广西壮族自治区柳州市广西2017-2018学年八年级下学期数学期末考试试卷及参考答案

合集下载

2017——2018柳州市八年级第二学期数学期末检测卷 精品

2017——2018柳州市八年级第二学期数学期末检测卷 精品

学校:__________ 班级:_________ 姓名:___________ 考场号:_____ 座位号:_____ 准考证号:________________----------密----------------------------封----------------------------线----------------------------内----------------------------不----------------------------准----------------------------答----------------------------题-----------------------2017——2018学年度柳州市八年级第二学期期末测试数 学(考试时间 150分钟 满分 150分)第 I 卷 选择题(共48分)考试须知:1、第I 卷为选择题,请使用2B 铅笔将正确答案填涂入下列填涂区内。

2、第I 卷满分48分,每小题4分,共12个小题。

1 A B C D 5 A B C D 9 A B C D2 A B C D 6 A B C D 10 A B C D3 A B C D 7 A B C D 11 A B C D4 A B C D8 A B C D12 A B C D一、选择题(答案使用2B 铅笔填涂在指定填涂区内,每小题3分,共36分)1. 如果分式x-11有意义,那么x 的取值范围是: .1A x > .1B x < .1C x ≠ .=1D x2. 已知反比例函数xky =的图像过点(2,4),则下面也在反比例函数图像上的点是:.A . (-2,4) .B .(2,-4) .C (-1,8) .D .(16,21)3. 在t R ABC △中,90C ∠=°,30B ∠=°,AC =3,则斜边AB 的长为:.A 6 .B 5 .C 4 .33D4. 用两个全等的等边三角形,可以拼成下列哪种图形:A. 矩形B. 菱形C.正方形D.等腰梯形5. 如图,ABCD 的对角线交于点O ,=6AB cm ,两条对角线长的和为24cm ,则CO D 的周长为:.30A cm .24B cm.15C cm .18D cm6. 小明妈妈经营一家服装专卖店,为了合理利用资金,小明帮妈妈对上个月各种型号的服装销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号的服装,此时小明应重点参考A. 平均数B. 众数C. 加权平均数D. 中位数7. 甲型H1N1流感病毒变异后的直径为0.00000013米,把这个数字写成科学记数法是7.1.310A -⨯米 6.0.1310B -⨯米 5.1.310C -⨯米 8.1310D -⨯米-------密----------------------------封----------------------------线----------------------------内----------------------------不----------------------------准----------------------------答----------------------------题-----------------------8. 下列各式中,变形不正确的是22.=33A y y -- .=66y y B x x -- 33.=44x x C y y -- 55.=33x x D y y ---9. 在等腰梯形ABCD 中,E 、F 、G 、H 分别是各边的中点,则四边形EFGH 的形状是 A. 平行四边形 B. 矩形 C. 菱形 D. 正方形10. 人数相等的八年级(1)班和八年级(2)班两个班进行了一次数学测试,班级平均分和方差如下:861=x ,862=x ,25921=S , 22S =186则成绩较为稳定的班级是A. 八年级(1)班B. 八年级(2)班C. 两个班成绩一样稳定D. 无法确定11. 若平行四边形中两个内角度数比为1:2,则其中较小的内角是 A. 90° B. 60° C. 120° D. 45° 12. 下列命题中是真命题的是A. 对角线互相垂直且相等的四边形是正方形B. 有两边和一角对应相等的两个三角形全等C. 两条对角线相等的平行四边形是矩形D. 两边相等的平行四边形是菱形学校:__________ 班级:_________ 姓名:___________ 考场号:_____ 座位号:_____ 准考证号:________________----------密----------------------------封----------------------------线----------------------------内----------------------------不----------------------------准----------------------------答----------------------------题-----------------------第 II 卷 非选择题(共102分)考试须知:1、第II 卷为非选择题,请使用0.5mm 黑色水性笔将答案填写在以下指定填写区内。

广西柳州市八年级下学期数学期末考试试卷

广西柳州市八年级下学期数学期末考试试卷

广西柳州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列调查中,适合采用全面调查方式的是()A . 对宜春秀江水质情况的调查.B . 对某班50名同学体重情况的调查.C . 对端午节期间市场上粽子质量情况的调查.D . 对万载县某类烟花爆竹燃放安全情况的调查.2. (2分)下列二次根式中,最简二次根式的是()A .B .C .D .3. (2分)多项式x2﹣6x+8的最小值为()A . 8B . 0C . -1D . ﹣64. (2分)如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向黄色区域的概率是()A .B .C .D .5. (2分)(2018·南海模拟) 如图,直线a∥b∥c ,直角三角板的直角顶点落在直线b上.若∠1=35°,则∠2等于()A . 115°B . 125°C . 135°D . 145°6. (2分)(2018·东营) 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A . 众数是100B . 中位数是30C . 极差是20D . 平均数是307. (2分) (2019八下·湖南期中) 下列说法正确是()A . 有一个直角的四边形是矩形B . 一组对边平行的四边形是平行四边形C . 对角线互相平分的四边形是正方形D . 有一组邻边相等的平行四边形是菱形8. (2分)(2017·河北模拟) 如果()2÷()2=3,那么a8b4等于()A . 6B . 9C . 12D . 819. (2分)已知反比例函数的图象过(2,-2)和(-1,n),则n等于()A . 3B . 4C . 6D . 1210. (2分) (2019八上·香洲期末) 如图,设k=(a>b>0),则有()A . 0<k<B . <k<1C . 0<k<1D . 1<k<2二、填空题 (共8题;共8分)11. (1分) (2019八下·义乌期末) 若要使二次根式 -2在实数范围内有意义,则x的取值范围是________ .12. (1分)当x=________ 时,分式的值为0.13. (1分) (2019七上·大东期末) 下表是对某地生活垃圾处理情况的分析,可以选择________统计图进行分析比较.14. (1分)(2019·瑶海模拟) 如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为________.15. (1分)设m、n是一元二次方程x2+2x﹣3=0的两个根,则m2+3m+n=________.16. (1分) (2017八下·海安期中) 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH,若BE∶EC=2∶1,则线段CH的长是________17. (1分)(2017·临沂模拟) 如图,反比例函数y= (k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为________.18. (1分) (2017八下·高阳期末) 如下图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm到D,则橡皮筋被拉长了________cm;三、解答题 (共10题;共94分)19. (10分)(2012·宜宾)(1)计算:(2)先化简,再求值:,其中x=2tan45°.20. (10分) (2019九上·柳江月考) 解方程:x2+6x+5=0.21. (15分)(2017·东莞模拟) 如图,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象有公共点A(1,2),D(﹣2,﹣1).直线l⊥x轴,与x轴交于点N(3,0),与一次函数和反比例函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)根据图象回答,在什么范围时,一次函数的值大于反比例函数的值.22. (6分)(2018·汕头模拟) 如图,O是菱形ABCD对角线AC与BD的交点,CD=5cm,OD=3cm;过点C作CE∥DB,过点B作BE∥AC,CE与BE相交于点E.(1)求OC的长;(2)求四边形OBEC的面积.23. (6分) (2017九下·江都期中) 为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1) a=________,b=________;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?24. (10分)(2016·沈阳) 为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是________;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.25. (6分) (2018九上·仁寿期中) 某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)用含x的代数式表示商店获得的利润,并用配方法计算商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少元?26. (6分) (2019八下·张家港期末) 如图(1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C'处,若∠ADB=46°,则∠DBE的度数为________∘.(2)小明手中有一张矩形纸片ABCD,AB=4,AD=9.【画一画】如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段描清楚);【算一算】如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点A,B分别落在点A',B'处,若AG= ,求B'D的长;27. (15分)建立模型:如图1,已知△ABC,AC=BC,∠C=90°,顶点C在直线l上.(1)实践操作:过点A作AD⊥l于点D,过点B作BE⊥l于点E,求证:△CAD≌△BCE.(2)模型应用:Ⅰ.如图2,在直角坐标系中,直线l1:y= x+4与y轴交于点A,与x轴交于点B,将直线l1绕着点A顺时针旋转45°得到l2.求l2的函数表达式.Ⅱ.如图3,在直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q(a,2a﹣6)位于第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请求出此时a的值,若不能,请说明理由.28. (10分)(2017·赤峰模拟) 如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M 为DE的中点,过点E与AD平行的直线交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置,此时A,B,M三点在同一直线上.(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共94分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、23-4、24-1、24-2、25-1、25-2、25-3、26-1、26-2、27-1、27-2、28-1、28-2、28-3、。

2017-2018学年第二学期期末八年级数学试题(含答案)

2017-2018学年第二学期期末八年级数学试题(含答案)

2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。

广西柳州市八年级下学期期末考试数学试题

广西柳州市八年级下学期期末考试数学试题

广西柳州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2012八下·建平竞赛) 若A(a,b),B(b,a)表示同一点,那么这一点在()A . 第一、三象限内两坐标轴夹角平分线上B . 第一象限内两坐标轴夹角平分线上C . 第二、四象限内两坐标轴夹角平分线上D . 平行于y轴的直线上2. (2分)(2017·新疆模拟) 下列四个图形中,是中心对称图形的是()A .B .C .D .3. (2分) (2012·深圳) 如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A . 120°B . 180°C . 240°D . 300°4. (2分) (2019九下·绍兴期中) 如图,四边形ABCD是菱形,过点A作BD的平行线交CD的延长线于点E,则下列式子不成立的是()A . BD=CEB . DA=DEC . ∠EAC=90°D . ∠ABC=2∠E5. (2分)如图所示,□ABCD中,AB=4,BC=5,对角线相交于点O ,过点O的直线分别交AD , BC于点E ,F ,且OE=1.5,则四边形EFCD的周长为().A . 10B . 12C . 14D . 166. (2分) (2017八下·湖州月考) 下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据。

要从中选择一名成绩好且发挥稳定的运动员参加比赛。

应该选择()甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.48.1A . 甲B . 乙C . 丙D . 丁7. (2分) (2018九上·白云期中) 关于直线l:y=kx+k(k≠0),下列说法不正确的是()A . 点(0,k)在l上B . l经过定点(-1,0)C . 当k>0时,y随x的增大而增大D . l经过第一、二、三象限8. (2分)(2019·宁波模拟) 已知关于x的一元二次方程x2﹣2kx+6=0有两个相等的实数根,则k的值为()A . ±2B . ±C . 2或3D . 或9. (2分)(2017·黑龙江模拟) 一次长跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图,则这次长跑的全程为()米.A . 2000米B . 2100米C . 2200米D . 2400米10. (2分)(2017·福建) 不等式组:的解集是()A . ﹣3<x≤2B . ﹣3≤x<2C . x≥2D . x<﹣3二、填空题 (共6题;共6分)11. (1分) (2016八上·扬州期末) 如图是一个围棋棋盘(局部),把这个围棋棋盘放置一个平面直角坐标系中,白棋①的坐标是,白棋③的坐标是,则黑棋②的坐标是________.12. (1分)(2019·银川模拟) 在函数中,自变量x的取值范围是________.13. (1分) (2019九上·苏州开学考) 如果A(﹣1,2),B(2,﹣1),C(m,m)三点在同一条直线上,则m的值等于________.14. (1分) (2018八上·靖远期末) 直线y=﹣3x+b与直线y=2x+3的交点在y轴上,则b=________.15. (1分)如图所示,在△ABC中,∠B=90º,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.16. (1分)如图,已知MN∥PQ,EF与MN,PQ分别交于A、C两点,过A、C两点作两组内错角的平分线,分别交于点B、D,则四边形ABCD是________.三、解答题 (共10题;共100分)17. (20分) (2018九上·宜兴月考) 用适当的方法解下列方程:(1)(2)(3)(4)18. (5分)(2017·雁塔模拟) 已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE⊥AC于E,BE与CD 相交于点F.求证:BF=AC.19. (5分) (2017九上·肇源期末) 如图所示,在四边形ABCD中,AD=BC,P是对角线BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.20. (10分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况(2)若方程有一个根为3,求m的值21. (12分)(2017·洪泽模拟) 小明拿两个大小不等直角三角板作拼图,如图①小三角板的斜边与大三角板直角边正好重合,已知:AD=1,∠B=∠ACD=30°.(1) AB的长________;四边形ABCD的面积=________(直接填空);(2)如图2,若小明将小三角板ACD沿着射线AB方向平移,设平移的距离为m(平移距离指点A沿AB方向锁经过的线段长度),当点D平移到线段大三角板ABC的边上时,求出相应的m的值;(3)如图3,小明将小三角板ACD绕点A顺时针旋转一个角α(0°<α<180°),记旋转中的△ACD为△AC′D′,在旋转过程中,设C′D′所在的直线与直线BC交于点P,与直线AB交于点Q,是否存在这样的P、Q 两点,使△BPQ为等腰三角形?若存在,请直接求出此时D′Q的长;若不存在,请说明理由22. (5分) (2016九上·平潭期中) 在长为8cm、宽为5cm的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.23. (7分)(2014·常州) 为迎接“六一”儿童节的到来,某校学生参加献爱心捐款活动,随机抽取该校部分学生的捐款数进行统计分析,相应数据的统计图如下:(1)该样本的容量是________,样本中捐款15元的学生有________人;(2)若该校一共有500名学生,据此样本估计该校学生的捐款总数.24. (5分)在△ABC中,点P从点B出发向C点运动,运动过程中设线段AP长为y,线段BP的长为x(如图甲),而y与x的函数图象如图乙所示,Q是图象上的最低点,请观察图甲、图乙,回答下列问题:(1)直接写出AB,BC边上的高AH.(2)求AC的长.25. (15分) (2018八上·金东期末) 已知关于x的一次函数的图象与x轴,y轴分别交于A,B两点,过点B作直线的垂线,垂足为M,连结AM.(1)求点A的坐标;(2)当为直角三角形时,求点M的坐标;(3)求的面积用含m的代数式表示,写出m相应的取值范围.26. (16分)(2017·市北区模拟) 探究题【问题提出】已知任意三角形的两边及夹角(是锐角),求三角形的面积.【问题探究】为了解决上述问题,让我们从特殊到一般展开探究.探究:在Rt△ABC(图1)中,∠ABC=90°,AC=b,BC=a,∠C=α,求△ABC的面积(用含a、b、α的代数式表示)在Rt△ABC中,∠ABC=90°∴sinα=∴AB=b•sinα∴S△ABC= BC•AB= absinα(1)探究一:锐角△ABC(图2)中,AC=b,BC=a,∠C=α(0°<α<90°)求:△ABC的面积.(用含a、b、α的代数式表示)(2)探究二:钝角△ABC(图3)中,AC=b,BC=a,∠C=α(0°<α<90°)求:△ABC的面积.(用含a、b、α的代数式表示)(3)【问题解决】用文字叙述:已知任意三角形的两边及夹角(是锐角),求三角形面积的方法是________(4)已知平行四边形ABCD(图4)中,AB=b,BC=a,∠B=α(0°<α<90°)求:平行四边形ABCD的面积.(用含a、b、α的代数式表示)参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共100分)17-1、17-2、17-3、17-4、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、24-1、25-1、25-2、25-3、26-1、26-2、26-3、26-4、。

广西柳州市八年级下学期数学期末考试试卷

广西柳州市八年级下学期数学期末考试试卷

广西柳州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·偃师期中) 下列根式是最简二次根式的是()A .B .C .D .2. (2分)某班九个合作学习小组的人数分别为5,5,5,6,x,7,7,7,8,已知这组数据的平均数是6,则这组数据的中位数是()A . 7B . 6C . 5.5D . 53. (2分)(2019·安徽) 在某时段由50辆车通过一个雷达测速点,工作人员将测得的车速绘制成如图所示的条形统计图,则这50辆车的车速的众数(单位:km/h)为()A . 60B . 50C . 40D . 154. (2分) (2018八上·南安期中) 计算的结果为()A .B .C .D .5. (2分)下列各组长度的线段能组成直角三角形的是()A . a=2,b=3,c=4B . a=3,b=4,c=5C . a=4,b=5,c=6D . a=6,b=7,c=86. (2分)下列判断正确的有()①顺次连接对角线互相垂直且相等的四边形的各边中点一定构成正方形;②中心投影的投影线彼此平行;③在周长为定值π的扇形中,当半径为时扇形的面积最大;④相等的角是对顶角的逆命题是真命题.A . 4个B . 3个C . 2个D . 1个7. (2分)(2020·凉山模拟) 如图,点A,B,C,D,E,F等分⊙O,分别以点B、D、F为圆心,AF的长为半径画弧,形成美丽的“三叶轮”图案.已知⊙O的半径为1,那么“三叶轮”图案的面积为()A . +B . -C .D .8. (2分)(2017·广州模拟) 下列图象中,表示直线y=x﹣1的是()A .B .C .D .9. (2分)(2020·铁岭) 我市在落实国家“精准扶贫”政策的过程中,为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后,乙工程队加入两工程队联合施工3天后,还剩50米的工程.已知甲工程队每天比乙工程队多施工2米,求甲、乙工程队每天各施工多少米?设甲工程队每天施工米,乙工程队每天施工米,根据题意,所列方程组正确的是()A .B .C .D .10. (2分) (2016八上·平谷期末) 如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A .B .C .D .二、填空题 (共9题;共9分)11. (1分) (2017八下·郾城期末) 在2017年的理化生实验考试中某校6名学生的实验成绩统计如图,这组数据的众数是________分.12. (1分)已知直角三角形两条直角边分别为1和2,那么斜边上的高为________.13. (1分) (2017八下·卢龙期末) 对于数据:2,4,4,5,3,9,4,5,1,8,其众数,中位数与平均数分别是________.14. (1分) (2017七上·余姚期中) 化简:|π-4|+|3-π|=________.15. (1分)(2018·呼和浩特) 已知函数y=(2k﹣1)x+4(k为常数),若从﹣3≤k≤3中任取k值,则得到的函数是具有性质“y随x增加而增加”的一次函数的概率为________.16. (1分) (2017八下·石景山期末) 请写出一个图象过点,且函数值随自变量的增大而减小的一次函数的表达式:________(填上一个答案即可).17. (1分) (2017七下·阜阳期末) 小刚解出了方程组解为,因不小滴上了两滴墨水,刚好盖住了方程组中的一个数和解中的一个数,则 =________, =________.18. (1分) (2019八上·潘集月考) 如图所示,△ABC中∠C=90°,AM平分∠CAB,CM=15cm,那么M到AB 的距离是________cm.19. (1分) (2018七上·武汉期中) 对于正数x规定,例如:,,,则f(2019)+f(2018)+……+f(2)+f(1)+=________.三、解答题 (共9题;共80分)20. (5分)(2017·永嘉模拟) 如图,在方格纸中,线段AB的两个端点都在小方格的格点上,AB=5,请找到一个格点P,连结PA,PB,使得△PAB为等腰三角形(请画出两种,若所画三角形全等,则视为一种).21. (10分) (2019八下·丰润期中) 计算:( -4 + )×22. (5分)射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如图所示(折线图中,虚线表示甲,实线表示乙):(1)根据上图所提供的信息填写下表:平均数众数方差甲7▲▲乙7▲ 2.2(2)如果你是教练,会选择哪位运动员参加比赛?试说明理由.(参考公式:)23. (5分) (2019八上·响水期末) 如图,一次函数=的图像与正比例函数=的图像相交于点A(2,),与轴相交于点B.(1)求、的值;(2)在轴上存在点C,使得△AOC的面积等于△AOB的面积,求点C的坐标.24. (10分)已知函数y = y1 +y2 , y1与x成正比例,y2与x成反比例,且当x = 1时,y = 4,当x = 2时,y = 5. 求y关于x的函数解析式.25. (5分)如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的解析式;(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.26. (15分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2=(1+ )2 .善于思考的小明进行了以下探索:设a+b =(m+n )2(其中a、b、m、n均为整数),则有a+b =m2+2n2+2mn .∴a=m2+2n2 , b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b =(m+n )2 ,用含m、n的式子分别表示a、b,得:a =________,b=________;(2)利用探索的结论,找一组正整数a、b、m、n (a、b都不超过20)填空:________+________ =(________+________ )2;(3)若a+6 =(m+n )2 ,且a、m、n均为正整数,求a的值?27. (15分)(2020·下城模拟) 如图,已知⊙O的半径长为1,AB、AC是⊙O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.(1)求证:△AOB≌△AOC;(2)当△OCD是直角三角形时,求B、C两点的距离;(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3 ,如果S2是S1和S3的比例中项,求OD的长.28. (10分) (2017八下·巢湖期末) 化简下列各式。

广西柳州市八年级下学期期末考试数学试卷

广西柳州市八年级下学期期末考试数学试卷

广西柳州市八年级下学期期末考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2018八上·江干期末) 下列图案属于轴对称图形的是()A .B .C .D .2. (2分)下列二次根式中,最简二次根式是()A .B .C .D .3. (2分) (2019九上·青山期中) 用配方法解方程,变形结果正确的是()A .B .C .D .4. (2分) (2020八下·无锡期中) 要想了解10万名考生的数学成绩,从中抽取了3000名考生的数学成绩进行统计分析,以下说法正确的是()A . 这3000名考生是总体的一个样本B . 每位考生的数学成绩是个体C . 10万名考生是总体D . 3000名考生是样本的容量5. (2分)某种品牌手机经过二、三月份再次降价,每部售价由1000元降到810元,则平均每月降价的百分率为()A . 20%B . 11%C . 10%D . 9.5%6. (2分)已知点在双曲线上,则下列各点一定在该双曲线上的是()A . (3,-2)B . (-2,-3)C . (2,3)D . (3,2)二、填空题 (共10题;共14分)7. (1分) (2017八下·桐乡期中) 已知的整数部分是,小数部分是,则 ________.8. (1分)(2020·营口模拟) 在函数中,自变量x的取值范围是________.9. (1分) (2019八下·瑞安期中) 当时,二次根式的值是________.10. (1分)把﹣4m写成分式的形式,若分母是﹣2mn2 ,那么分子是________.11. (1分) (2018九上·铁西期末) 边长为3cm的菱形的周长是________.12. (1分)(2020·浦口模拟) 若方程的两根,则的值为________.13. (1分) (2019九上·忻城期中) 已知双曲线的图象在二、四象限上,则m的取值范围是________14. (1分)(2017·香坊模拟) 如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是________.15. (1分) (2017七下·射阳期末) 已知是一个完全平方式,则常数 =________16. (5分) (2018九上·运城月考) 如图,边长为a、b的矩形,它的周长为14,面积为10,则a2b+ab2的值为__.三、解答题 (共10题;共94分)17. (10分) (2019八上·嘉定月考) 计算(1) + -3 +7(2) 3 × ÷ .18. (10分) (2019八下·余姚期末) 已知关于x的方程x2-3x+c=0有两个实数根,(1)求c的取值范围(2)若c为正整数,取符合条件的c的一个值,并求出此时原方程的根19. (5分)(2020·卧龙模拟) 先化简,再求值:(﹣2)÷ ,其中x=﹣1.20. (7分)(2018·无锡) 某汽车交易市场为了解二手轿车的交易情况,将本市场去年成交的二手轿车的全部数据,以二手轿车交易前的使用时间为标准分为A、B、C、D、E五类,并根据这些数据由甲,乙两人分别绘制了下面的两幅统计图(图都不完整).请根据以上信息,解答下列问题:(1)该汽车交易市场去年共交易二手轿车________辆.(2)把这幅条形统计图补充完整.(画图后请标注相应的数据)(3)在扇形统计图中,D类二手轿车交易辆数所对应扇形的圆心角为________度.21. (15分) (2019七下·常熟期中) 已知,求下列式子的值:(1)(2)(3) .22. (12分) (2016九上·平凉期中) 如图,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1 .(1)线段OA1的长是________,∠AOB1的度数是________;(2)连接AA1 ,求证:四边形OAA1B1是平行四边形;(3)求点B旋转到点B1的位置所经过的路线的长.23. (10分) (2016九上·黑龙江月考) 已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.24. (5分)某自来水公司按如下标准收取水费:若每户每月用水不超过10 m3,则每立方米收费1.5元;若每户每月用水超过10 m3,则超过部分每立方米收费2元.小亮家某月的水费不少于25元,那么他家这个月的用水量x(m3)至少是多少?请列出关于x的不等式.25. (10分)(2020·新乡模拟) 如图,直线l:y=x+1与y轴交于点A,与双曲线(x>0)交于点B(2,a).(1)求a,k的值.(2)点P是直线l上方的双曲线上一点,过点P作平行于y轴的直线,交直线l于点C,过点A作平行于x 轴的直线,交直线PC于点D,设点P的横坐标为m.①若m=,试判断线段CP与CD的数量关系,并说明理由;②若CP>CD,请结合函数图象,直接写出m的取值范围.26. (10分) (2017八下·濮阳期中) 如图,点E是矩形ABCD的对角线BD上的一点,且BE=BC,AB=3,BC=4,点P为直线EC上的一点,且PQ⊥BC于点Q,PR⊥BD于点R.(1)①如图1,当点P为线段EC中点时,易证:PR+PQ= (不需证明).②如图2,当点P为线段EC上的任意一点(不与点E、点C重合)时,其它条件不变,则①中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.(2)如图3,当点P为线段EC延长线上的任意一点时,其它条件不变,则PR与PQ之间又具有怎样的数量关系?请直接写出你的猜想.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共14分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共94分)17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、25-1、25-2、26-1、26-2、。

广西柳州市八年级下学期期末考试数学试题

广西柳州市八年级下学期期末考试数学试题

广西柳州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、解答题 (共10题;共20分)1. (2分) (2017八下·大冶期末) 下列二次根式中,是最简二次根式的是()A .B .C .D .2. (2分)(2019·陕西模拟) 已知正比例函数y=kx(k≠0)过点(5,3),(m,4),则m的值为()A .B . -C .D .3. (2分) (2017八下·长泰期中) 如图,在平面直角坐标系中,□AB的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A . (3,7)B . (5,3)C . (7,3)D . (8,2)4. (2分) (2017九下·富顺期中) 下列计算正确的是()A .B .C .D .5. (2分)(2018·灌南模拟) 在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下:分数5060708090100人数12813144则该班学生成绩的中位数和众数分别是()A . 70,80B . 70,90C . 80,90D . 80,1006. (2分) (2018八上·大丰期中) 下列各组数中,是勾股数的是()A . 2、3、4B . 3、4、5C . 4、5、6D . 5、6、77. (2分)对甲、乙两同学100米短跑进行5次测试,他们的成绩通过计算得:=, S2甲=0.025,S2乙=0.026,下列说法正确的是()A . 甲短跑成绩比乙好B . 乙短跑成绩比甲好C . 甲比乙短跑成绩稳定D . 乙比甲短跑成绩稳定8. (2分) (2018八下·肇源期末) 如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数y= (x<0)的图象经过点C,则k的值为()A . 24B . -12C . -6D . ±69. (2分)已知一次函数y=kx+b,当x增加3时,y减少2,则k的值是()A .B .C .D .10. (2分) (2016八上·平阳期末) 如图,在Rt△ABC中,∠ACB=90°,CD是AB边长的中线,若AC=6,BC=8,则CD的长是()A . 6B . 5C . 4D . 3二、填空题 (共15题;共113分)11. (1分)(2017·云南) 使有意义的x的取值范围为________.12. (1分) (2019八下·萝北期末) 直线y=2x+1经过点(a,0),则a=________.13. (1分)(2017·集宁模拟) 一组数据5,2,3,6,4,这组数据的方差是________.14. (1分) (2017八下·滦县期末) 如图,已知菱形ABCD中,∠ABD=70°,则∠ABC=________.15. (1分) (2018八上·鄞州月考) 两边长分别为5,12的直角三角形,其斜边上的中线长为________.16. (10分)阅读理解材料:把分母中的根号去掉叫做分母有理化,例如:① ;② 等运算都是分母有理化.根据上述材料,(1)化简:;(2)计算:.17. (2分) (2017七下·江阴期中) 计算下列各小题:(1) =________,(2)=________.18. (10分)(2017·新野模拟) 某单位有职工200人,其中青年职工(20﹣35岁),中年职工(35﹣50岁),老年职工(50岁及以上)所占比例如扇形统计图所示.为了解该单位职工的健康情况,小张、小王和小李各自对单位职工进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小张抽样调查单位3名职工的健康指数年龄264257健康指数977972表2:小王抽样调查单位10名职工的健康指数年龄23252632333739424852健康指数93899083797580696860表3:小李抽样调查单位10名职工的健康指数年龄22293136394043465155健康指数94908885827872766260根据上述材料回答问题:(1)小张、小王和小李三人中,谁的抽样调查的数据能够较好地反映出该单位职工健康情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据能够较好地反映出该单位职工健康情况表,绘制出青年职工、中年职工、老年职工健康指数的平均数的直方图.19. (5分)如图所示,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1 ,与x轴的另一个交点为A1.(1)当a=-1 , b=1时,求抛物线n的解析式;(2)四边形AC1A1C是什么特殊四边形,请写出结果并说明理由;(3)若四边形AC1A1C为矩形,请求出a和b应满足的关系式.20. (15分)(2018·龙东) 为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1) A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?21. (11分)(2016·龙岩) 已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB________EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC的度数.22. (15分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.23. (15分) (2017九上·婺源期末) 已知AB是⊙O的直径,⊙O过BC的中点D,且DE垂直AC于E.(1)求证:AB=AC;(2)求证:DE是⊙O的切线;(3)若AB=13,BC=10,求DE的长24. (10分) (2019九上·鄂州期末) 反比例函数y= (k为常数,且k≠0)的图象经过点A(1,3)、B (3,m).(1)求反比例函数的解析式及B点的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.25. (15分) (2017八下·越秀期末) 如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1 ,△PDE的面积为S2 .(1)求证:BP⊥DE.(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.参考答案一、解答题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共15题;共113分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、17-1、17-2、18-1、18-2、19-1、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。

广西柳州市八年级下学期数学期末考试试卷

广西柳州市八年级下学期数学期末考试试卷

广西柳州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果有意义,那么x的取值范围是()A . x>2B . x≥2C . x≤2D . x<22. (2分)若为正比例函数,则a的值为()A . 4B .C .D . 23. (2分)下列运算正确的是()A .B .C .D .4. (2分)苹果的单价为4元/kg,购买x(kg)苹果与总价y(元)之间的关系式是y=4x,这里总价y随着千克数x的增大而()A . 增大B . 减小C . 不变D . 不确定5. (2分)(2017·信阳模拟) 某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数14322则这个队队员年龄的众数和中位数分别是()A . 15,16B . 15,15C . 15,15.5D . 16,156. (2分)如图,在△ABC 中,∠C=90°.若BD∥AE,∠DBC=20°,则∠CAE的度数是()A . 40°B . 60°C . 70°D . 80°7. (2分) (2019八下·东至期末) 四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E,F,则四边形ABCD一定是()A . 正方形B . 菱形C . 平行四边形D . 矩形8. (2分)如图,△ABC中,AD、BE是两条中线,则S△EDC:S△ABC=()A . 1∶2B . 2∶3C . 1∶3D . 1∶49. (2分)如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),由此函数的最小值是()A . 0B .C . 1D .10. (2分) (2019七下·抚州期末) 小亮从家出发步行到公交站台后,再等公交车去学校,如图,折线表示这个过程中小亮行驶的路程s(千米)与时间t(分)之间的关系.下列说法错误的是()A . 他家离公交车站台1千米远B . 他等公交车的时间为14分钟C . 公交车的速度是500米/分D . 他步行速度是0.1千米/分二、填空题 (共6题;共7分)11. (1分) (2019八下·宁明期中) 计算:=________.12. (1分)一次函数y=﹣5x+2的图象不经过第________ 象限.13. (1分) (2015八下·杭州期中) 已知一组数据:x1 , x2 , x3 ,…xn的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3xn﹣2的方差是________.14. (1分) (2018七上·武威期末) 如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为________.15. (1分)(如图所示)两个长宽分别为7cm、3cm的矩形如图叠放在一起,则图中阴影部分的面积是________.16. (2分) (2020九下·湖州月考) 如图,在Rt△ABC中,AC=BC=6,∠ACB=90°,点D,E分别是AC,AB 的中点,点F为射线DE上一动点,连结CF,作FG⊥CF交射线AB于点G。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西壮族自治区柳州市广西2017-2018
学年八年级下学期数学期末考试试卷
一、单选题
1. 使 有意义的a 的取值范围为( )
A . a≥1
B . a >1
C . a≥﹣1
D . a >﹣12.
如图,在Rt △ABC 中,∠C=90°,AB=2BC ,则∠A=( )
A . 15°
B . 30°
C . 45°
D . 60° 3. 下列运算正确的是( )
A .
B .
C .
D .
4. 已知一组数据:15,16,14,16,17,16,15,则这组数据的中位数是( )
A . 17
B . 16
C . 15
D . 14
5. 若函数的解析式为y=
,则当x=2时对应的函数值是( )
A . 4
B . 3
C . 2
D . 0
6. 如图,平行四边形ABCD 中,对角线AC 和BD 相交于点O ,若AC=12,BD=10,AB=7,则△DOC 的周长为( )
A . 29
B . 24
C . 23
D . 18
7. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.3环,方差分别为S =0.52.S =0.62,S =0.50,S =0.45,则成绩最稳定的是( )
A . 甲
B . 乙
C . 丙
D . 丁8. 正比例函数y=kx (k≠0)函数值y 随x 的增大而增大,则y=kx ﹣k 的图象大致是( )
A .
B .
C .
D . 9. 如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是( )
A . 52
B . 42
C . 76
D . 72
10. 如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),点C 在第一象限,对角线BD 与x 轴平行.直线y=x+3与x 轴、y 轴分别交于点E 、F.将菱形ABCD 沿x 轴向左平移m 个单位,当点D 落在△EOF 的内部时(不包括三角形的边),m 的取值范围是( )甲2乙2丙2丁2
A . 4<m <6
B . 4≤m≤6
C . 4<m <5
D . 4≤m <5
二、填空题
11. 化简:( 2 )=________.
12. 若将直线y=﹣2x 向上平移3个单位后得到直线AB ,那么直线AB 的解析式是________.13.
在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB=60°,AB=5,则BC=________.
14. 一次数学测验中,某小组七位同学的成绩分别是:90,85,90,95,90,85,95.则这七个数据的众数是________.
15. 满足a +b =c 的三个正整数,称为勾股数.写出你比较熟悉的两组勾股数:①________;②________.16. 在Rt △ABC 中,∠ACB=90°,AE ,BD 是角平分线,CM ⊥BD
于M ,CN ⊥AE 于
N ,若AC=6,BC=8,则MN=________.
三、解答题
17. 计算: .18.
如图,BD 是▱ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.
19. 已知一次函数的图象经过A (﹣2,﹣3),B (1,3
)两点.
(1) 求这个一次函数的解析式;
(2) 求此函数与x 轴,y 轴围成的三角形的面积.
20. 某次学生夏令营活动,有小学生、初中生、高中生和大学生参加,共200人,各类学生人数比例见扇形统计图.(1) 参加这次夏令营活动的初中生共有多少人?
(2) 活动组织者号召参加这次夏令营活动的所有学生为贫困学生捐款结果小学生每人捐款5元,初中生每人捐款10元,高中生每人捐款15元,大学生每人捐款20元问平均每人捐款是多少元?
21. 某剧院的观众席的座位为扇形,且按下列分式设置:
2222
排数(x )
1234…座位数(y )50535659…(1) 按照上表所示的规律,当x 每增加1时,y 如何变化?
(2) 写出座位数y 与排数x 之间的关系式;
(3) 按照上表所示的规律,某一排可能有90个座位吗?说说你的理由.
22. 如图1,已知正方形ABCD 的对角线AC 、BD 相交于点O ,E 是AC 上一点,连结EB ,过点A 作AM
BE ,垂足为M
,AM 交BD 于点
F.
(1) 求证:OE=OF
(2) 如图2,若点E 在AC 的延长线上,AM BE 于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由23. 如图,已知直线l :y=﹣ x+b 与x 轴,y 轴的交点分别为A ,B ,直线l :y= x+1与y 轴交于点C ,直线l 与直线
l 的交点为E ,且点E 的横坐标为2.
(1) 求实数b 的值和点A 的坐标;
(2) 设点D (a ,0)为x 轴上的动点,过点D 作x 轴的垂线,分别交直线l 与直线l 于点M 、N ,若以点B 、O 、M 、N
为顶点的四边形是平行四边形,求a
的值.
参考答案
1.
2.
3.4.
5.
6.
7.
8.
9.1l l
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.。

相关文档
最新文档