如图所⽰,则其侧⾯积等于( )A.6B.6πC.3πD.6π 六、作业:(1)课时闯关(今晚交) 七、课后反思:本节课你会哪些?还存在哪些问题? ⼩编推荐各科教学设计: 、、、、、、、、、、、、 ⼩编推荐各科教学设计: 、、、、、、、、、、、、。
1.空间几何体的表面积与体积(通用)-人教A版必修二教案

1.空间几何体的表面积与体积(通用)-人教A版必修二教案一、教学目标1.了解空间几何体的定义及分类,并掌握它们的表面积与体积公式。
2.能够运用所学知识计算空间几何体的表面积与体积。
二、教学重点和难点1.教学重点:空间几何体的定义及分类、表面积与体积的公式。
2.教学难点:如何运用所学知识计算空间几何体的表面积与体积。
三、教学过程1. 空间几何体的定义及分类1.引入空间几何体的概念,定义几何体。
2.给出空间几何体的常见分类:点、线、面、体。
3.介绍不同空间几何体的定义和特点。
2. 空间几何体的表面积公式1.引入空间几何体的表面积概念,定义表面积。
2.分别介绍正方体、长方体、正棱柱、正棱锥、球的表面积公式,并进行计算演示。
3. 空间几何体的体积公式1.引入空间几何体的体积概念,定义体积。
2.分别介绍正方体、长方体、正棱柱、正棱锥、球的体积公式,并进行计算演示。
4. 计算练习1.给出一些空间几何体的基本参数,要求学生自行计算其表面积和体积。
2.教师进行现场指导和解答,强调运用公式的方法。
四、教学评估1.给出一些空间几何题目,要求学生自行计算其表面积和体积。
2.对学生的计算结果进行点评和总结,引导同学们继续加强实践和掌握。
五、教学拓展1.引导同学们了解空间几何体中的其他几何体类型,例如多面体、四面体、棱锥等,拓宽知识面。
2.提供更多计算练习,让学生运用公式娴熟地计算各种空间几何体的表面积和体积。
六、教学反思教学中应注意具体问题具体分析,让学生感受到所学知识的实际应用。
此外,在计算时也要避免公式的生搬硬套,而应注重运用创新思维。
数学第一章空间几何体的表面积和体积教案新必修2
A. B. C. D.
解析:设圆柱的底面半径为r,高为h,则由题设知h=2πr.
∴S全=2πr2+(2πr)2=2πr2(1+2π).S侧=h2=4π2r2,
∴ 。答案为A。
点评:本题考查圆柱的侧面展开图、侧面积和全面积等知识。
17.圆锥底面半径为r,母线长是底面半径的3倍,在底面圆周上有一点A,求一个动点P自A出发在侧面上绕一周到A点的最短路程.
参考答案
一、选择题
1.C设正四棱柱的底面边长为a,高为c,由题意
2a2+c2=81①
2a2+4ac2=144即a2+2ac2=72②
①×8-②×9得7a2-18ac+8c2=0即(7a-4c)(a-2c)=0,因此7a-4c=0或a=2c,由此可见由①②构成方程组有两组满足条件的解,故正确答案选C.
A.3∶5 B.9∶25
C.5∶ D.7∶9
8.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是()
A. B. C. D.
9.已知正四面体ABCD的表面积为S,其四个面的中心分别为E、F、G、H,设四面体EFGH的表面积为T,则 等于()
A. B. C. D.
10.一个斜三棱柱,底面是边长为5的正三角形,侧棱长为4,侧棱与底面三角形两边所成的角都是60°,则这个斜三棱柱的侧面积是()
(其中c,c’为棱台上下底面的周长,h’为各个等腰梯形的高,即棱台的斜高)。
(二)、圆柱、圆锥、圆台的侧面积
把圆柱、圆锥、圆台的侧面沿着它们的一条母线剪开后展在平面上,展开图的面积就是它们的侧面积。
1、圆柱的侧面积
◆如果圆柱底面半径是r,周长是c,侧面母线长是l,那么它的侧面积是
人教版高中数学必修2第一章空间几何体-《1.3.2球的体积和表面积》教案
§1.3.2 球的体积和表面积一. 教学目标1. 知识与技能⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分 割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。
⑵能运用球的面积和体积公式灵活解决实际问题。
⑶培养学生的空间思维能力和空间想象能力。
2. 过程与方法通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=34πR 3和面积公式S=4πR 2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。
3. 情感与价值观通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。
二. 教学重点、难点重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。
难点:推导体积和面积公式中空间想象能力的形成。
三. 学法和教学用具1. 学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。
2. 教学用具:投影仪四. 教学设计(一) 创设情景⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。
⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。
(二) 探究新知1.球的体积:如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。
步骤:第一步:分割如图:把半球的垂直于底面的半径OA作n 等分,过这些等分点,用一组平行于底面的平面把半球切割成n 个“小圆片”,“小圆片”厚度近似为n R ,底面是“小圆片”的底面。
人教A版高中数学必修2《 一章 空间几何体 1.3 空间几何体的表面积与体积(通用)》优质课教案_2
三、教学方法与手段
教学方法:启发式教学,小组合作探究。
教学手段:多媒体、实物模型。
四、教学过程设计
教学过程
教学过程
学生活动
设计意图
小游戏引入
通过水果翻牌的小游戏引入新课。
积极参与水果翻牌游戏,回答每种水果底下对应的平面图形的面积。
帮助学生回顾平面图形的面积,从而过度到立体图形的表面积。
学生自我总结本节课的收获。
帮助学生梳理本节课的知识及思想方法。
由于题目没有图形,所以学生先根据题目画出图形,根据题目标出已知量,求出该几何体的表面积。
使学生了解空间多面体的表面积求法的过程。
探究二
多面体的表面积我们懂求了,那么旋转体呢?
观察、想象、类比得出旋转体的表面积的求法。
帮助学生自主归纳旋转体的表面积的求法,得出多面体的表面积等于侧面积+底面积。
思考
旋转体的侧面积怎么求?引导学生把立体问题转化为平面问题去考虑,即把侧面展开变为平面,平面图形的面积即为侧面积。通过模型展示及几何画板展示侧面展开的动态演示。
通过模型的展示及几何画板的动态演示,体会侧面图形展开为平面图形。
立体问题平面化的理解。
公式的记忆
圆柱、圆锥、圆台侧面积及表面积公式的记忆。
圆柱、圆锥、圆台侧面积及表面积公式的记忆。
通过公式的记忆,方便题目的解答。
例题
1、等边圆柱即轴截面是正方形的圆柱,若它的底面半径为r,求它的表面积。
2、等边圆锥即轴截面为正三角形的圆锥,若它的底面半径为r,求它的表面积。
空间几何体的表面积
(高中数学人教版必ቤተ መጻሕፍቲ ባይዱ2)
第一章立体几何初步
1.3.1柱体、锥体、台体的表面积与体积
高中数学必修二教案:1.3.1空间几何体的表面积和体积
课题名称空间几何体的表面积和体积三维目标 1.知识与技能:通过学习掌握柱、锥、台表面积、体积的计算公式并会灵活运用,会求简单组合体的表面积和体积。
2.过程与方法:通过对柱、锥、台表面积和体积的公式的探究学习,体会观察、类比、归纳的推理方法。
3.情感态度与价值观:培养学生从量的角度认识几何体,培养学生的空间想象能力和思维能力。
重点目标知识与技能难点目标过程与方法导入示标目标三导学做思一:棱柱、棱锥、棱台都是由多个平面图形围成的几何体,它们的侧面展开图是什么?如何计算它们的表面积?例1:已知棱长为a,各面都是等边三角形的四面体S—ABC,求它的表面积?学做思二:圆柱、圆锥、圆台都是旋转体,它们的侧面展开图是什么?如何计算它们的表面积?例2:如图,一个圆台形花盆盆口直径20 cm,盆底直径为15cm,底部渗水圆孔直径为1.5 cm,盆壁长15cm.那么花盆的表面积约是多少平方厘米(π取3.14,结果精确到1 )?学做思三:柱体、锥体、台体的体积如何计算?(分别写出计算公式)例3:有一堆规格相同的铁制(铁的密度是7.8g/3cm)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(π取3.14)?学做思四:组合体的表面积和体积如何计算?达标检测1、正方体的全面积为24 cm2,则它的体积是()A.4cm3B.16cm3C.64cm3D.8cm32、已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为V1和V2,则V1:V2=()A.1:3 B.1:1 C.2:1 D.3:13、用长为4,宽为2的矩形做面围成一个圆柱,则此圆柱的侧面积为()A.2πB.π8C.4πD.84、在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方形,则截去8个三棱锥后,剩下的几何体的体积是()A.23B.76C.45D.56反思总结 1.知识建构2.能力提高3.课堂体验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
. 1.2.2 空间几何体的直观图
教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.
教学重点:画出直观图.
教学难点:画法原理.
教学过程:
一、新课导入:
1. 提问:何为三视图?(正视图:自前而后;侧视图:自左而右;俯视图:自上而下)
2. 讨论:如何在平面上画出空间图形?
3. 引入:定义直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形.
把空间图形画在平面内,画得既富有立体感,又能表达出图形各主要部分的位置关系和度量关系的图形
二、讲授新课:
1. 教学水平放置的平面图形的斜二测画法:
① 讨论:水平放置的平面图形的直观感觉?以六边形为例讨论.
② 给出斜二测画法规则:
建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX ,OY ,建立直角坐标系;
画出斜坐标系,在画直观图的纸上(平面上)画出对应的O ’X ’,O ’Y ’,使'''X OY =450(或1350
),它们确定
的平面表示水平平面;
画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘轴,且长度保持不变;在已知图形
平行于Y 轴的线段,在直观图中画成平行于Y ‘轴,且长度变为原来的一半;
擦去辅助线,图画好后,要擦去X 轴、Y 轴及为画图添加的辅助线(虚线)。
③ 出示例1 用斜二测画法画水平放置的正六边形.
(师生共练,注意取点、变与不变 → 小结:画法步骤)
④ 练习: 用斜二测画法画水平放置的正五边形.
⑤讨论:水平放置的圆如何画?(正等测画法;椭圆模板)
2. 教学空间图形的斜二测画法:
① 讨论:如何用斜二测画法画空间图形?
② 出示例2 用斜二测画法画长4cm 、宽3cm 、高2cm 的长方体的直观图.
(师生共练,建系→取点→连线,注意变与不变; 小结:画法步骤)
③ 出示例3 (教材P20)根据三视图,用斜二测画法画它的直观图.
讨论:几何体的结构特征? 基本数据如何反应?
师生共练:用斜二测画法画图,注意正确把握图形尺寸大小的关系
④ 讨论:如何由三视图得到直观图?又如何由直观图得到三视图?
空间几何体的三视图与直观图有密切联系. 三视图从细节上刻画了空间几何体的结构,根据三视图可以得到一个精确的空间几何体,得到广泛应用(零件图纸、建筑图纸). 直观图是对空间几何体的整体刻画,根据直观图的结构想象实物的形象.
3. 练习: 探究P21 奖杯的三视图到直观图.
4. 小结:斜二测画法
三、巩固练习:
1. 练习:P21 1~5题
2. 右图是一个几何体的三视图,请作出其直观图.
3. 画出一个正四棱台的直观图.尺寸:上、下底面边长2cm 、4cm; 高3cm
4.作业:P18 4、6、7
正视图 俯视图 左视图。