认识摩擦学
摩擦学知识点总结

摩擦学知识点总结摩擦是指两个表面之间的相对运动受到的阻力。
摩擦学是研究摩擦现象的科学,涉及到力学、材料学、表面科学、润滑学等多个学科的知识。
摩擦学的研究对于工程和日常生活都有着重要的意义。
本文将就摩擦学的一些重要知识点进行总结,包括摩擦力的产生机制、摩擦系数、摩擦的影响因素、摩擦的应用以及摩擦的减小等内容。
一、摩擦力的产生机制摩擦力的产生是由于两个表面之间的微观不平整的凸起和凹陷之间发生了相互作用。
当两个表面接触时,由于其不光滑的表面,导致表面之间存在着局部的微小接触点。
在这些接触点处,由于原子和分子之间的相互吸引力和斥力,产生了摩擦力。
这种微观不平整的表面结构导致了摩擦力的产生,这也是为什么光滑的表面摩擦力更小的原因。
二、摩擦系数摩擦系数是用来描述两个表面之间摩擦性质的参数。
通常用符号μ来表示。
摩擦系数的大小取决于两个表面之间的物理性质以及表面之间的状态。
通常来说,摩擦系数分为静摩擦系数和动摩擦系数。
静摩擦系数是指在两个表面相对静止的情况下,需要克服的摩擦力与正压力之比。
而动摩擦系数是指在两个表面相对运动的情况下,需要克服的摩擦力与正压力之比。
摩擦力与正压力之比就是静摩擦系数或者动摩擦系数。
摩擦系数是一个重要的物理量,不同材料之间的摩擦系数差异很大,所以在工程设计和实际应用中需要根据具体情况来选择合适的摩擦系数。
三、摩擦的影响因素影响摩擦的因素有很多,主要包括:1. 表面形状和粗糙度:表面的形状和粗糙度对摩擦力的大小影响很大。
通常来说,表面越光滑,摩擦力就越小。
2. 正压力大小:正压力越大,摩擦力也就越大。
正压力是指两个表面之间的垂直于接触面的力。
3. 材料的性质:不同材料之间的摩擦系数是不同的,材料的硬度、弹性模量、表面粗糙度都会影响摩擦力的大小。
4. 温度:温度的变化也会对摩擦力产生影响。
一般来说,温度升高会使摩擦力减小。
5. 润滑情况:润滑剂的使用会减小摩擦力,从而减小磨损和能量损失。
四、摩擦的应用摩擦力是一种普遍存在的力,它在我们的日常生活和工程实践中都有着广泛的应用。
摩擦学原理知识点总结

摩擦学原理知识点总结摩擦学是研究物体之间相对运动时所产生的摩擦现象和规律的科学。
摩擦学原理包括摩擦的定义、摩擦力的产生原因,摩擦力的类型、摩擦力的计算方法等内容。
通过了解摩擦学原理,可以更好地理解摩擦力的作用和影响,从而在工程、物理学和机械设计等领域得到应用。
一、摩擦的定义摩擦,是指两个物体相对运动时,在它们接触表面上由于微观不平整而发生的阻力,这种阻力叫做摩擦力。
摩擦力是一种非常微小的力,通常在我们的日常生活中会忽略它的存在。
摩擦力的大小取决于物体表面的光滑程度、压力大小以及接触面积等因素。
二、摩擦力的产生原因摩擦力的产生是由于物体表面的不规则微观结构,当两个物体表面接触时,这些微不足道的不规则结构会相互干涩地牵引、压迫、撞击对方而产生的一种相对运动阻力。
三、摩擦力的类型1、静摩擦力当两个物体相对运动时,接触面会产生一个阻碍相对滑动的摩擦力,这就是静摩擦力。
静摩擦力的大小与物体之间的正压力成正比,即F_s = μ_sN,其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。
静摩擦力通常比动摩擦力大,当施加在物体上的力小于静摩擦力时,物体不会发生相对滑动。
一旦施加的力达到或超过了静摩擦力,物体就会开始发生相对滑动。
2、动摩擦力当物体产生相对滑动时,接触面会产生一个与相对滑动方向相反的摩擦力,即动摩擦力。
动摩擦力的大小与静摩擦力相关,通常小于静摩擦力,通常F_k = μ_kN。
其中F_k为动摩擦力大小,μ_k为动摩擦系数,N为正压力的大小。
动摩擦力通常比静摩擦力小,所以一旦物体开始运动,需要施加的力就变小了。
四、摩擦力的计算方法1、静摩擦力的计算静摩擦力的大小与物体间的正压力成正比,即F_s = μ_sN。
其中F_s为静摩擦力大小,μ_s为静摩擦系数,N为正压力的大小。
静摩擦系数是一个无量纲的常数,它取决于物体表面的光滑程度。
静摩擦系数的大小可以通过实验测定或者查找资料获得。
2、动摩擦力的计算动摩擦力的大小与正压力成正比,即F_k = μ_kN。
摩擦学第一章绪论

在机械工程中主要包括: ①动、静摩擦副,如滑动轴承、齿轮传动、螺纹联接等。 ②零件表面受工作介质摩擦或碰撞、冲击,如犁铧和水 轮机转轮等。 ③机械制造工艺的摩擦学问题,如金属成形加工、切削 加工和超精加工等。 ④弹性体摩擦副,如汽车轮胎与路面的摩擦、弹性密封 的动力浸漏等。 ⑤特殊工况条件下的摩擦学问题,如宇宙探索中遇到的 高真空、低温和离子辐射等,深海作业的高压、腐蚀、 润滑剂稀释和防漏密封等。
3、运动副(如机床导轨等)的“爬行”是一个古典的非线性振动问题, 其起因是静摩擦系数大于动摩擦系数而产生的特殊现象。解决的办法是通 过改变润滑状态或表面材质匹配来改变这个问题。 4、流体动力径向轴承在一定条件下会产生自激振动,或称油膜振荡。由 此引起的毁机等重大事故的发生已屡见不鲜。 5、在制动器、离合器、带传动或其他摩擦传动以及螺纹或其他借助摩擦 力锁紧的联接中,又时常因为摩擦表面之间的摩擦力不足或不稳定而失效, 甚至出现严重事故,例如因制动失灵造成的车辆、提升设备的重大事故。 6、利用接触(如内燃机的活塞环)或不接触(迷宫式)密封的表面副阻 止流体泄漏时,发生碰撞、磨损使间隙增大和流体外流失控,造成机器故 障甚至严重后果。 除此之外,工作物料对工作部件产生的磨损,也是摩擦学研究去解决 的重要课题。例如:搅拌机叶片、水轮机叶片、球磨机磨球、破碎机工作 件等。
世界上使用的能源大约有1/3~1/2消耗于摩擦。
第一节
摩擦学定义、简史及其研究内容
一、定义: 摩擦学的一般定义是:“关于相对运动中相互作用表面的 科学、技术及有关的实践”。通常也理解为包括摩擦、磨损和 润滑在内的一门跨学科的科学。
N v
第一节
摩擦学定义、简史及其研究内容
一、定义:摩擦学的一般定义是:“关于相对运动中相互作用表面的科学、技 术及有关的实践”。通常也理解为包括摩擦、磨损和润滑在内的一门跨学科的 科学。
摩擦学的基本原理及其应用

摩擦学的基本原理及其应用摩擦是我们日常生活中经常遇到的现象。
车辆行驶时的轮胎与路面摩擦,人行走时的脚与地面摩擦,任何实体在相互接触时都会产生摩擦。
而摩擦学正是研究物体在相互接触时产生的力的学科,其基本原理和应用非常重要。
一、摩擦的基本原理1. 摩擦力的定义摩擦力是指阻碍物体相对运动的力。
在物体相互接触时,由于表面间的不规则性,阻碍物体相对运动的力就会产生。
摩擦力可以分为静摩擦力和动摩擦力两种,它们通常都是与物体间接触的表面粗糙程度和材料特性等因素有关。
2. 摩擦力与接触面积的关系摩擦力与物体间接触面积成正比例关系。
接触面积越大,摩擦力越大;反之,接触面积越小,摩擦力越小。
这是因为物体直接接触的表面积越大,表面之间的微小凹凸就越大,摩擦力就越大。
3. 摩擦力与物体间压力的关系摩擦力与物体间压力成正比例关系。
即当物体间的压力增大时,摩擦力也随之增大,反之亦然。
这是因为物体间的压力越大,表面间的不规则性就越小,微小凹凸就进一步压缩,摩擦力就会增大。
二、摩擦学的应用1. 制动系统摩擦制动是利用静摩擦力使车轮停止转动的一种制动方式。
汽车、自行车等的制动系统都是靠摩擦制动来实现的。
在制动过程中,制动器上的刹车片与转动的车轮表面接触,产生静摩擦力使转轮停止转动。
而刹车片与车轮的表面摩擦系数大与小的不同,就会影响到制动效能和制动距离的长度。
2. 螺纹连接螺纹连接是常用的一种紧固连接方式,它通常用于连接杆件、面板、封板等部件。
在螺纹连接时,利用螺纹外螺距不等的原理,使螺栓和螺母之间相互旋转,从而将拼接的两个构件紧密地连接在一起。
在设计时,需要根据要求计算螺栓和螺母的摩擦力,以保证连接牢固。
3. 轴承轴承是一种广泛应用于机器设备中的组件,主要用于支撑机器转动部件,并在其旋转过程中承受轴向和径向的载荷。
它的基本原理就是利用滚动体或滑动体之间的摩擦来实现支承转动。
因此,轴承性能的好坏与其摩擦力有着密不可分的关系。
4. 润滑油润滑油作为目前普遍使用的润滑材料,被广泛应用于各种机械设备中,其作用是减小机械件表面的摩擦,以达到降低能耗、延长机器使用寿命的效果。
摩擦与润滑基础知识

摩擦与润滑基础知识目录一、摩擦学概述 (3)1. 摩擦定义及分类 (4)2. 摩擦现象产生原因 (5)3. 摩擦学研究内容 (6)二、润滑基础 (7)1. 润滑概念及作用 (8)2. 润滑剂的种类与选择 (9)3. 润滑剂的性能指标 (11)三、摩擦与润滑原理 (13)1. 摩擦原理 (14)(1)干摩擦与湿摩擦 (15)(2)静摩擦与动摩擦 (16)(3)摩擦系数 (17)2. 润滑原理 (17)(1)液体润滑理论 (18)(2)边界润滑理论 (19)(3)混合润滑理论 (20)四、摩擦与润滑影响因素 (21)1. 材料性质影响 (22)2. 载荷影响 (23)3. 速度影响 (24)4. 温度影响 (24)5. 环境影响 (25)五、摩擦与润滑在机械设备中的应用 (26)1. 机械设备中的摩擦现象分析 (28)2. 润滑系统在机械设备中的作用 (29)3. 典型机械设备的润滑设计实例 (30)六、摩擦与润滑的试验方法及设备 (31)1. 摩擦试验方法及设备 (32)2. 润滑试验方法及设备 (33)3. 实验结果分析与评价 (34)七、摩擦与润滑的故障诊断及维护保养 (35)1. 摩擦故障类型及诊断方法 (36)2. 润滑系统故障分析及处理 (38)3. 设备维护保养策略与建议 (39)八、摩擦与润滑的未来发展趋势 (41)1. 新材料在摩擦与润滑领域的应用 (42)2. 智能润滑技术的发展趋势 (43)3. 绿色环保理念在摩擦与润滑领域的应用前景 (44)一、摩擦学概述摩擦学是研究摩擦现象及其产生机理、摩擦过程中的物理和化学变化、摩擦性能和润滑技术的一门科学。
它是机械工程、材料科学、物理学和化学等多个学科的交叉领域。
在现代工程实践中,摩擦学对于提高机械效率和可靠性、节约能源、减少磨损和延长设备寿命等方面具有至关重要的作用。
摩擦是一种普遍存在的物理现象,任何相互接触的物体在相对运动时都会产生摩擦。
摩擦学

系统
摩擦学系统过程摩擦学问题涉及多种因素,错综复杂,应用系统分析的方法进行研究,可以明了诸因素之间 的依赖和制约关系,以及分析问题的思路。互相接触的两个物体,当有相对滑动或有相对滑动的趋势时,在它们 接触面上出现的阻碍相对滑动的力。摩擦对工程技术和日常生活极为重要。摩擦阻碍物体的运动,使运动能量遭 受损失,人类生产的总能量有很大一部分就是这样被消耗掉的。因摩擦而损失的机械能转化为热,使机器中许多 滑动面必须冷却。同时,摩擦还伴随着表面材料的损失,即发生磨损。磨损使零件的尺寸改变,失去应有的精度 和功能。世界上有很大一部分生产力就是用于补充、替换因磨损而变为无用的零件的。
概况
摩擦学系统过程研究摩擦学是研究相对运动的作用表面间的摩擦、润滑和磨损,以及三者间相互关系的理论 与应用的一门边缘学科。
世界上使用的能源大约有1/3~1/2消耗于摩擦。如果能够尽力减少无用的摩擦消耗,便可大量节省能源。另 外,机械产品的易损零件大部分是由于磨损超过限度而报废和更换的,如果能控制和减少磨损,则既减少设备维 修次数和费用,又能节省制造零件及其所需材料的费用。
因此,人们采取各种减小摩擦的措施,例如在相对滑动的表面上施用润滑剂;用轮子、滚柱和滚珠使滑动改 为滚动等。但摩擦也有有用的一面,许多传动与制动设备是通过摩擦起作用的。常用的皮带传动功能就是通过摩 擦力实现的;汽车和机车的行驶也要依靠地面和钢轨上的摩擦力。严冬冰雪覆盖路面,有时必须在汽车后轮上加 装铁链或在钢轨上喷砂,才能产生足够的摩擦力推动车辆前进。若摩擦力完全消失,则结绳、织布、打钉、执笔 以至坐立行走,都将成为不可能。因此,摩擦又是人类生存所不可缺少的。
摩擦学原理知识点
绪论1、摩擦学定义:是对于相对运动的互相作用表面的科学技术,包含摩擦、润滑、磨损和冲蚀。
2、摩擦学研究内容主要包含:摩擦、磨损、润滑以及表面工程技术。
3、摩擦:是抵挡两物体接触表面在外力作用下发生切向相对运动的现象。
4、磨损:侧重研究与剖析资料和机件在不一样工况下的磨损机理、发生规律和磨损特征。
5、润滑:研究内容包含流体动力润滑、静力润滑、界限润滑、弹性流体动力润滑等在内的各样润滑理论及其在实践中的应用。
6、表面工程技术:将表面与摩擦学有机联合起来,解决机器零零件的减摩、耐磨,延伸使用寿命的问题。
第一章1、表面容貌:微观粗拙度、宏观粗拙度(即涟漪度)和宏观几何形状误差。
2、表面参数:(1)算术均匀误差 Ra是在一个取样长度lr内纵坐标值Z(x)绝对值的算术均匀值。
(2)轮廓的最大高度 Rz 是在一个取样长度 lr 内最大轮廓峰高 Zp 和最大轮廓谷深 Zv 之和的高度。
( 3)均方根误差 Rq是在一个取样长度 lr 内纵坐标值 Z( x)的均方根值。
3、对于液体,表层中所有分子所拥有的额外势能的总和,叫做表面能。
表面能越高,越易粘着。
4、物理吸附:当气体或液体与固体表面接触时,因为分子或原子互相吸引的作使劲而产生的吸附叫做物理吸附,是靠范德华力维系的,温度越高,吸附量越小。
物理吸附薄膜形成的特色是吸附和解吸附拥有可逆性,无选择性。
5、化学吸附:极性分子与金属表面的电子发生互换形成化学键吸附在金属表面上,且极性分子呈定向摆列。
化学吸附的吸附能较高,比物理吸附稳固,且是不完整可逆的,拥有选择性。
6、粘附:是指两个发生接触的表面之间的吸引。
7、影响粘附的要素:①湿润性,②粘附功,③界面张力,④亲和力。
8、金属表面的实质构造:(1)表面层:①污染层,②吸附气体层,③氧化层;( 2)内表层:①加工硬化层,②金属基体。
第二章1、固体表面的接触分类:(1)点接触和面接触。
(2)①弹性接触(赫兹接触),②塑性接触,③弹塑性接触,④粘弹性接触。
摩擦学原理
摩擦学原理
摩擦学是物理学的一个分支,它研究的是摩擦的原理,及其在物理现象中的运用。
摩擦学的发展始于古希腊,当时科学家把它归结为三个基本原理:动摩擦、静摩擦和摩擦力的作用。
在这三个原理的基础上,科学家们进一步发展出了关于摩擦的更多理论。
动摩擦是指当两个物体相互滑动时,会产生摩擦力,这种摩擦力会对物体的运动产生阻力。
这种力可以用来减慢物体的运动,也可以用来增加物体的运动。
从物理学的角度来看,动摩擦的大小与物体的重量、滑动速度和摩擦力有关。
静摩擦是指两个物体之间的静止接触,也就是说,它们不会发生相互滑动。
在这种情况下,会产生一种叫做摩擦力的力,这种力会影响物体的运动,使其变得更加困难。
静摩擦的大小取决于两个物体之间的摩擦系数,以及它们之间的重量。
最后,摩擦力是指当两个物体接触时,会产生的一种力,这种力可以阻挡物体的运动,也可以促使物体的运动。
摩擦力的大小与两个物体的重量、摩擦系数和滑动速度有关。
总之,摩擦学原理主要包括动摩擦、静摩擦和摩擦力三个基本原理。
摩擦力可以影响物体的运动,因此它有着重要的应用,如机器的运行、车辆的制动等。
因此,摩擦学原理有助于我们理解物理现象,
为物理实验和研究提供了重要参考。
关于摩擦学的思考-概述说明以及解释
关于摩擦学的思考-概述说明以及解释1.引言1.1 概述摩擦学是研究固体物体之间相对运动时发生的摩擦现象的科学领域。
摩擦作为一种普遍存在的现象,对于各个行业和领域都有着重要的影响。
摩擦学的研究旨在深入理解摩擦现象的机理、性质和影响因素,以便应用于实际工程和技术问题的解决。
在日常生活中,我们经常会遇到摩擦现象。
无论是步行时脚与地面的摩擦、车辆行驶时轮胎与路面的摩擦,还是开门时手与门把手的摩擦,都与摩擦学密切相关。
除了在日常生活中的应用,摩擦学还在许多其他领域发挥着重要作用,如机械工程、汽车工业、航空航天以及材料科学等。
摩擦学的基本原理是摩擦力的产生和作用。
摩擦力是由于接触物体表面微观不平整度,使得物体间存在着相互作用力而产生的。
摩擦力的大小和性质取决于物体表面的粗糙程度、压力、两物体间的相对运动速度等因素。
摩擦学的研究对于优化设计、减少能源损耗、提高机械系统的效率等具有重要意义。
同时,随着科学技术的不断进步,摩擦学的应用领域也在不断扩展。
例如,在纳米技术领域,摩擦学的研究成果可以应用于微纳机械装置的设计和制造,从而为纳米器件的性能提升提供支持。
本文将探讨摩擦学的基本原理、实际应用中的重要性,并展望摩擦学未来的发展方向。
通过深入的思考和研究,我们可以更好地理解摩擦现象,并利用其特性来改进工程设计和解决实际问题。
1.2文章结构文章结构部分的内容可以包含以下内容:在文章结构部分,我们将介绍本文的组织和章节安排。
整篇文章主要分为引言、正文和结论三个部分。
引言部分将提供一个总体概述,介绍摩擦学的基本概念和相关背景知识,同时阐述本文的目的和重要性。
正文部分将拓展对摩擦学的内容进行详细的阐述。
首先,我们会给出对摩擦学的定义,并介绍其背景和起源,以帮助读者更好地理解该学科领域的重要性。
然后,我们将深入探讨摩擦学的基本原理,包括摩擦力的定义、摩擦系数的计算方法、摩擦力对物体运动的影响等。
结论部分将对摩擦学在实际应用中的重要性进行总结和归纳。
摩擦学第四章
(二)变形-犁削-粘着理论 *
要点如下:
滑动表面之间的摩擦是由微凸体的变形、磨粒和微凸体对表面的犁削 以及粘着三者综合作用的结果。
这三者对摩擦系数影响的程度取决于滑动界面的状态,而后者又受到 滑动前材料的性质、表面状态以及环境等因素的影响。 1981年N.P.Suh在《Wear》发表关于摩擦机理新观点:微凸体变形阻力、 刻槽阻力、粘着阻力。 Fn Fn Fn
4、混合摩擦 又可分为半干摩擦和半流体摩擦两种。前者是指同时存在干摩擦和边 界摩擦的一种混合状态的摩擦。而后者则是指同时存在边界摩擦和流体摩 擦的一种混合状态的摩擦。
按照摩擦副的运动形式,可以将摩擦分为以下两大类:
1.滑动摩擦
如在各种滑动轴承和机床导轨以及钻机中的刹车与气动离合器中相 对滑动表面上产生的摩擦。
(二) 分子吸引理论
德萨古利埃(J.T.Desaguliers,1683-1744) 哈迪(W.B.Hardy,1864-1934)
这种理论认为摩擦的产生是由于表面滑动时,表面上的分子运动键 断裂而消耗了一定的能量。 (三)库仑摩擦定律 (由库仑最后完成,许多人完善的结果)
目前库仑摩擦定律这种表达形式,这在摩擦理论与技术的发展史上, 具有划时代的意义。
2.滚动摩擦 如各种滚动轴承中产生的摩擦。
按照摩擦副的运动状态,还可以将摩擦分为以下两种类型:
1、静摩擦 这是指物体在外力作用下,还不足以克服摩擦表面上产生的切向阻力, 因而还没有产生相对运动的一种摩擦状态。对于外力刚好能克服摩擦表面 上的切向阻力,使物体刚刚产生相对运动的那一瞬间的摩擦状态,称为极 限静摩擦。 2、动摩擦 这是指物体已经产生相对运动后的一种摩擦状态。动摩擦系数一般小 于静摩擦系数。这两个数值如果相差太大,将会使离合器的挂合过程和刹车 的制动过程不稳定。对于机床导轨,会产生抖动,即所谓‘爬行’现象,它 会严重影响到工件的加工精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摩擦学是研究相对运动的相互作用表面及其应用的一门科学,其研究范围是这一摩擦行为对于机械及其系统的作用、接触表面及其润滑介质的变化、失效预测及其控制等理论与实践.它的主要理论基础是工程力学、流体力学、流变学、表面物理、表面化学等,并综合材料科学、工程热物理等学科的成果,以数值计算和表面技术为主要手段的边缘学科,摩擦学研究的基本内容是物体表面的摩擦、磨损和润滑问题,研究的目的在于指导机械及其系统的正确设计及使用,以节约能源和原材料消耗,进而达到提高机械装备的可靠性,以及提高其工作效能和延长使用寿命的目的.
摩擦学的发展过程
人类对摩擦现象早有认识,并能使之为自己服务,如史前人类已知钻木取火.中国在春秋时期已经普遍地应用动物脂肪来润滑车轴.用矿物油作润滑剂的记载最早见于中国西晋张华所著《博物志》.但是摩擦学的研究进展缓慢,直到15世纪意大利的L·达·芬奇才开始把摩擦学引入理论研究的途径.1785年,法国的C·A·de库仑继前人的研究,用机械啮合概念解释于摩擦,提出摩擦理论.后来又有人提出分子吸引理论和静电力学理论.1935年,英国的F·P·鲍登等人开始用材料粘着概念研究干摩擦.1950年,鲍登提出粘着理论.1886年,英国的O·雷诺继前人观察到的流体动压现象,总结出流体动压润滑理论.20世纪50年代普遍应用电子计算机以后,线接触弹性流体动压润滑理论有所突破.20世纪60年代在相继研制出各种表面分析仪的基础上,磨损研究得以迅速开展.至此综合研究摩擦、润滑和磨损相互关系的条件已初步具备,并逐渐形成摩擦学这一新学科.
随着计算机和数值计算机技术的发展,以前不能用解析法解决的问题大都可以进行精确的定量计算,所分析的因素更加全面和符合实际,目前经典流体润滑理论已经基本成熟,研究的重点转向特殊介质和极端工况下的润滑理论[1-2],例如超成流润滑、多相流体和流边润滑理论,特别是针对异向曲面摩擦副的润滑问题所建立的弹性流体动力润滑理论和应用研究已取得重大进展.混合润滑是最为普遍的润滑状态,在国外也受到广泛的关注.
材料磨损研究已从早期的宏观现象分析转向微观机理研究,应用现在表面分析技术揭示磨损过程中表面层组织结构和物理化学变化[3-4].目前国际上提出能量理论或材料疲劳机制的各种磨损理论,可以作为摩擦副材料选择和抗磨损设计的依据,此外,新型轴承和动密封装置的结构,新型材料与表面热处理技术、新型润滑材料与添加剂等方面的研究均有较大的进展.
摩擦学学科的迅速发展是与工业界的需求密不可分的.随着机械设备向着大功率、高速度方向发展,以及机械设备在苛刻工矿下的应用,使得机械零件因摩擦磨损而失效,不仅维修费用增大,而且甚至是整个机械设备丧失功能.因此,降低机械
设备的摩擦损耗,提高机械设备的效率,维护机械设备的正常工作,就成为机械设计、制造及使用维护部门关注的问题.正是工业界的这种需求,推动了摩擦学理论的发展.
今天,摩擦学研究已经深入到更为广阔的领域,除了在摩擦与磨损机理、润滑理论、摩擦学测试技术和设备工况检测技术,以及减摩耐磨材料研究等传统领域,摩擦学研究得到进一步发展,而且在以往未曾达到的技术领域,例如太空领域、微观领域、生命科学等,亦形成了新的研究方向和学科分支,并对推动这些领域的科学进步做出了贡献.
摩擦学研究的对象也越来越广泛,在机械工程中主要包括:①动、静摩擦副,如滑动轴
承、齿轮传动、螺纹联接等.②零件
表面受工作介质摩擦或碰撞、冲击,如犁铧和水轮机转轮等.③机械制造工艺的摩擦学问题,如金属成形加工、切削加工和超精加工等.④弹性体摩擦副,如汽车轮胎与路面的摩擦、弹性密封的动力浸漏等.⑤特殊工况条件下的摩擦学问题,如宇宙探索中遇到的高真空、低温和离子辐射等,深海作业的高压、腐蚀、润滑剂稀释和防漏密封等.此外还有生物中的摩擦学问题,如研究海豚皮肤结构以改进舰船设计,研究人体关节润滑机理以诊治风湿性关节炎,研究人造心脏瓣膜的耐摩寿命以谋求最佳的人工心脏设计方案等.地质学方面的摩擦学问题有地壳运动、火山爆发和地震,以及山、海、断层形成等.在音乐和体育以及人们日常生活中也存在大量的摩擦学问题.随着科学技术的发展,摩擦学的理论和应用必将由宏观进入微观,由静态进入动态,由定性进入定量,成为系统综合研究的领域.。