B733性能数据
油管性能基本要求

螺纹单项参数测量仪使用时注意事项
1.石油用螺纹单项参数测量仪均为精密仪器,操作时应
十分谨慎,以保持进行检验所要求的高准确度和精度。任
何仪器若不慎被摔或受剧烈震动,应进行重新校准或与已 知精度的计量基准对比,重新确定其精度,否则不能用于检
验。
2.检验时,慢慢放松测量杆,使测头与被测螺纹表面相 接触。不允许提起测量杆然后突然松手,靠弹簧力把测头
油管性能基本要求
提纲
油管基础知识介绍 管体性能与检验 螺纹要求与检验 适用性评价 使用与维护 失效案例分析
油管 Tubing
用途:
连接下入井中,用作流体注采的管柱通道; 油管管柱在油井管柱的最里面;
油管与套管之间环空填充保护液,封隔器密封;
油气流体从地下油层经油管柱通道到达地面。
螺距量规的使用方法
a) 使 用 前 , 安 装 和 调 整 固 定 测 头 , 使 测 头 间 距 等 于 待 测 螺 纹的间距;
b)使用标准样板将量规指示表调整到零位,并检查仪表的灵活性 和测头是否松动; c)量规的球形测头置于相应的螺纹槽内; d)以固定测头为轴心,可动测头在测量线的两侧旋转一小圆弧; e)最小的正读数(+)或最大的负读数(-)就是螺距误差。
规格: 外径:1.050~4.5英寸(26.67~114.30mm) 壁厚:0.113~0.63英寸(2.87~16.00mm) 针对规格、钢级和相应端部加工的规定:
例如:
尺寸公差要求:
(对于外加厚油管,外径测量位置做了规定)
1、外径:D±0.79mm
2、壁厚:-12.5%
3、通径要求:每根管子应用规定尺寸的通 径棒进行全长通径检验。
B733飞机航线检查标准(机身)

733飞机机身部分规范绕飞机一周:绕飞机一周必须按规定路线从起点开始,最后回到起点,绕飞机路线中的字母代码与工卡中的步骤顺序代码一致。
目的是提醒检查者该处的检查重点,但是对飞机外表蒙皮及遍布飞机的漏水孔、适航标签,工卡虽未提及,检查者仍应注意蒙皮是否有明显的损坏,漏水孔是否有不正常的液体漏出,检查并确保外部的适航性标志和标牌没有丢失且清晰可读。
(注:外部适航性标志和标牌包括货舱标牌、客舱(主舱)门外部标志和标牌、紧急出口门外部标牌,燃油勤务面板标牌。
)同样对于飞机外部的导线管及邻近电门等电气部件,工卡中虽未提及,检查者仍应注意这些电气部件是否有相磨或受损坏:A区域1:雷达罩安装牢固且无损伤,检查雷达罩上的安装螺钉无丢失,雷达搭接带完好在位;无鸟击;雷击的痕迹。
风挡雨刷停靠在位,无损伤;各风挡玻璃外表无损伤。
雷达罩固定螺钉2:检查皮托管(共4),备用静压孔(共2),全温探头(共1),迎角传感器(共2)应无损伤。
皮托管有4个,分布在驾驶舱下部的两边,左边两个,右边两个。
检查时应确认皮托管无烧黑,烧蚀的痕迹,皮托管无堵塞。
迎角传感器有两个,分别在机身左右皮托管下部。
检查时应确认迎角传感器在位且无损伤。
注意:红(或者黑)框区域为RVSM区域,若有损伤不能按RVSM放行。
检查全温探头在位,且无堵塞,无其他损伤。
迎角传感器TAT 探头皮托管3:目视检查前电子舱门(前鼻子舱门)关好,无损伤,门锁栓应牢固。
电子舱门关上后应确认锁扣按回去,与机身齐平。
注意 前电子舱舱门与后电子/电气舱门共用一个门警告灯。
前电子舱门机身漏水孔B 区域1:目视检查后电子舱门关好,无损伤,门锁栓应牢固。
电子舱门关上后应确认锁扣按回去,与机身齐平。
注意 前电子舱舱门与后电子/电气舱门共用一个门警告灯;目视检查TCAS 下天线、ATC 天线、LRRA 天线(4个)、DME 天线(2个)、VHF 下天线、信标机天线。
确保它们无缺失,断裂以及其他形式的损伤。
2 第2章 飞行计划制作--手工飞行计划b733实例

3、准备航路资料 Material preparation
所需查取的信息:Required information: 1、起飞机场离场程序代号与航段长度 Procedure number in departure airport and leg’s length 2、各航路点的名称、各航段磁航线角、航段长度、航路代号 Name of waypoints, MC of each leg, legs’ length, route number 3、目的地机场进场程序代号与航段长度 Procedure number in destination and leg’s length 4、各航段磁差 MV of each leg 航路资料填写实例example of filling in route information
4、航路资料小结 route summary
• 备降航程 Alternate distance • 飞往备降的平均航线角 • Average course (degrees) (from destination to alternate) • 飞往备降场的高度Altitude (from destination to alternate) • 备降高度上的平均风、温Average wind and temperature • 平均磁差 Average magnetic variation • 备降航路顺逆风分量 • Alternate route headwind and tailwind components • 备降高度ISA及ISA偏差 • ISA and ISA deviation at alternate altitude
简易飞行计划表simple flight plan
• 7 精确飞行计划 Concise flight plan
民航电报解析

民航电报解析
编组13 起飞机场和时间(略) 编组15航路 巡航速度:巡航速度或马赫数
飞行中第一个或整个巡航航段的真空速,按下列方式表示; K 后随4位数字,单位为“Km/h”表示真空速; N 后随4位数字,单位为“Knots”表示真空速。 M后随3位数字表示最近的1%马赫单位的马赫数
巡航高度:高度层数据有4种表示方法:
) 除非有关的空中交通服务当局中规定了其他设备的组合,甚高频无线电话,自动方向定位仪,全向信标接收机,及有着陆系统都应作为 标准机载设备。 2) 填入字母R,表示一架航空器符合航段、航路及/或有关区域规定的必备导航性能类别。当使用字母Z时,所载设备应在编组18中注明, 并视情况冠以COM(通信设备)/及/或NAV(导航设备)/。 3) 当使用字母时,应在编组18中注明所载设备冠以DAT(数据链设备),并视情况随一个或多个字母。
取消重复与非重复性飞行预报 ABS( abolish message ) 用于取消某日飞行计划电报 (ABS-1004-CCA1821-ZBAA1215)
民航电报解析
领航计划报 FPL( filed flight plan message)
(FPL-CCA1821-IS -B738/M-SHRW/C(10) -ZBAA1215 -K0850S1020 DCT WF DCT VM DCT P18 H2 SB/M073S0960 H2
ASTM B-733-97 金属表面化学镀镍磷层规范标准

Designation:B733–97Standard Specification forAutocatalytic(Electroless)Nickel-Phosphorus Coatings on Metal1This standard is issued under thefixed designation B733;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.This standard has been approved for use by agencies of the Department of Defense.1.Scope1.1This specification covers requirements for autocatalytic (electroless)nickel-phosphorus coatings applied from aqueous solutions to metallic products for engineering(functional)uses.1.2The coatings are alloys of nickel and phosphorus pro-duced by autocatalytic chemical reduction with hypophosphite. Because the deposited nickel alloy is a catalyst for the reaction, the process is self-sustaining.The chemical and physical properties of the deposit vary primarily with its phosphorus content and subsequent heat treatment.The chemical makeup of the plating solution and the use of the solution can affect the porosity and corrosion resistance of the deposit.For more details,see ASTM STP265(1)2and Refs(2)(3)(4)and(5) also refer to Figs.X1.1,Figs.X1.2,and Figs.X1.3in the Appendix of Guide B656.1.3The coatings are generally deposited from acidic solu-tions operating at elevated temperatures.1.4The process produces coatings of uniform thickness on irregularly shaped parts,provided the plating solution circu-lates freely over their surfaces.1.5The coatings have multifunctional properties,such as hardness,heat hardenability,abrasion,wear and corrosion resistance,magnetics,electrical conductivity provide diffusion barrier,and solderability.They are also used for the salvage of worn or mismachined parts.1.6The low phosphorus(2to4%P)coatings are microc-rystalline and possess high as-plated hardness(620to750HK 100).These coatings are used in applications requiring abra-sion and wear resistance.1.7Lower phosphorus deposits in the range between1and 3%phosphorus are also microcrystalline.These coatings are used in electronic applications providing solderability,bond-ability,increased electrical conductivity,and resistance to strong alkali solutions.1.8The medium phosphorous coatings(5to9%P)are most widely used to meet the general purpose requirements of wear and corrosion resistance.1.9The high phosphorous(more than10%P)coatings have superior salt-spray and acid resistance in a wide range of applications.They are used on beryllium and titanium parts for low stress properties.Coatings with phosphorus contents greater than11.2%P are not considered to be ferromagnetic.1.10The values stated in SI units are to be regarded as standard.1.11The following precautionary statement pertains only to the test method portion,Section9,of this specification.This standard does not purport to address all of the safety concerns, if any,associated with its use.It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limita-tions prior to use.2.Referenced Documents2.1ASTM Standards:B368Test Method for Copper-Accelerated Acetic Acid-Salt Spray(Fog)Testing(CASS Testing)3B374Terminology Relating to Electroplating3B380Test Method of Corrosion by the Corrodkote Proce-dure3B487Test Method for Measurement of Metal and Oxide Coating Thicknesses by Microscopical Examination of a Cross Section3B499Test Method for Measurement of Coating Thick-nesses by the Magnetic Method:Nonmagnetic Coatings on Magnetic Basis Metals3B504Test Method for Measurement of Thickness of Me-tallic Coatings by the Coulometric Method3B537Practice for Rating of Electroplated Panels Subjected to Atmospheric Exposure3B567Method for Measurement of Coating Thickness by the Beta Backscatter Method3B568Method for Measurement of Coating Thickness by X-Ray Spectrometry31This specification is under the jurisdiction of ASTM Committee B-08on MetalPowders and Metal Powder Products and is the direct responsibility of Subcom-mittee B08.08.01on Engineering Coatings.Current edition approved July10,1997.Published October1997.Originallypublished as B733–st previous edition B733–90(1994).2The boldface numbers given in parentheses refer to a list of references at theend of the text.3Annual Book of ASTM Standards,V ol02.05.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.B571Test Methods for Adhesion of Metallic Coatings3B578Test Method for Microhardness of Electroplated Coatings3B602Test Method for Attribute Sampling of Metallic and Inorganic Coating3B656Guide for Autocatalytic Nickel-Phosphorus Deposi-tion on Metals for Engineering Use3B667Practice for Construction and Use of a Probe for Measuring Electrical Contact Resistance4B678Test Method for Solderability of Metallic-Coated Products3B697Guide for Selection of Sampling Plans for Inspection of Electrodeposited Metallic and Inorganic Coatings3B762Method for Variable Sampling of Metallic and Inor-ganic Coatings3B849Specification for Pre-Treatment of Iron or Steel for Reducing the Risk of Hydrogen Embrittlement3B850Specification for Post-Coating Treatments of Iron orSteel for Reducing the Risk of Hydrogen Embrittlement3 B851Specification for Automated Controlled Shot Peening of Metallic Articles Prior to Nickel,Autocatalytic Nickel, Chromium,or As A Final Finish3D1193Specification for Reagent Water5D2670Method for Measuring Wear Properties of Fluid Lubricants(Falex Method)6D2714Method for Calibration and Operation of an Alpha LFW-1Friction and Wear Testing Machine6D3951Practice for Commercial Packaging7D4060Test Method for Abrasion Resistance of Organic Coatings by the Taber Abraser8E60Practice for Photometric Methods for Chemical Analy-sis of Metals9E156Test Method for Determination of Phosphorus in High-Phosphorus Brazing Alloys(Photometric Method)10 E352Test Methods for Chemical Analysis of Tool Steels and Other Similar Medium-and High-Alloy Steel9F519Test Method for Mechanical Hydrogen Embrittle-ment11G5Practice for Standard Reference Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements12G31Practice for Laboratory Immersion Corrosion Testing of Metals12G59Practice for Conducting Potentiodynamic Polarization Resistance Measurements12G85Practice for Modified Salt Spray(Fog)Testing122.2Military Standards:MIL-R-81841Rotary Flap Peening of Metal Parts13MIL-S-13165Shot Peening of Metal Parts13MIL-STD-105Sampling Procedures and Tables for Inspec-tion by Attribute132.3ISO Standards:ISO4527Autocatalytic Nickel-Phosphorus Coatings—Specification and Test Methods143.Terminology3.1Definition:3.1.1significant surfaces—those substrate surfaces which the coating must protect from corrosion or wear,or both,and that are essential to the performance.3.2Other Definitions—Terminology B374defines most of the technical terms used in this specification.4.Coating Classification4.1The coating classification system provides for a scheme to select an electroless nickel coating to meet specific perfor-mance requirements based on alloy composition,thickness and hardness.4.1.1TYPE describes the general composition of the de-posit with respect to the phosphorus content and is divided into five categories which establish deposit properties(see Table1). N OTE1—Due to the precision of some phosphorus analysis methods a deviation of0.5%has been designed into this classification scheme. Rounding of the test results due to the precision of the limits provides for an effective limit of4.5and9.5%respectively.For example,coating with a test result for phosphorus of9.7%would have a classification of TYPE V,see Appendix X4,Alloy TYPEs.4.2Service Condition Based on Thickness:4.2.1Service condition numbers are based on the severity of the exposure in which the coating is intended to perform and minimum coating thickness to provide satisfactory perfor-mance(see Table2).4.2.2SC0Minimum Service,0.1µm—This is defined by a minimum coating thickness to provide specific material prop-erties and extend the life of a part or its function.Applications4Annual Book of ASTM Standards,V ol03.04.5Annual Book of ASTM Standards,V ol11.01.6Annual Book of ASTM Standards,V ol05.02.7Annual Book of ASTM Standards,V ol09.02.8Annual Book of ASTM Standards,V ol06.01.9Annual Book of ASTM Standards,V ol03.05.10Discontinued;see1992Annual Book of ASTM Standards,V ol03.05. 11Annual Book of ASTM Standards,V ol15.03.12Annual Book of ASTM Standards,V ol03.02.13Available from Standardization Documents Order Desk,Bldg.4Section D, 700Robbins Ave.,Philadelphia,PA19111-5094,Attn:NPODS.14Available from American National Standards Institute,11W.42nd St.,13th Floor,New York,NY10036.TABLE1Deposit Alloy TypesType Phosphorus%wtI No Requirement for PhosphorusII1to3III2to4IV5to9V10and aboveTABLE2Service ConditionsCoating Thickness RequirementsService ConditionMinimum CoatingThicknessSpecificationµm in.(mm)SC0Minimun Thickness0.10.000004()SC1Light Service50.0002()SC2Mild Service130.0005()SC3Moderate Service250.001()SC4Severe Service750.003()include requirements for diffusion barrier,undercoat,electrical conductivity and wear and corrosion protection in specialized environments.4.2.3SC1Light Service ,5µm—This is defined by a minimum coating thickness of 5µm for extending the life of the part.Typical environments include light-load lubricated wear,indoor corrosion protection to prevent rusting,and for soldering and mild abrasive wear.4.2.4SC2Mild Service ,13µm—This is defined by mild corrosion and wear environments.It is characterized by indus-trial atmosphere exposure on steel substrates in dry or oiled environments.4.2.5SC3Moderate Service ,25µm—This is defined by moderate environments such as non marine outdoor exposure,alkali salts at elevated temperature,and moderate wear.4.2.6SC4Severe Service ,75µm—This is defined by a very aggressive environment.Typical environments would include acid solutions,elevated temperature and pressure,hydrogen sulfide and carbon dioxide oil service,high-temperature chlo-ride systems,very severe wear,and marine immersion.N OTE 2—The performance of the autocatalytic nickel coating depends to a large extent on the surface finish of the article to be plated and how it was pretreated.Rough,non uniform surfaces require thicker coatings than smooth surfaces to achieve maximum corrosion resistance and minimum porosity.4.3Post Heat Treatment Class —The nickel-phosphorus coatings shall be classified by heat treatment after plating to increase coating adhesion and or hardness (see Table 3).4.3.1Class 1—As-deposited,no heat treatment.4.3.2Class 2—Heat treatment at 260to 400°C to produce a minimum hardness of 850HK100.4.3.3Class 3—Heat treatment at 180to 200°C for 2to 4h to improve coating adhesion on steel and to provide for hydrogen embrittlement relief (see section 6.6).4.3.4Class 4—Heat treatment at 120to 130°C for at least 1h to increase adhesion of heat-treatable (age-hardened)alumi-num alloys and carburized steel (see Note 3).4.3.5Class 5—Heat treatment at 140to 150°C for at least 1h to improve coating adhesion for aluminum,non age-hardened aluminum alloys,copper,copper alloys and beryl-lium.4.3.6Class 6—Heat treatment at 300to 320°C for at least 1h to improve coating adhesion for titanium alloys.N OTE 3—Heat-treatable aluminum alloys such as Type 7075can undergo microstructural changes and lose strength when heated to over 130°C.5.Ordering Information5.1The following information shall be supplied by the purchaser in either the purchase order or on the engineering drawing of the part to be plated:5.1.1Title,ASTM designation number,and year of issue of this specification.5.1.2Classification of the deposit by type,service condi-tion,class,(see 4.1,4.2and 4.3).5.1.3Specify maximum dimension and tolerance require-ments,if any.5.1.4Peening,if required (see6.5).5.1.5Stress relief heat treatment before plating,(see6.3).5.1.6Hydrogen Embrittlement Relief after plating,(see 6.6).5.1.7Significant surfaces and surfaces not to be plated must be indicated on drawings or sample.5.1.8Supplemental or Special Government Requirements such as,specific phosphorus content,abrasion wear or corro-sion resistance of the coating,solderability,contact resistance and packaging selected from Supplemental Requirements.5.1.9Requirement for a vacuum,inert or reducing atmo-sphere for heat treatment above 260°C to prevent surface oxidation of the coating (see S3).5.1.10Test methods for coating adhesion,composition,thickness,porosity,wear and corrosion resistance,if required,selected from those found in Section 9and Supplemental Requirements.5.1.11Requirements for sampling (see Section 8).N OTE 4—The purchaser should furnish separate test specimens or coupons of the basis metal for test purposes to be plated concurrently with the articles to be plated (see 8.4).6.Materials and Manufacture6.1Substrate —Defects in the surface of the basis metal such as scratches,porosity,pits,inclusions,roll and die marks,laps,cracks,burrs,cold shuts,and roughness may adversely affect the appearance and performance of the deposit,despite the observance of the best plating practice.Any such defects on significant surfaces shall be brought to the attention of the purchaser before plating.The producer shall not be responsible for coatings defects resulting from surface conditions of the metal,if these conditions have been brought to the attention of the purchaser.6.2Pretreatment —Parts to be autocatalytic nickel plated may be pretreated in accordance with Guide B 656.A suitable method shall activate the surface and remove oxide and foreign materials,which may cause poor adhesion and coating poros-ity.N OTE 5—Heat treatment of the base material may effect its metallur-gical properties.An example is leaded steel which may exhibit liquid or solid embrittlement after heat treatment.Careful selection of the pre and post heat treatments are recommended.TABLE 3Classification of Post Heat TreatmentCLASS DescriptionTemperature(°C)Time (h)1No Heat Treatment,As Plated2Heat Treatment for Maximum Hardness TYPE I260202851632084001TYPE II 350to 3801TYPE III 360to 3901TYPE IV 365to 4001TYPE V375to 40013Hydrogen Embrittlement and Adhesion on Steel180to 2002to 44Adhesion,Carburized Steel and Age Hardened Aluminum 120to 1301to 65Adhesion on Beryllium and Aluminum140to 1501to 26Adhesion on Titanium300–3201–46.3Stress Relief:6.3.1Pretreatment of Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strength of greater than1000Mpa(hardness of 31HRC or greater),that have been machined,ground,cold formed,or cold straightened subsequent to heat treatment,shall require stress relief heat treatment when specified by the purchaser,the tensile strength to be supplied by the purchaser, Specification B849may be consulted for a list of pre-treatments that are widely used.6.3.2Peening—Peening prior to plating may be required on high-strength steel parts to induce residual compressive stresses in the surface,which can reduce loss of fatigue strength and improve stress corrosion resistance after plating. (See Supplementary Requirements).6.3.3Steel parts which are designed for unlimited life under dynamic loads shall be shot peened or rotaryflap peened.N OTE6—Controlled shot peening is the preferred method because there are geometry’s where rotaryflap peening is not effective.See S11.2. 6.3.3.1Unless otherwise specified,the shot peening shall be accomplished on all surfaces for which the coating is required and all immediate adjacent surfaces when they contain notches,fillets,or other abrupt changes of section size where stresses will be concentrated.6.4Racking—Parts should be positioned so as to minimize trapping of hydrogen gas in cavities and holes,allowing free circulation of solution over all surfaces to obtain uniform coating thickness.The location of rack or wire marks in the coating shall be agreed upon between the producer and purchaser.6.5Plating Process:6.5.1To obtain consistent coating properties,the bath must be monitored periodically for pH,temperature,nickel and hypophosphite.Replenishments to the plating solution should be as frequent as required to maintain the concentration of the nickel and hypophosphite between90and100%of set point. The use of a statistical regimen to establish the control limits and frequency of analysis may be employed to ensure quality deposits are produced.6.5.2Mechanical movement of parts and agitation of the bath is recommended to increase coating smoothness and uniformity and prevent pitting or streaking due to hydrogen bubbles.6.6Post Coating Treatment for Iron and Steel for Reducing the Risk of Hydrogen Embrittlement—Parts that are made of steel with ultimate tensile strengths of1000Mpa(hardness of 31HRC or greater),as well as surface hardened parts,shall require post coating hydrogen embrittlement relief baking when specified by the purchaser,the tensile strength to be supplied by the purchaser.Specification B850may be con-sulted for a list of post treatments that are widely used.6.6.1Heat treatment shall be performed preferably within1h but not more than3h of plating on plated after plating of steel parts to reduce the risk of hydrogen embrittlement.In all cases,the duration of the heat treatment shall commence from the time at which the whole of each part attains the specified temperature.6.6.2High-strength steel parts with actual tensile strengths greater than1000MPa(corresponding hardness values300 HV10,303HB or31HRC)and surface hardened parts shall be processed after coating in accordance with Specification B850.6.7Heat Treatment After Plating to Improve Adhesion—To improve the adhesion of the coating to various substrates,the heat treatments in Table3should be performed as soon as practical after plating(see4.3).6.8Heat Treatment After Plating to Increase Hardness: 6.8.1To increase the hardness of the coating a heat treat-ment of over260°C is required.Table3describes the heat treatment for maximum hardness.6.8.2See Appendixes3and4and Guide B656;Figs.X1.2 and Figs.X1.3.6.8.3A heat treatment at260°C for greater than20h should be used to reduce the loss of surface hardness and strength of some ferrous basis metals.Avoid rapid heating and cooling of plated parts.Sufficient time must be allowed for large parts to reach oven temperature.N OTE7—The length of time to reach maximum hardness varies with the phosphorus content of the deposit.High phosphorus deposits may require longer time or a higher temperature,or both.Individual alloys should be tested for maximum hardness attainable,especially for condi-tions of lower temperatures and longer times.N OTE8—Inert or reducing atmosphere or vacuum sufficient to prevent oxidation is recommended for heat treatment above260°C.Do not use gas containing hydrogen with high-strength steel parts.7.Requirements7.1Process—The coating shall be produced from an aque-ous solution through chemical reduction reaction.7.2Acceptance Requirements—These requirements are placed on each lot or batch and can be evaluated by testing the plated part.7.2.1Appearance:7.2.1.1The coating surface shall have a uniform,metallic appearance without visible defects such as blisters,pits, pimples,and cracks(see9.2).7.2.1.2Imperfections that arise from surface conditions of the substrate which the producer is unable to remove using conventional pretreatment techniques and that persist in the coating shall not be cause for rejection(see 6.1).Also, discoloration due to heat treatment shall not be cause for rejection unless special heat treatment atmosphere is specified (see section5.1.9).7.2.2Thickness—The thickness of the coating shall exceed the minimum requirements in Table2as specified by the service condition agreed to prior to plating(see9.3).After coating and if specified,the part shall not exceed maximum dimension on significant surface(see section5.1.3).N OTE9—The thickness of the coating cannot be controlled in blind or small diameter deep holes or where solution circulation is restricted. 7.2.3Adhesion—The coating shall have sufficient adhesion to the basis metal to pass the specified adhesion test(see9.4 and Test Methods B571).7.2.4Porosity—The coatings shall be essentially pore free when tested according to one of the methods of9.6.The test method,the duration of the test,and number of allowable spots per unit area shall be specified(see section5.1.10and9.6).7.3Qualification Requirements—These requirements are placed on the deposit and process and are performed on specimens to qualify the deposit and plating process.The tests for these qualification requirements shall be performed monthly or more frequently.7.3.1Composition—Type II,III,IV,V deposits shall be analyzed for alloy composition by testing for phosphorus(see 9.1).The weight percent of phosphorus shall be in the range designated by type classification(see4.1).7.3.2Microhardness—The microhardness of Class2depos-its shall be determined by Test Method B578(Knoop).For Class2coatings,the microhardness shall equal or exceed a minimum of850(HK100(or equivalent Vickers)(see4.3and 9.5).The conversion of Vickers to Knoop using Tables E140 is not recommended.7.3.3Hydrogen Embrittlement—The process used to de-posit a coating onto high strength steels shall be evaluated for hydrogen embrittlement by Test Method F519.8.Sampling8.1The purchaser and producer are urged to employ statis-tical process control in the coating process.Properly performed this will ensure coated products of satisfactory quality and will reduce the amount of acceptance inspection.8.1.1Sampling plans can only screen out unsatisfactory products without assurance that none of them will be accepted.(7)8.2The sampling plan used for the inspection of a quantity of coated parts(lot)shall be Test Method B602unless otherwise specified by purchaser in the purchase order or contract(see section5.1.11and S.11.1).N OTE10—Usually,when a collection of coated parts(the inspection lot8.2)is examined for compliance with the requirements placed on the partsa relatively small number of parts,the sample,is selected at random and inspected.The inspection lot is then classified as complying or not complying with the requirements based on the results of the inspection sample.The size of the sample and the criteria of compliance are determined by the application of statistics.The procedure is known as sampling inspection.Three standards Test Method B602,Guide B697, and Test Method B762contain sampling plans that are designed for the sampling inspection of coatings.Test Method B602contains four sampling plans,three for use with tests that are nondestructive and one for use with tests that are destructive.The purchaser and producer may agree on the plan(s)to be used.If they do not, Test Method B602identifies the plan to be used.Guide B697provides a large number of plans and also gives guidance on the selection of a plan.When Guide B697is specified,the purchaser and producer need to agree on the plan to be used.Test Method B762can be used only for coating requirements that have a numerical limit,such as coating thickness.The last must yield a numerical value and certain statistical requirements must be met.Test Method B762contains several plans and also gives instructions for calculating plans to meet special needs.The purchaser and producer may agree on the plan(s)to be used.If they do not,Test Method B762 identifies the plan to be used.An inspection lot shall be defined as a collection of coated parts which are of the same kind,that have been produced to the same specification, that have been coated by a single producer at one time or approximately the same time under essentially identical conditions,and that are submit-ted for acceptance or rejection as a group.8.3All specimens used in the sampling plan for acceptance tests shall be made of the same basis material and in the same metallurgical condition as articles being plated to this specifi-cation.8.4All specimens shall be provided by the purchaser unless otherwise agreed to by the producer.N OTE11—The autocatalytic nickel process is dynamic and a daily sampling is recommended.For Coatings requiring alloy analysis and corrosion testing weekly sampling should be considered as an option. 9.Test Methods9.1Deposit Analysis for Phosphorus:9.1.1Phosphorus Determination—Determine mass% phosphorus content according to Practice E60,Test Methods E352,or Test Method E156on known weight of deposit dissolved in warm concentrated nitric acid.9.1.2Composition can be determined by atomic absorption, emission or X-rayfluorescence spectrometry.N OTE12—Inductively coupled plasma techniques can determine the alloy to within0.5%.The following analysis wavelength lines have been used with minimum interference to determine the alloy.Ni216.10nm Cd214.44nm Fe238.20nmP215.40nm Co238.34nm Pb283.30nmP213.62nm Cr284.32nm Sn198.94nmAl202.55nm Cu324.75nm Zn206.20nm9.2Appearance—Examine the coating visually for compli-ance with the requirements of7.2.1.9.3Thickness:N OTE13—Eddy-current type instruments give erratic measurements due to variations in conductivity of the coatings with changes in phosphorus content.9.3.1Microscopical Method—Measure the coating thick-ness of a cross section according to Test Method B487.N OTE14—To protect the edges,electroplate the specimens with a minimum of5µm of nickel or copper prior to cross sectioning.9.3.2Magnetic Induction Instrument Method—Test Method B499is applicable to magnetic substrates plated with auto-catalytic nickel deposits,that contain more than11mass% phosphorus(not ferromagnetic)and that have not been heat-treated.The instrument shall be calibrated with deposits plated in the same solution under the same conditions on magnetic steel.9.3.3Beta Backscatter Method—Test Method B567is only applicable to coatings on aluminum,beryllium,magnesium, and titanium.The instrument must be calibrated with standards having the same composition as the coating.N OTE15—The density of the coating varies with its mass%phospho-rus content(See Appendix X2).9.3.4Micrometer Method—Measure the part,test coupon, or pin in a specific spot before and after plating using a suitable micrometer.Make sure that the surfaces measured are smooth, clean,and dry.9.3.5Weigh,Plate,Weigh Method—Using a similar sub-strate material of known surface area,weigh to the nearest milligram before and after plating making sure that the part or coupon is dry and at room temperature for eachmeasurement.Calculate the thickness from the increase in weight,specific gravity,and area as follows:coating thickness,µm510W/~A3D!(1) where:W=weight gain in milligrams,A=total surface area in square centimetres,andD=grams per cubic centimetres(see Appendix X2).9.3.6Coulometric Method—Measure the coating thickness in accordance with Test Method B504.The solution to be used shall be in accordance with manufacturer’s recommendations. The surface of the coating shall be cleaned prior to testing(see Note14).9.3.6.1Calibrate standard thickness specimens with depos-its plated in the same solution under the same conditions. 9.3.7X-Ray Spectrometry—Measure the coating thickness in accordance with Test Method B568.The instrument must be calibrated with standards having the same composition as the coating.N OTE16—This method is only recommended for deposits in the as-plated condition.The phosphorus content of the coating must be known to calculate the thickness of the deposit.Matrix effect due to the distribution of phosphorus in layers of the coating also effect the measurement accuracy and require that calibration standards be made under the same conditions as the production process.9.4Adhesion:9.4.1Bend Test(Test Methods B571)—A sample specimen is bent180°over a mandrel diameter43the thickness(10mm minimum)of the specimen and examined at43power magnification forflaking or separation at the interface.Fine cracks in the coating on the tension side of the bend are not an indication of poor adhesion.Insertion of a sharp probe at the interface of the coating and basis metal to determine the adhesion is suggested.N OTE17—Appropriate test specimens are strips approximately25to50 mm wide,200to300mm long and3to6mm thick.9.4.2Impact Test—A spring-loaded center punch with a point having2to3mm radius is used to test adhesion of the coating on nonsignificant surfaces of the plated part.Make three closely spaced indentations and examine under103 magnification forflaking or blistering of the coating,which is cause for rejection.9.4.3Thermal Shock—The coated part is heated to200°C in an oven and then quenched in room temperature water.The coating is examined for blistering or other evidence of poor adhesion at43magnification.9.5Microhardness—The microhardness of the coating can be measured by Test Method B578using Knoop indenter and is reported in Knoop Hardness Number(HK).It will vary depending on loads,type of indenter,and operator.A100g load is recommended.The rhombic Knoop indenter gives higher hardness readings than the square-base pyramidal Vickers diamond indenter for100to300g loads,see Ref(6).For maximum accuracy,a minimum coating thickness of75µm is recommended.Conversions of Vickers or Knoop hardness number to Rockwell C is not recommended.N OTE18—On thick(75µm+)coatings on steel a surface microhardness determination is permissible.9.6Porosity—There is no universally accepted test for porosity.When required,one of the following tests can be used on the plated part or specimen.9.6.1Ferroxyl Test for Iron Base Substrates—Prepare the test solution by dissolving25g of potassium ferricyanide and 15g of sodium chloride in1L of distilled water.After cleaning,immerse the part for30s in the test solution at25°C. After rinsing and air drying,examine the part for blue spots, which form at pore sites.9.6.2Boiling Water Test for Iron-Base Substrates—Completely immerse the part to be treated in a vesselfilled with aerated water at room temperature.Apply heat to the beaker at such a rate that the water begins to boil in not less than15min,nor more than20min after the initial application of heat.Continue to boil the water for30min.Then remove the part,air dry,and examine for rust spots,which indicate pores. N OTE19—Aerated water is prepared by bubbling clean compressed air through distilled water by means of a glass diffusion disk at room temperature for12h.The pH of the aerated water should be6.7+0.5.9.6.3Aerated Water Test for Iron-Base Substrates—Immerse the part for4h in vigorously aerated Type IV or better water(see Specification D1193)at2562°C temperature and then examine the part for rust spots.9.6.4Alizarin Test for Aluminum Alloys—Wipe the plated part or specimen with10mass%sodium hydroxide solution. After3min contact,rinse,and apply a solution of alizarin sulfonate prepared by dissolving1.5g of methyl cellulose in90 mL of boiling water to which,after cooling,0.1g sodium alizarin sulfonate,dissolved in5mL of ethanol is added.After 4min contact,apply glacial acetic acid until the violet color disappears.Any red spots remaining indicate pores.9.6.5Porosity Test for Copper Substrates—Wipe the plated part or specimen with glacial acetic acid.After3min,apply a solution of potassium ferrocyanide prepared by dissolving1g of potassium ferrocyanide and1.5g methyl cellulose in90mL of boiling distilled water.The appearance of brown spots after 2min indicate pores.9.7Other Test Methods—Test methods which have been developed that are equal to or better than these may be substituted.The precision and bias requirements will vary for each type of test.If an alternate test is specified it shall be agreed upon between the producer and the purchaser.10.Rejection and Rehearing10.1Part(s)that fail to conform to the requirements of this standard may be rejected.Rejection shall be reported to the producer promptly in writing.In the case of dissatisfaction occurs with the results of a test,the producer may make a claim for a hearing.Coatings that show imperfections may be rejected.11.Certification11.1When specified in the purchase order or contract,the purchaser shall be furnished certification that the samples representing each lot have been processed,tested and inspected as directed in this specification and the requirements havebeen。
高速串行数据通信接收芯片CY7B933的原理及应用

是 s 转换 成 1 J l 1 I L电 平时的输 出信 号。
R F一
 ̄-T - R .
、 ^
+ —
/ 一
匝蔓
●
构框 图 面介绍各 部分 的 主要 功能 。 下
● 串行 数据输 入端 口 c 7 9 3的两 对差分 线 接 收端 可作为 串行 数据 YB3 的输 入 , 选用 I A+还是 I B+取决 于 A B输 八端 N N / 的电 平; A/B为 高 电平 时 , 用 IA±; A/B 当 选 N 当 为低 电平 时 , 选用 I B . N ±.
10 6 Mbs Y B 3 5 ~10 D。C 7 9 3的封 装 形式 有 2 脚 S I/ 8 OC
据 输 入 ) I B一则 N 可 作 为 s(单 端 I
EC — IO 型 状 K OK
R
引
州 ∞ ㈨
邮
PC / C L C L C等三种 , 采用 0 8 BC MS 艺生产和单 .M iO 工
流 频 率 的一 致 , 时 提 供 内部 移 、 码 时 钟 。 同 解
一3 一 3
位数据 ) 将其 送到译码 寄存 器 便
● 译 码 寄 存 器
泽码 寄存器 在接收 到来 自移 位器 中 的一帧 数据 后将 其送到译码 器 ,但该 数据 在译码 器 译码至输 出 期 间仍将保持 在译码 寄存 器 中 ●译码 器 译码 器将 接 收 到 的数据 按 X320协 议 定义 的 .3 码 字符重新转 换成 “ 始数据 ” 然后 再 送到输 出寄 原 , 存 器中。 ●输 出寄存器 输 出寄存器用 于保 持译 码后恢 复 的数据 ()一 ( 0 Q ) s /D和 R S , 7 、c V ) 以便在 相应 的输 出脚输 出 。在
中国各航空公司机型详解2016

国内主要航空飞机型号一、大型宽体飞机:座位数在200以上,双通道通行波音系列:747:波音747,载客数在350-400人左右。
(747、74E均为波音747的不同型号)777:波音777,载客在350人左右。
(或以77B作为代号)767:波音767,载客在280人左右757:波音757,载客在200人左右麦道系列:M11:麦道11,载客340人左右空客系列:340:空中客车340,载客350人左右300:空中客车300,载客280人左右(或以AB6作为代号)310:空中客车310,载客250人左右二、中型飞机:指单通道飞机,载客在100人以上,200人以下M82 / M90:麦道82,麦道90载客150人左右737 :波音737系列载客在130-160左右(733、735、738均为波音737的不同型号)320:空中客车320,载客180人左右TU5 :苏联飞机,载客150人左右146 :英国宇航公司BAE-146飞机,载客108人YK2 :雅克42,苏联飞机,载客110人左右三、小型飞机:指100座以下飞机,多用于支线飞行YN7:运7,国产飞机,载客50人左右AN4:安24,苏联飞机,载客50人左右SF3 :萨伯100,载客30人左右ATR:雅泰72A,载客70人左右A32:安道尔32,载客32人航空公司分类波音公司:波音707,717,727 系列已经停产。
737系列波音737飞机是双发中短程运输机,由于性能优越,是世界航空史上最成功的民航客机,也是运营效益最好、最畅销的机型之一。
新一代波音737分600/700/800/900型四种,除了可靠、简捷和经济等特点外,还给乘客带来更平稳的感受。
迄今波音737飞机运送的乘客已超过60亿,在中国,也是大多数航空公司的主力机型。
主要型号:1、737-600型:700型的缩短型,载客110-132名,1998年交付使用。
2、737-700型:标准型,载客126-149名,1997年底交付使用。
纳小型连接器标准

矩形纳小型外壳定位电连接器通用规范的详细规范本规范由国防部批准,供各部、机构使用。
1.范围 1.1 范围本规范包含了端接印制电路板或电缆组件的纳小型连接器的详细要求。
连接器每排接触件间的排列间距为0.025英寸(0.64mm )。
这些连接器可用于那些要求电子元器件密集排列的装备,通常用于数据传输。
1.2.1 元件号(PIN )元件号组成包括字母M (见3.8)、基本规范号、斜线、详细规范号、破折号、接触件排列字母代号、端接类型数字代号、附件标号的字母代号、外壳及表面字母代号,以及必要时(见3.1)的空间级字母代号。
举例如下:M 32139/ 01 - A 01 S N S端接和接线类型(见1.2.3)接触件排列(见1.2.2)详细规范号基本规范号M前缀空间级附件(见1.2.4)外壳及镀层(见1.2.5) 本文件中的注释、建议和要求来源于以下地址:哥伦布防御供应中心,A TTN :俄亥俄州43218-3990,哥伦布东大街,V AI3990,或电子邮件到RectangularConnector@ 。
由于联系的信息可能变化,应该通过访问网页 上的资料库来核实现行的地址信息。
1.2.2 接触件排列专门的单篇规范中给定代号。
1.2.3 端接和接线类型专门的单篇规范中给定代号。
1.2.4 附件专门的单篇规范中给定代号。
1.2.5 外壳及镀层专门的单篇规范中给定代号。
1.2.6 空间级S表示空间级,空白表示不用于空间。
1.3 分类本文中解释和参考引证的目的在于界定连接器的类别和安装类型。
如下:1.3.1 类别M—金属外壳。
1.3.2 安装类型Ⅰ--印制电路板安装Ⅱ--表面安装,焊接连接Ⅲ--线束2 引用文件2.1 通用文件本规范引用的文件在第3、4、5章中进行了规定。
这些文件不包含本规范其它章节中引用的文件、推荐的附加信息、范例,当经过努力保证这个列表的完整性后,不管是否列出,要求文件的使用者必须符合本规范第3、4、5章中引用的文件的规定要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B733性能数据
波音737飞机是波音公司生产的双发(动机)中短程运输机,被称为世界航空史上最成功的民航客机。
在获得德国汉莎航空公司10架订单后波音737飞机于1964年
5月开始研制,1967年4月原型机试飞,12月取得适航证,1968年2月投入航线运营。
波音737飞机基本型为B737-100型。
传统型B737分100/200/300/400/500型五种,
目前,传统型B737均已停止生产。
1993年11月,新一代波音737项目正式启动,新一代波音737分
600/700/800/900
型四种,它以出色的技术赢得了市场青睐,被称为卖的最快的民航客机。
截止2001
年底,已交付超过1000架。
2000年1月,波音737成为历史上第一种累计飞行超过1亿小时的飞机。
民航业最大的飞机家族
波音737飞机各型别的发展情况如下:传统型B737
B737-100型:
为基本型,装两台JT8D-7或-9涡扇发动机仅生产30架。
1967年4月9日首飞,1968年2月
交付德国汉莎航空公司使用。
B737-100 B737-200型:
为100型的加长型;在-100的机身上加长1.8米,在空气动力方面加以改进,同时还增加了
反推装置、修改了襟翼等。
B737-200基本型:最初生产型;
B737-200先进型:200型生产线上第280架后,进一步改进机翼、制动系统和起落架后,形
成先进型,可在机腹货舱加装油箱,1987年12月18日,最后一架出厂的
B737-200(先进
型)注册编号B2524由我国厦门航空公司引进并运营至2003年,目前已转售。
B737-200C/QC客货两用型,机身和地板进行了加强。
客舱加开了一个舱门。
全日空B737-200 B737-300/400/500型;
改装CFM56-3发动机,它们的平均客座数从120-170。
还装有彩色气象雷达、数字飞行管理
系统和自动油门,其中:
B737-300型:为标准型,机身比200型加长2.64米(机翼前机身加长1.12米,机翼后机身
加长1.52米,共加长2.64米)。
B737-400型:在300型的基础上再加长3.05米(机翼前机身加长1.83米,机翼后机身加长
1.22米,两段机身共加长3.05米),安装了尾撬,起飞时保护后机身,同时由于最大起飞
重量增加到54885千克,对机翼和起落架进行了加强。
B737-300
B737-500型:300型的缩短型,波音公司为了更充分地占有100座-150座中短程客机各个档次,于1987年5月20日宣布发展737-500。
将737-300的机身缩短6.7米,载客量108人,最大起飞重量52163千克
目前波音737-300/400/500型已停止生产。
B737-400 新一代B737
简要介绍:在300/400/500型基础上,对机翼进行改进,采用了波音777飞机最先进的数字化设计和制造技术。
设计:机翼的弦长增加了50厘米,翼展增加了5米,燃油容量提高了30%。
使新一代737的最大航程达到6000公里。
巡航速度提高到0.785马赫(848KM/H),最大速度可达0.82马赫(885KM/H)最大巡航高度12400米,超越了同级竞争机型。
通用性:新一代波音737系列飞机与传统型737具有相同的零部件与地面支持设备,完全相同的地面维护。
新技术:约2.4米高的融合型翼梢小翼将使新一代737飞机的航程更远、有效载荷增加约2.7吨、油耗降低,更加环保。
2001年5月,首架带有翼梢小翼的737,800飞机在德国的哈帕克?劳埃德航空公司投入运营。
B737-600/700/800型: 中华航空B737-800 B737-700型:标准型,可以载客126,149名
B737-800型:加长型,可以载客162,189名
B737-600型:700型的缩短型,可以载客110,132名。
B737-900型:
同属新一代B737,是为了更好的与185座空中客车A321竞争而发展起
来的。
在800型的基础上在加长2.6米,机身长达到42.1米。
为该系列中最新、最大的成员,可以载客177,189名。
B737-900 BBJ公务机 (Boeing Business Jets)
1996年7月,为满足市场需求,制造较大、更完善、航程超过6000海里的公务机。
波音公司与GE公司建立合资企业波音公务喷气飞机公司,开始波音公务机的研制开发工作,1997年10月正式启动BBJ计划。
以新一代波音737为原型机,设计上采用了融合型翼梢小翼、有9个辅助油箱,动力装置仍选用GE公司制造的CFM56-7系列发动机。
BBJ系列的内部空间为一般远程公务机的3倍,但价格却只与其相近。
BBJ系列公务机
BBJ:基本型,以波音737-700为原型机发展而来,在737-700的基础上对机翼和起落架部分进行加强,加装融合型翼梢小翼,航程加大,可达11480公里, 并于1998年9月4日首飞。
已获得180分钟ETOPS(双发延程飞行)批准,可以飞更多直飞航线。
BBJ BBJ2:以波音下一代737-800飞机为原型,较之以737-700货机为原型的BBJ,
长度增加5.85米,空间加大25%。
1999年10月开始启动该计划,2001年3 月已开始交付使用。
BBJ2
B737-300三视图
常见的B737-300的数据:
翼展:28.9米机长:33.4米
经济布局载客:149人货舱容积:30.2立方米
最大商载:16吨最大油箱容量:20105
升
最大起飞总重:62吨最大载重航程:2993公
里
最大燃油航程:4175公里
动力装置:两台CFM56-3涡扇发动机(最大推力:22000 磅)
新一代B737-700的数据:
翼展:34.3米
机长:33.6米 B737-700三视图标准座舱布局载客:149人货舱容积:27.3立方米
最大起飞总重:70吨
最大油箱容量:26035升
最大燃油航程:6038公里
动力装置:两台CFM56-7B涡扇发动机(最大推力:24200
磅)
我国内地正在运营的民航客机中,B-737占了很大的比例,总数已超过260架。
此外,中国联合航空拥有8架737-300,2架737-700。
香港、澳门地区航空公司没有波音737;台湾地区目前仅中华航空公司及其关联企业华信航空公司共拥有14架波音737-800型
中国大陆地区正在运营的各型号总数及拥有者如下:(以上资料截止2003年10月底)
300型共117架:中国国际航空、中国东方航空、中国南方航空、海南航空、新华航
空、厦门航空、山东航空、深圳航空
300QC型(快速改装)共6架:中国南方航空、扬子江航空、山东航空
400型共10架: 海南航空、新华航空
500型共18架:中国南方航空厦门航空
600型共4架:中国国际航空
700型共51架::中国国际航空、中国东方航空、厦门航空、上海航空、深圳航空、
山西航空
800型共52架::中国国际航空、中国东方航空、海南航空上海航空深圳航空(最新变化可参考:国内民航飞机注册号详细资料、航空公司飞机机队资料、国内运厦门航空B737-500 营民航机型数量、分布状况 )
新一代737系列飞机的尾翼是在中国内地制造的:上海飞机制造厂负责生产水平尾翼,西安飞机制造厂生产垂直尾翼,沈阳飞机制造厂生产机身尾部48段,这三种产品组合在一起,就是新一代737飞机的尾翼。
2000年9月11日,波音737,700成功地飞抵拉萨机场和邦达机场,完成了各项高原地区的试飞技术动作。