【七年级数学】七年级数学上有理数期末复习试卷一(浙教版有答案)
最新【浙教版】七年级上册数学第1章《有理数 》检测试卷(含答案)

【浙教版】七年级数学上册第一章测试卷(含答案)阶段性测试(一)[考查范围:1.1~1.4总分:100分]一、选择题(每小题4分,共32分)1.在数-3,-2,0,3中,大小在-1和2之间的数是( C ) A.-3 B.-2 C.0 D.32.仔细思考以下各对量:①胜二局与负三局;②气温上升3 ℃与气温下降3 ℃;③盈利5万元与支出5万元;④增加10%与减少20%.其中具有相反意义的量有( C )A.1对B.2对C.3对D.4对3.下列说法中不正确的是(B)A.0的相反数、绝对值都是0B.0是最小的整数C.0大于一切负数D.0是最小的非负数4.如图,在数轴上点A表示的数最可能是(C)第4题图A.2.5 B.-2.5C .-3.5D .-2.95.如图,四个有理数在数轴上的对应点M ,P ,N ,Q ,若点M ,N 表示的有理数互为相反数,则图中表示绝对值最小的数的点是( C )第5题图A .点MB .点NC .点PD .点Q6.绝对值小于2.5的整数有( A )A .5个B .4个C .3个D .2个7.下列各式中正确的是( C )A .-|-16|>0B .|0.2|>|-0.2|C .-47>-57D.⎪⎪⎪⎪⎪⎪-16<0 8.下表是某市四个景区今年2月份某天6时的气温,其中气温最低的景区是( C )A.潜山公园 B .陆水湖 C .隐水洞D .三湖连江二、填空题(每小题5分,共20分)9.英语竞赛成绩100分以上为优秀,老师将其中三名同学的成绩以100分为标准记为:+11,-6,0,则这三名同学的实际成绩分别是111分,94分,100分.10.小明写作业时不慎将墨水滴在数轴上,根据图中的数值,判定墨迹盖住部分的整数共有__7__个.第10题图11.对于一个数,给定条件A:该数是负整数,且大于-3;条件B:该数的绝对值等于2,那么同时满足这两个条件的数是__-2__.12.已知两个数5和-8,这两个数的相反数的和是__3__.三、解答题(共48分)13.(8分)把下列各数的序号填在相应的数集内:①1②-35③+3.2④0⑤13⑥-6.5⑦+108⑧-4⑨-6(1)正整数:{①⑦}.(2)正分数:{③⑤}.(3)负分数:{②⑥}.(4)负数:{②⑥⑧⑨}.14.(10分)如图,一只蚂蚁从原点O出发,它先向右爬了2个单位长度到达点A,再向右爬了3个单位长度到达点B,然后向左爬了9个单位长度到达点C.(1)写出A ,B ,C 三点表示的数.(2)根据C 点在数轴上的位置回答蚂蚁实际上是从原点出发,向什么方向爬行了几个单位长度?第14题图解:根据所给图形可知:(1)A 点表示2,B 点表示5,C 点表示-4.(2)蚂蚁实际上是从原点出发,向原点左侧爬行了4个单位长度. 15.(10分)计算: (1)|-10|+|+12|.(2)⎪⎪⎪⎪⎪⎪35-⎪⎪⎪⎪⎪⎪-14. (3)⎪⎪⎪⎪⎪⎪-313×|+1.5|. (4)|-20|÷⎪⎪⎪⎪⎪⎪-14-||15. 解:(1)原式=10+12=22. (2)原式=35-14=720. (3)原式=103×32=5.(4)原式=20÷14-15=80-15=65.16.(10分)如图所示,已知A ,B ,C ,D 四个点在一条没有标明原点的数轴上.(1)若点A和点C表示的数互为相反数,则原点为__B__.(2)若点B和点D表示的数互为相反数,则原点为__C__(3)若点A和点D表示的数互为相反数,则在数轴上表示出原点O的位置.第16题图解:(3)如图所示:17.(10分)在数轴上有三个点A,B,C,分别表示-3,0,2.按下列要求回答:(1)点A向右移动6个单位长度后,三个点表示的数谁最大?(2)点C向左移动3个单位长度后,这时点B表示的数比点C表示的数大多少?(3)怎样移动点A,B,C中的两个点,才能使三个点所表示的数相同?有几种办法?分别写出来.解:(1)移动后A点表示的数是3,∵3>2>0,∴A点表示的数最大.(2)C点移动后表示的数是-1,∵B点表示的数为0,∴这时点B表示的数比点C表示的数大1;(3)有3种方法,分别是①A点不动,B点向左移动3个单位长度,C点向左移动5个单位长度;②B点不动,A点向右移动3个单位长度,C点向左移动2个单位长度;③C点不动,A点向右移动5个单位长度,B点向右移动2个单位长度.阶段性测试(二)[考查范围:2.1~2.4 总分:100分]一、选择题(每小题4分,共32分)1.下列各式运算正确的是(C)A.(-3)+(+7)=-4B.(-2)+(+2)=-4C.(+6)+(-11)=-5D.(-5)+(+3)=-82.若()-(-5)=-3,则括号内的数是(B)A.-2B.-8C.2 D.83.用算式表示“比-4 ℃低6 ℃的温度”正确的是(B)A.-4+6=2 B.-4-6=-10C.-4+6=-10 D.-4-6=-24.引入相反数后,加减混合运算可以统一为加法运算,用式子表示正确的是(D)A.a+b-C=a+b+CB.a-b+C=a+b+CC.a+b-C=a+(-b)+(-C)D.a+b-C=a+b+(-C)5.下列变形,运用运算律正确的是( B ) A .2+(-1)=1+2B .3+(-2)+5=(-2)+3+5C .[6+(-3)]+5=[6+(-5)]+3D.13+(-2)+⎝ ⎛⎭⎪⎫+23=⎝ ⎛⎭⎪⎫13+23+(+2)6.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( C )第6题图①|b |<|a |; ②a -b >0; ③a +b >0; ④a -b >a +b . A .①② B .①③ C .②④D .③④7.某公司的仓库中原先有1.5万件货物,后又运出0.7万件,过了一段时间后计划往仓库中补充1.2万件,但因为某些原因,少往仓库中补充0.3万件,则现在仓库中的货物有( B )A .1.8万件B .1.7万件C .1.5万件D .1.1万件8.已知|a |=3,|b |=4,且a ,b 异号,则a -b 的值为( D ) A .1或7 B .-1或7 C .±1D .±7二、填空题(每小题5分,共20分)9.三个不同的有理数(不全同号)的和为1,请你写出一个算式__(-3)+5+(-1)(答案不唯一)__.10.若|a |=8,b 的相反数为5,则a +b 的值是__3或-13__.11a +C -b y +w -x -z .__4__.12.如图的号码是由12位数字组成的,每一位数字写在下面的方格中,若任何相邻的三个数字之和都等于12,则x 所代表的数为__5__.【解析】∵-2左边的两个空格中的数字之和为14,∴根据任何相邻的三个数字之和都等于12,可得x 右边的数字为-2,9右边的紧接着的两个空格中的两数之和为3,∴可得x 左边的空格中的数为9,故x =12-9+2=5. 三、解答题(共48分) 13.(8分)计算下列各式: (1)-114+2.75. (2)4.8-3.4-(-4.5). (3)23-18-⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-38.(4)12+⎝ ⎛⎭⎪⎫-23-⎝ ⎛⎭⎪⎫-45+⎝ ⎛⎭⎪⎫-12.解:(1)-114+2.75=-1.25+2.75=1.5.(2)4.8-3.4-(-4.5)=4.8-3.4+4.5=5.9 (3)23-18-⎝ ⎛⎭⎪⎫-13+⎝ ⎛⎭⎪⎫-38=23+13-18-38=1-12=12.(4)12+⎝ ⎛⎭⎪⎫-23-⎝ ⎛⎭⎪⎫-45+⎝ ⎛⎭⎪⎫-12=12-12-23+45=-1015+1215=215. 14.(10分)张华记录了今年雨季钱塘江一周内水位变化的情况,如下表(正号表示比前一天高,负号表示比前一天低):(1)本周星期__二____水位最高,星期__一__水位最低. (2)与上周末相比,本周日的水位是上升了还是下降了?(写出计算过程)解:(2)设上周日的水位是a 米,(+0.25)+(0.80)+(-0.40)+(+0.03)+(+0.28)+(-0.36)+(-0.04)=0.56,则这周末的水位是(a +0.56)米,∴(a +0.56)-a =0.56>0,即本周日的水位是上升了. 15.(10分)计算⎝⎛⎭⎪⎫-556+⎝⎛⎭⎪⎫-923+1734+⎝⎛⎭⎪⎫-312时,小明把整数与分数拆开,再运用加法运算律计算:解:原式=⎣⎢⎡⎦⎥⎤(-5)+(-56)+⎣⎢⎡⎦⎥⎤(-9)+⎝ ⎛⎭⎪⎫-23+⎝ ⎛⎭⎪⎫17+34+⎣⎢⎡⎦⎥⎤(-3)+⎝ ⎛⎭⎪⎫-12=[(-5)+(-9)+17+(-3)]+⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫-56+⎝ ⎛⎭⎪⎫-23+34+⎝ ⎛⎭⎪⎫-12=0+⎝ ⎛⎭⎪⎫-114=-114.阅读小明的计算过程,如果喜欢他的方法,请你仿照计算下面题目,如不喜欢,请你用自己的方法计算.(1)-114+⎝⎛⎭⎪⎫-213)+756+⎝ ⎛⎭⎪⎫-412. (2)⎝ ⎛⎭⎪⎫-2 01723+2 01634+⎝ ⎛⎭⎪⎫-2 01556+1612. 解:(1)原式=(-1-2+7-4)+⎝ ⎛⎭⎪⎫-14-13+56-12=-14. (2)原式=(-2017+2016-2015+16)+⎝⎛⎭⎪⎫-23+34-56+12=-2 000-14=-2 00014.16.(10分)一名足球守门员练习折返跑,从球门的位置出发,向前记做正数,返回记做负数,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10.(1)守门员是否回到了原来的位置? (2)守门员离开球门的位置最远是多少? (3)守门员一共走了多少路程? 解:根据题意得(1)5-3+10-8-6+12-10=0,故回到了原来的位置.(2)离开球门的位置最远是12米.(3)总路程=|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).17.(10分)已知A,B在数轴上分别对应数a,b.第17题图(1)对照数轴填写上表,并猜想:A、B两点间的距离可表示为(D)A.a+b B.a-bC.|a+b| D.|a-b|(2)数轴上|x-2|=1表示x到2的距离是1,则x的值是__1或3__.|3+5|表示的意义是__数轴上3到-5的距离__;(3)求出数轴上到7和-7的距离之和为14的所有整数的和.(4)若数轴上点C表示的数为x.①当点C对应数__-1__时,|x+1|的值最小,|x+1|的最小值是__0__.②当点C在什么位置时,|x+1|+|x-2|的值最小?并求出这个最解:(3)-7+(-6)+(-5)+(-4)+(-3)+(-2)+(-1)+0+1+2+3+4+5+6+7=0.(4)②点C 在-1与2之间(包括-1和2)时|x +1|+|x -2|的值最小,此时|x +1|+|x -2|=x +1+2-x =3.阶 段 性 测 试(三)[考查范围:2.5-2.7 总分:100分]一、选择题(每小题4分,共32分)1.下列各式正确的是( B ) A .-12=1B .-(-3)=3C.223=49D .23=62.下列各式与-9+31+28-45相等的是( B ) A .-9+45+28-31 B .31-45-9+28 C .28-9-31-45D .45-9-28+313.据报道,目前我国的神威·太湖之光超级计算机的运行速度的峰值性能为每秒1 250 000 000亿次,数字1 250 000 000用科学记数法可表示为( B )A .1.25×1010B .1.25×109C .12.5×109D .1.25×10174.计算⎝⎛⎭⎪⎫1-12+13+14×(-12),运用哪种运算律可以避免通分A.乘法分配律B.乘法结合律C.乘法交换律D.乘法结合律和交换律5.计算-1÷(-15)×115的结果是(C) A.-1 B.1C.1225D.-2256.2017绍兴研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150 000 000 000立方米,其中数字150 000 000 000用科学记数法可表示为(C) A.15×1010B.0.15×1012C.1.5×1011D.1.5×10127.若a<0,则下列结论不正确的是(B)A.a2=(-a)2B.a3=(-a)3C.a2=|a|2D.a3=-|-a|38.今年5月21日是全国第27个助残日,某特殊教育学校将同学们手工制作的手串、中国结、手提包、木雕笔筒的相关销售信息汇总如下表,其中销售率最高的是(B)手工制品手串中国结手提包木雕笔筒总数量(个)2001008070A.手串B .中国结C .手提包D .木雕笔筒二、填空题(每小题5分,共20分)9.把⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14×⎝ ⎛⎭⎪⎫-14写成乘方形式为__⎝ ⎛⎭⎪⎫-144__.10.如图是某市某12月连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是__11_℃__.第10题图11.按程序运算(如图所示):第11题图例如,输入x =5时,则运算的结果为299,若使运算结果为363,那么所有满足条件的x (x 为正整数)的值是__6、23、91__.【解析】根据题意得:(363+1)÷4=364÷4=91; (91+1)÷4=92÷4=23; (23+1)÷4=24÷4=6,则所有满足条件的x 的值为6、23、91.12.求1+2+22+23+…+22 016的值,可令S =1+2+22+23+…+22 016,则2S =2+22+23+24+…+22 017,因此2S -S =22 017-1,仿照以上推理,计算出1+5+52+53+…+52 017的值为__52 018-14__.【解析】令S =1+5+52+53+…+52 017,则5S =5+52+53+…+52 018,∴S =5S -S 4=52 018-14.故答案为52 018-14. 三、解答题(共48分) 13.(8分)计算下列各式.(1)⎝⎛⎭⎪⎫-34+338+|-0.75|+⎝⎛⎭⎪⎫-512+⎪⎪⎪⎪⎪⎪-258.(2)-13×3+6×⎝ ⎛⎭⎪⎫-13.(3)2×⎝ ⎛⎭⎪⎫-25÷⎝⎛⎭⎪⎫-114. (4)-14-(1-0.5)×13×[2-(-3)2].解:(1)原式=-34+34+338+258-512=12. (2)原式=-1+(-2)=-3. (3)原式=2×25×45=1625.(4)原式=-1-0.5×13×(2-9)=-1-0.5×13×(-7)=-1+76=16.14.(8分)已知海拔每升高1 000 m ,气温下降6 ℃,某人乘热气球旅行,在地面时测得温度是8 ℃,当热气球升空后,测得高空温度是-1 ℃.求热气球的高度.解:根据题意得:[8-(-1)]×(1000÷6)=1 500(m), 答:热气球的高度为1 500 m. 15.(8分)阅读后回答问题:计算⎝⎛⎭⎪⎫-52÷(-15)×⎝⎛⎭⎪⎫-115.解:原式=-52÷⎣⎢⎡⎦⎥⎤(-15)×⎝ ⎛⎭⎪⎫-115① =-52÷1② =-52.③(1)上述的解法是否正确?答:__不正确__. 若有错误,在哪一步?答:__①__(填序号).错误的原因: 运算顺序不对(或是同级运算中,没有按照从左到右的顺序进行) .(2)写出正确的计算过程.解:(2)原式=-52÷(-15)×⎝ ⎛⎭⎪⎫-115=-52×115×115=-190.16.(8分)如图是“温州南”动车站前广场设计方案之一,其中大广场地面长方形的长200米,宽100米,大广场“含”一个边长为80米正方形广场,正方形广场又“含”一个半径为40米的圆形中心广场,按设计,图中阴影处铺设某种广场地砖.则广场地砖需要铺多少平方米?(π取3,结果精确到千位)第16题图解:200×100-(80×80-3×402)=20 000-(6 400-4 800)=20 000-1 600=18 400≈1.8×104(平方米).答:广场地砖大约需要铺1.8×104平方米.17.(8分)某次水灾导致大约有3.6×105人无家可归.假如一顶帐篷占地100m2,可以放置40个单人床位.(1)为了安置所有无家可归的人,需要多少顶帐篷?这些帐篷大约要占多大地方?(2)若学校的操场面积为10 000 m2,可安置多少人?要安置所有无家可归的人,大约需要多少个这样的操场?解:(1)安置所有无家可归的人,需要帐篷 3.6×105÷40=9×103(顶),这些帐篷大约要占9×103×100=9×105(m2).(2)学校的操场面积为10 000 m2,可安置10 000÷100×40=4×103(人),安置所有无家可归的人,大约需要这样的操场3.6×105÷(4×103)=90(个).18.(8分)为了保护环境节约水资源,我市按照居民家庭年用水量实行阶梯水价,水价分档递增.居民用户按照以下的标准执行:第一阶梯上限180立方米,水费价格为5元/每立方米;第二阶梯为181-260立方米之间,水费价格7元/每立方米;第三阶梯为260立方米以上用水量,水价为9元/每立方米.如表所示:根据以上材料解决问题:若小明家在2017年共用水200立方米,准备1000元的水费够用吗?说明理由.解:180×5+(200-180)×7=900+140=1040(元).∵1040>1000,∴准备1000元的水费不够.阶 段 性 测 试(四)[考查范围:2.1~2.7 总分:100分]一、选择题(每小题4分,共32分)1.地球上大陆的面积约为149 000 000平方千米,用科学记数法表示为( A )A .1.49×108平方千米B .149×106平方千米C .14.9×107平方千米D .0.149×109平方千米2.使用计算器的SOD 键,将1156的结果切换成小数格式为19.166 666 67,则对应这个结果19.166 666 67,以下说法错误的是( B )A .它不是准确值B .它是一个估算结果C .它是四舍五入得到的D .它是一个近似数3.下列说法正确的是( B ) A .近似数3.6与3.60精确度相同 B .数2.995 4精确到百分位为3.00 C .近似数1.3×104精确到十分位D .近似数3.61万精确到百分位4.观察算式(-4)×17×(-25)×28,在解题过程中,能使运算变得简便的运算律是( C )A .乘法交换律B .乘法结合律C .乘法交换律、结合律D .乘法对加法的分配律5.计算12+(-18)÷(-6)-(-3)×2的结果是( C )A .7B .8C .21D .366.根据如图所示的流程图计算,若输入x 的值为-1,则输出y 的值为( C )第6题图A .-2B .-1C .7D .177.某县2016年GDP 为1 050亿元,比上年增长13.2%,提前两年实现了市委、市政府在“十一五规划”中提出“到2018年全年GDP 过千亿元”的目标.如果按此增长速度,那么我市2018年的GDP 为( A )A .1 050×(1+13.2%)2B .1 050×(1-13.2%)2C .1 050×(13.2%)2D .1 050×(1+13.2%)8.在小兰的生日宴会上,为了活跃气氛,10个同学全坐在盾牌后面进行数学游戏,男同学的盾牌前面是一个正数,女同学的盾牌前面是一个负数,这10个盾牌如图所示,则这10个同学中,有( A ) |-3|×|-2| -(-3) -12-(-2)2-7-9 ⎝ ⎛⎭⎪⎫-122+34 (-2)3-1 -3-(-2)÷⎝ ⎛⎭⎪⎫-12-|-27|(-3)2-(-15) |-9|-|-4|A .男生5人,女生5人B .男生4人,女生6人C .男生6人,女生4人D .男生7人,女生3人二、填空题(每小题5分,共20分)9.计算(-1)5+(-1)4=__0__.10.为了鼓励居民节约用水,某自来水公司采取分段计费,每月每户用水不超过10吨,每吨2.2元;超过10吨的部分,每吨加收1.3元.小明家4月份用水15吨,应交水费__39.5__元.11.党的十九大报告回顾了脱贫攻坚战的成就,2012年至2016年这五年,我国通过精准扶贫,已使5564万中国人摆脱贫困,把5564万用科学记数法表示,且精确到百万位应为__5.6×107__人.12.若|m |=3,|n |=5,且mn <0,则m +n 的值是__2或-2__.三、解答题(共48分)13.(8分)计算下列各式。
七年级数学上学期浙教版期末真题卷(含答案)

七年级上学期浙教版期末真题卷:数学1.−2021的相反数是()A.−2021B.−12021 C.12021 D.20212.浙教版初中数学课本封面长度约为26.0厘米,是精确到()A.1毫米B.1厘米C.1分米D.1米3.2020年我国武汉暴发新冠肺炎疫情,全国人民发扬“一方有难.八方支援”的精神,积极参与到武汉防疫抗疫保卫战中.据统计,参与到武汉防疫抗疫中的全国医护人员约为42000人,将42000这个数用科学记数法表示正确的是()A.42×103B. 4.2×104C.0.42×105D. 4.2×1034.下列计算正确的是()A.a 3−a 2=a B.a 6÷a 2=a 3 C.a 6−a 2=a 4 D.a 3÷a 2=a5.若4x =3y +2,则下列式子正确的是()A.8x +6y =4B.8x −4=6yC.4x +y =3y +x +2D.6x −8y =46.如图,点A 表示的实数是a ,则下列判断正确的是()A.a −1>0B.a +1<0C.a −1<0D.|a|>1期末复习与测试7.关于√8的叙述,正确的是()A.√8是有理数B.面积为4的正方形边长是√8C.√8是无限不循环小数D.在数轴上找不到可以表示√8的点8.已知点A ,B ,P 是在一条直线上的三个点,则下列等式中,一定能判断点P 是线段AB 的中点的是()A.AP =BP B.BP =12AB C.AB =2AP D.AP +BP =AB 9.如图,将一副三角板叠在一起使直角顶点重合于点O (两块三角板可以在同一平面内自由转动,且∠BOD ,∠AOC 均小于180°).下列结论一定成立的是()A.∠BOD >∠AOCB.∠BOD −∠AOC =90°C.∠BOD +∠AOC =180°D.∠BOD ≠∠AOC10.学校在一次研学活动中,有n 位师生乘坐m 辆客车,若每辆客车乘50人,则还有12人不能上车;若每辆客车乘55人,则最后一辆车空了13个座位.下列四个等式:①50m +12=55m −13;②50m −12=55m +13;③n −1250=n +1355;④n +1250=n −1355.其中正确的是()A.①② B.①③ C.③④ D.①④11.3的平方根是.12.若∠A =40°17′,则∠A 的补角的度数为.13.若2n −1=6,则4×2n −4=.期末复习与测试14.如图,点A,B在数轴上,点O为原点,OA=OB.按如图所示方法用圆规在数轴上截取BC=AB,若点C表示的数是15,则点A表示的数是.15.某快递公司在市区的收费标准为:寄一件物品,不超过1千克付费10元;超出1千克的部分加收2元/千克.乐乐在该公司寄市区内的一件物品,重x(x>1)千克,则需支付元(用含x的代数式表示).16.对于三个互不相等的有理数a,b,c,我们规定符号max{a,b,c}表示a,b,c三个数中较大的数,例如max{2,3,4}=4.按照这个规定则方程max{x,−x,0}=3x−2的解为.17.计算:(1)(−34)−(−16)+(−54)−56;(2)3√−27−8÷(−2)2.18.解方程:(1)3x+2(1−x)=−4(1−x);(2)2x−13=1−5x−26.期末复习与测试19.1号探测气球从海拔2m 处出发,以0.6m/s 的速度匀速上升.与此同时,2号探测气球从海拔8m处出发,以0.4m/s 的速度匀速上升.(1)经x 秒后,求1号、2号探测气球的海拔高度(用含x 的代数式表示).(2)出发多长时间1号探测气球与2号探测气球的海拔高度相距4m .20.在平面内有三点A ,B ,C .(1)如图,作出A ,C 两点之间的最短路线;在射线BC 上找一点D ,使线段AD 长最短.(2)若A ,B ,C 三点共线,若AB =20cm ,BC =14cm ,点E ,F 分别是线段AB ,BC 的中点,求线段EF 的长.21.如图在某居民区规划修建一个小广场(图中阴影部分).(1)用含m ,n 的代数式分别表示该广场的周长C 与面积S .(2)当m =6米,n =5米时,分别求该广场的周长和面积.期末复习与测试22.已知点A ,B ,O 在一条直线上,以点O 为端点在直线AB 的同一侧作射线OC ,OD ,OE ,使∠BOC =∠EOD =60°.(1)如图①,若OD 平分∠BOC ,求∠AOE 的度数.(2)如图②,将∠EOD 绕点O 按逆时针方向转动到某个位置时,使得OD 所在射线把∠BOC 分成两个角.①若∠COD ∶∠BOD =1∶2,求∠AOE 的度数.②若∠COD ∶∠BOD =1∶n(n 为正整数),直接用含n 的代数式表示∠AOE.23.如图,数轴上有A ,B 两点,A 在B 的左侧,表示的有理数分别为a ,b ,已知AB =12,原点O 是线段AB 上的一点,且OA =5OB .(1)求a ,b 的值.(2)若动点P ,Q 分别从A ,B 同时出发,向数轴正方向匀速运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,设运动时间为t 秒,当点P 与点Q 重合时,P ,Q 两点停止运动,当t 为何值时,2OP −OQ =3.(3)在(2)的条件下,若当点P 开始运动时,动点M 从点A 出发,以每秒3个单位长度的速度也向数轴正方向匀速运动,当点M 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后点M 就停止运动.求点M 停止时,点M在数轴上所对应的数.期末复习与测试参考答案与解析⼀、选择题1.【答案】D【解析】−2021的相反数是:2021.故选:D.2.【答案】A【解析】近似数26.0精确到十分位,即精确到1毫米.故选:A.3.【答案】B【解析】42000=4.2×104,故选:B.期末复习与测试4.【答案】D【解析】A、a3−a2无法计算,故此选项错误;B、a6÷a2=a4,故此选项错误;C、a6−a2无法计算,故此选项错误;D、a3÷a2=a,故此选项正确.故选:D.5.【答案】B【解析】A、在等式4x=3y+2的两边同时乘以2得8x=6y+4,原变形错误,故此选项不符合题意;B、在等式4x=3y+2的两边同时乘以2且减去4得8x−4=6y,原变形正确,故此选项符合题意;C、在等式4x=3y+2的两边同时加上y得4x+y=3y+y+2,原变形错误,故此选项不符合题意;D、在等式4x=3y+2的两边同时乘以2且减去6y得8x−6y=4,原变形错误,故此选项不符合题意;故选:B.6.【答案】C【解析】A、a<1,则a−1<0,故A不符合题意,B、a>−1,则a+1>0,故B不符合题意,C、a<1,则a−1<0,故C符合题意,D、−1<a<0,则|a|<1,故D不符合题意,故选:C.7.【答案】C【解析】A、√8开不尽,所以是无理数,故选项错误;B、面积为4的正方形边长是√4=2,故选项错误;C、√8是无限不循环小数,故选项正确;D、数轴上点与实数是一一对应的,故选项错误.故选:C.8.【答案】A【解析】如图所示:①∵AP=BP,∴点P是线段AB的中点;②点P在AB的延长线上时不成立,如图中P′,BP′=12AB但P′不是AB中点;③点P在BA的延长线上时不成立,如图中P″,AB=2AP″,P″不是AB中点;④∵AP+PB=AB,∴点P在线段AB上,不能说明点P是中点.故选:A.9.【答案】C【解析】因为是直角三角板,所以∠BOD=∠AOC=90°,所以∠BOD−∠AOC=0°,∠BOD+∠AOC=180°,故选:C.10.【答案】B【解析】按师生人数不变列方程得:50m+12=55m−13;按乘坐客车的辆数不变列方程得:n−1250=n+1355.∴等式①③正确.故选:B.期末复习与测试⼆、填空题11.【答案】±√3【解析】∵(±√3)2=3,∴3的平方根是±√3.故答案为:±√3.12.【答案】139°43′【解析】∵∠A=40°17′,∴∠A的补角的度数为180°−40°17′=139°43′.故答案为:139°43′.13.【答案】24【解析】等式2n−1=6的两边都乘以4,得4×2n−4=24,故答案为:24.14.【答案】−5期末复习与测试【解析】设点A表示的数是a,∵点O为原点,OA=OB,∴点B表示的数为−a,AB=−2a,∵BC=AB,∴点C表示的数是−3a,∴−3a=15,解得a=−5,即点A表示的数是−5.故答案为:−5.15.【答案】(2x+8)【解析】依题意可知,乐乐在该公司寄市区内的一件物品,重x(x>1)千克,则需支付10+2(x−1)=(2x+8)元.故答案为:(2x+8).16.【答案】x=1【解析】(1)x⩾0时,∵max{x,−x,0}=3x−2,∴x=3x−2,解得x =1,∵x =1>0,∴x =1是方程max{x ,−x ,0}=3x −2的解.(2)x <0时,∵max{x ,−x ,0}=3x −2,∴−x =3x −2,解得x =0.5,∵x =0.5>0,∴x =0.5不是方程max{x ,−x ,0}=3x −2的解.综上,可得:方程max{x ,−x ,0}=3x −2的解为x =1.故答案为:x =1.三、解答题17.【答案】(1)原式=(−34−54)+(16−56)=−2−23=−223;(2)原式=−3−8÷4=−3−2=−5.【解析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用实数运算法则分别化简得出答案.18.【答案】(1)去括号得:3x +2−2x =−4+4x ,移项得:3x −2x −4x =−4−2,合并得:−3x =−6,解得:x =2;(2)去分母得:2(2x −1)=6−(5x −2),去括号得:4x −2=6−5x +2,移项得:4x +5x =6+2+2,合并得:9x =10,解得:x =109.【解析】(1)方程去括号,移项,合并同类项,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x 系数化为1,即可求出解.19.【答案】(1)根据题意:经x 秒后,1号探测气球的海拔高度为(0.6x +2)m ;2号探测气球的海拔高度为(0.4x +8)m ;期末复习与测试(2)分两种情况:①2号探测气球比1号探测气球海拔高4米,根据题意得(0.4x +8)−(0.6x +2)=4,解得x =10;②1号探测气球比2号探测气球海拔高4米,根据题意得(0.6x +2)−(0.4x +8)=4,解得x =50.综上所述,上升了10或50秒后1号探测气球与2号探测气球的海拔高度相距4m .【解析】(1)根据:开始的高度+上升时间×上升速度,分别计算两个探测气球上升的海拔高度,并表示出x 秒后两个气球的海拔高度;(2)两个探测气球的海拔高度相距4m ,分两种情况:①2号探测气球比1号探测气球海拔高4米;②1号探测气球比2号探测气球海拔高4米;分别列出方程求解即可.20.【答案】(1)①连接AC ,线段AC 即为所求;②做射线BC ,过点A 做射线BC 的垂线,交BC 于D ,线段AD 即为所求.(2)有两种情况:①当点C 在线段AB 的延长线上时,如图1:因为E ,F 分别是AB ,BC 的中点,AB =20cm ,BC =14cm ,所以BE =12AB =12×20=10(cm),BF =12BC =12×14=7(cm),所以EF =EB +BF =10+7=17(cm);②当点C 在线段AB 上时,如图2:根据题意,如图2,BE =12AB =10cm ,BF =12BC =7cm ,所以EF =BE −BF =10−7=3(cm),综上可知,线段EF 的长度为17cm 或3cm .【解析】(1)根据两点之间线段最短,点到直线的距离等概念,利用直尺即可作出图形;(2)根据线段的定义即可求解.21.【答案】(1)由图形可得:期末复习与测试C =2m ×2+2n ×2+2n =4m +6n ;S =2n ×2m −(2m −m −0.4m)n=4mn −0.6mn=3.4mn ;(2)当m =6米,n =5米时,C =4m +6n=4×6+6×5=24+30=54(米);S =3.4mn=3.4×6×5=102(平方米).故该广场的周长是54米,面积是102平方米.【解析】(1)观察图形,根据周长的定义计算即可;广场的面积S 等于长为2m ,宽为2m 的长方形的面积减去长为n ,宽为(2m −m −0.4m)的长方形的面积;(3)将m =6米,n =5米分别代入(1)中所得的代数式,计算即可.22.【答案】(1)∵OD 平分∠BOC ,∠BOC =∠EOD =60°,∴∠BOD =30°,∠BOE =60°+30°=90°,∴∠AOE =180°−90°=90°.(2)①∵∠BOC =60°,∠COD ∶∠BOD =1∶2,∴∠BOD =40°,∴∠BOE =60°+40°=100°,∴∠AOE =180°−100°=80°.②如图:∵∠BOC =60°,∠COD ∶∠BOD =1∶n ,∴∠BOD =60°n n +1,∴∠BOE =60°+60°n n +1,∴∠AOE =180°−(60°+60°n n +1)=120°−60°n n +1.【解析】(1)根据角平分线可得∠BOD =30°,∠BOE =90°,进而可得∠AOE 的度数;(2)①根据∠BOC =60°和∠COD ∶∠BOD =1∶2可得∠BOD =40°,∠BOE =100°,进而可得∠AOE 的度数;②根据∠BOC =60°和∠COD ∶∠BOD =1∶n 可得∠BOD =60°+60°n n +1,再由①的思路可得答案.期末复习与测试23.【答案】(1)∵AB =12,AO =5OB ,∴AO =10,OB =2,∴A 点所表示的数为−10,B 点所表示的数为2,∴a =−10,b =2.故答案为:−10;2;(2)当0<t <5时,如图1,AP =2t ,OP =10−2t ,BQ =t ,OQ =2+t ,∵2OP −OQ =3,∴2(10−2t)−(2+t)=3,解得t =3,当点P 与点Q 重合时,如图2,2t =12+t ,解得t =12,当5<t <12时,如图3,OP =2t −10,OQ =2+t ,则2(2t −10)−(2+t)=3,解得t =813,综上所述,当t 为3或813时,2OP −OQ =3;(3)设点M 运动的时间为t 秒,点M 追上点Q ,3(t −103)=2+t ,解得t =6,∴OP =2(t −5)=2,此时OM =3(t −103)=8;点P 与点M 相遇时,2t +3t =6,解得t =1.2,此时OM =8−3×1.2=4.4.故点M 停止时,点M 在数轴上所对应的数是4.4.【解析】(1)由AO =5OB 可知,将12平均分成6份,AO 占5份为10,OB 占一份为2,由图可知,A 在原点的左边,B 在原点的右边,从而得出结论;期末复习与测试(2)分两种情况:点P在原点的左侧和右侧时,OP表示的代数式不同,OQ=2+t,分别代入2OP−OQ=3列式即可求出t的值;(3)设点M运动的时间为t秒,分两种情况:点M追上点Q;点P与点M相遇时;列出方程即可解决问题.期末复习与测试。
新浙教版七年级数学上册期末综合练习及答案

七年级数学期末复习一.填空题(共4小题)1.若|a|+|b|=2,则满足条件的整数a、b的值有组.2.当x=时,|x|﹣8取得最小值,这个最小值是.3.若|x﹣1|+|y+2|+|z﹣3|=0,则(x﹣2)(y﹣3)(z﹣4)=.4.已知|2a+4|+|3﹣b|=0,则a+b=.二.解答题(共31小题)5.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.6.有理数x,y在数轴上对应点如图所示:(1)在数轴上表示﹣x,|y|;(2)试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接,(3)化简:|x+y|﹣|y﹣x|+|y|.7.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c0,c﹣b0,b+a0,abc0;(2)化简:|a+c|+|c﹣b|﹣|b+a|.8.式子|m﹣3|+6的值随着m的变化而变化,当m=时,|m﹣3|+6有最小值,最小值是.9.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.10.若|x+y﹣3|与|2x﹣4y﹣144|互为相反数,计算的值.11.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.12.已知|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数.求:3(x+y)﹣a ﹣2b+(3cd)的值.(cd表示c乘d)13.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.15.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.16.若|a+2|与(b﹣2017)2互为相反数,且c的绝对值为1,求a﹣abc+c b的值.17.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b =a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣)⊗(﹣)]﹣(34⊗43)÷(﹣68).18.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.19.如果m+5的平方根是±3,n﹣2的平方根是±5,求m+n的值.20.已知a为的整数部分,b为的小数部分求:(1)a,b的值;(2)(a+b)2的算术平方根.21.回答下列问题:(1)数轴上表示2和5的两点之间的距离是,数轴上表示﹣2和﹣5的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B的距离是,|AB|=2,x=;(3)当代数式|x+1|+|x﹣2|取最小值时,相应x的取值范围是.22.已知多项式(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)的值与x无关,试求2a3﹣[a2﹣2(a+1)+a]﹣2的值.23.有这样一道题:计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成了“x=﹣”.但他计算的结果也是正确的,请你通过计算说明原因.24.已知A=3a2﹣4ab,B=a2+2ab.(Ⅰ)求A﹣2B;(Ⅱ)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.25.先化简,后求值,(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2,其中a=﹣2,b=1;(2)若(2b﹣1)2+|a+2|=0时,求2ab﹣2b的值.26.元旦期间,某商场打出促销广告(如下表)小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?27.期末考试快到了,小天同学需要复印一些复习资料.某誊印社的报价是:复印不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元.某图书馆复印同样大小文件,不论复印多少页,每页收费0.1元.请问小天应该选择到哪里复印复习资料?28.襄阳市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有x名学生,则用式子表示两种优惠方案各需要多少元?(2)当学生人数是多少时,两种方案费用一样多?(3)当学生人数分别是40人,100人,你打算采用哪种方案优惠?为什么?29.已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.(n为(1)中求出的数值)30.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角:,∠EOB的邻补角:(2)若∠AOC=70°且∠BOE:∠EOD=2:3,求∠AOE的度数.32.如图所示,AB:BC=3:4,M是AB的中点,BC=2CD,N是BD的中点,如果AB=6cm,求线段MN的长度.33.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C 在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=,DM=;(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.34.如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.35.如图,将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=35°,求∠ACE、∠DCB、∠ACB的度数;②若∠ACB=140°,求∠DCE的度数;③猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.一.填空题(共4小题)1.若|a|+|b|=2,则满足条件的整数a、b的值有8组.【解答】解:∵|a|+|b|=2,∴|a|=0,|b|=2或|a|=1|b|=1,或|a|=2,|b|=0,∴a=0,b=2;a=0,b=﹣2;a=1,b=1;a=1,b=﹣1;a=﹣1,b=1;a =﹣1,b=﹣1;a=﹣2,b=0;a=2,b=0,2.当x=0时,|x|﹣8取得最小值,这个最小值是﹣8.解∵|x|≥0,∴当x=0时,|x|取最小值是0,∴当x=0时,|x|﹣8取最小值是﹣8,3.若|x﹣1|+|y+2|+|z﹣3|=0,则(x﹣2)(y﹣3)(z﹣4)=﹣5.解:∵|x﹣1|+|y+2|+|z﹣3|=0,∴x﹣1=0,y+2=0,z﹣3=0,解得,x=1,y=﹣2,z=3,则(x﹣2)(y﹣3)(z﹣4)=(1﹣2)(﹣2﹣3)(3﹣4)=﹣5,4.已知|2a+4|+|3﹣b|=0,则a+b=1.【解答】解:由题意得:2a+4=0,3﹣b=0,解得:a=﹣2,b=3,则a+b=1,二.解答题(共31小题)5.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是﹣4;(2)点B以每秒2个单位长度的速度沿数轴向右运动2秒后点B表示数0;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.【解答】解:(1)点B表示的数是﹣4;(2)2秒后点B表示的数是﹣4+2×2=0;(3)①当点O是线段AB的中点时,OB=OA,4﹣3t=2+t,解得t=0.5;②当点B是线段OA的中点时,OA=2OB,2+t=2(3t﹣4),解得t=2;③当点A是线段OB的中点时,OB=2 OA,3t﹣4=2(2+t),解得t=8.综上所述,符合条件的t的值是0.5,2或8.6.有理数x,y在数轴上对应点如图所示:(1)在数轴上表示﹣x,|y|;(2)试把x,y,0,﹣x,|y|这五个数从小到大用“<”号连接,(3)化简:|x+y|﹣|y﹣x|+|y|.解:(1)如图,(2)根据图象,﹣x<y<0<|y|<x;(3)根据图象,x>0,y<0,且|x|>|y|,∴x+y>0,y﹣x<0,∴|x+y|﹣|y﹣x|+|y|=x+y+y﹣x﹣y=y.7.已知有理数a,b,c在数轴上的位置如图所示,(1)用<,>,=填空:a+c<0,c﹣b>0,b+a<0,abc>0;(2)化简:|a+c|+|c﹣b|﹣|b+a|.【解答】解:(1)根据数轴可知:a<b<0<c,且|c|<|b|<|a|,∴a+c<0,c﹣b>0,b+a<0,abc>0,(2)原式=﹣(a+c)+(c﹣b)+(b+a)=﹣a﹣c+c﹣b+b+a=0.8.式子|m﹣3|+6的值随着m的变化而变化,当m=3时,|m﹣3|+6有最小值,最小值是6.解:式子|m﹣3|+6的值随着m的变化而变化,当m=3时,|m﹣3|+6有最小值,最小值是:6.9.已知实数a,b满足|a|=b,|ab|+ab=0,化简|a|+|﹣2b|﹣|3b﹣2a|.【解答】解:∵|a|=b,|a|≥0,∴b≥0,又∵|ab|+ab=0,∴|ab|=﹣ab,∵|ab|≥0,∴﹣ab≥0,∴ab≤0,即a≤0,∴a与b互为相反数,即b=﹣a.∴﹣2b≤0,3b﹣2a≥0,∴|a|+|﹣2b|﹣|3b﹣2a|=﹣a+2b﹣(3b﹣2a)=a﹣b=﹣2b或2a.10.若|x+y﹣3|与|2x﹣4y﹣144|互为相反数,计算的值.【解答】解:∵|x+y﹣3|与|2x﹣4y﹣144|互为相反数,∴|x+y﹣3|+|2x﹣4y﹣144|=0,∴x+y﹣3=0,2x﹣4y﹣144=0,解得x=,y=﹣,∴==.11.若“三角”表示运算:a﹣b+c,若“方框”,表示运算:x﹣y+z+w,求的值,列出算式并计算结果.解:原式=(﹣+)×(﹣2﹣1.5+1.5﹣6)=(﹣)×(﹣8)=.12.已知|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数.求:3(x+y)﹣a ﹣2b+(3cd)的值.(cd表示c乘d)解:∵|a+3|+|b﹣5|=0,x,y互为相反数,c与d互为倒数,∴a=﹣3,b=5,x+y=0,cd=1,则原式=0+3﹣10+3=﹣4.13.已知a、b互为相反数,m、n互为倒数(m、n都不等于±1),x的绝对值为2,求的值.解:根据题意得:a+b=0,mn=1,x=2或﹣2,则原式=﹣2+0﹣4=﹣6.14.已知三个有理数a,b,c,其积是负数,其和是正数,当时,求代数式x2017﹣2x+2的值.解:∵三个有理数a、b、c,其积是负数,∴a,b,c均≠0,且a,b,c全为负数或一负两正,∵其和是正数,∴a,b,c一负两正,∴=1+1﹣1=1时,代数式x2017﹣2x+2=12017﹣2×1+2=1.15.已知a,b是有理数,且a,b异号,试比较|a+b|,|a﹣b|,|a|+|b|的大小关系.解:∵有理数a,b异号,如图,假设a>0>b,∴当BO<AO时,|a+b|<AO;当BO≥AO时,|a+b|<BO,而|a﹣b|=AB>AO或BO,∴|a+b|<|a﹣b|,又∵|a|+|b|=AO+BO=AB,∴|a﹣b|=|a|+|b|,∴|a+b|<|a﹣b|=|a|+|b|.当a<0<b时,同理可得|a+b|<|a﹣b|=|a|+|b|.16.若|a+2|与(b﹣2017)2互为相反数,且c的绝对值为1,求a﹣abc+c b的值.解:∵|a+2|与(b﹣2017)2互为相反数,且c的绝对值为1,∴a+2=0,b﹣2017=0,c=±1,∴a=﹣2,b=2017,当c=1时,a﹣abc+c b=(﹣2)﹣(﹣2)×2017×1+12017=(﹣2)+4034+1=4033,当c=﹣1时,a﹣abc+c b=(﹣2)﹣(﹣2)×2017×(﹣1)+(﹣1)2017=(﹣2)﹣4034+(﹣1)=﹣4037.17.我们规定运算符号⊗的意义是:当a>b时,a⊗b=a﹣b;当a≤b时,a⊗b =a+b,其他运算符号意义不变,按上述规定,请计算:﹣14+5×[(﹣)⊗(﹣)]﹣(34⊗43)÷(﹣68).解:根据题中的新定义得:原式=﹣1+5×(﹣﹣)﹣(81﹣64)÷(﹣68)=﹣1﹣+=﹣5.18.已知2m﹣3与4m﹣5是一个正数的平方根,求这个正数.解:∵2m﹣3与4m﹣5是一个正数的平方根,∴2m﹣3=﹣(4m﹣5),m=∴这个正数为(2m﹣3)2=(2×﹣3)2=,或2m﹣3=4m﹣5,解得m=1,故这个正数是或1.19.如果m+5的平方根是±3,n﹣2的平方根是±5,求m+n的值.解:根据题意知m+5=9、n﹣2=25,则m=4、n=27,所以m+n=31.20.已知a为的整数部分,b为的小数部分求:(1)a,b的值;(2)(a+b)2的算术平方根.【解答】解:(1)∵9<11<16,∴3<<4,∴a=3;∵9<13<16,∴3<<4,∴b=﹣3;(2)∵当a=3,b=﹣3时,(a+b)2=(3+﹣3)2=13,∴(a+b)的算术平方根是.21.回答下列问题:(1)数轴上表示2和5的两点之间的距离是3,数轴上表示﹣2和﹣5的两点之间的距离是3,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x﹣(﹣1)|,如果|AB|=2,那么x=1或﹣3;(3)当代数式|x+1|+|x﹣2|取最小值时,相应x的取值范围是﹣1≤x≤2.【解答】解:(1)|2﹣5|=|﹣3|=3;|﹣2﹣(﹣5)|=|﹣2+5|=3;|1﹣(﹣3)|=|4|=4;(2)|x﹣(﹣1)|=|x+1|,由|x+1|=2,得x+1=2或x+1=﹣2,所以x=1或x=﹣3;(3)若|x+1|+|x﹣2|取最小值,那么表示x的点在﹣1和2之间的线段上,所以﹣1≤x≤2.22.已知多项式(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)的值与x无关,试求2a3﹣[a2﹣2(a+1)+a]﹣2的值.解:(2ax2+3x﹣1)﹣(3x﹣2x2﹣3)=2ax2+3x﹣1﹣3x+2x2+3=(2a+2)x2+2,由结果与x无关,得到2a+2=0,即a=﹣1,∴原式=2a3﹣a2+2a+2﹣a﹣2=2a3﹣a2+a=﹣2﹣1﹣1=﹣4.23.有这样一道题:计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成了“x=﹣”.但他计算的结果也是正确的,请你通过计算说明原因.解:原式=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3,24.已知A=3a2﹣4ab,B=a2+2ab.(Ⅰ)求A﹣2B;(Ⅱ)若|3a+1|+(2﹣3b)2=0,求A﹣2B的值.解:(Ⅰ)A﹣2B=3a2﹣4ab﹣2(a2+2ab)=3a2﹣4ab﹣2a2﹣4ab=a2﹣8ab.(Ⅱ)∵|3a+1|+(2﹣3b)2=0,又|3a+1|≥0,(2﹣3b)2≥0,∴a=﹣,b=,∴原式=+=25.先化简,后求值,(1)化简:2(a2b+ab2)﹣(2ab2﹣1+a2b)﹣2,其中a=﹣2,b=1;(2)若(2b﹣1)2+|a+2|=0时,求2ab﹣2b的值.解:(1)2a2b+2ab2﹣2ab2+1﹣a2b﹣2=a2b﹣1,当a=﹣2,b=1时,原式=4﹣1=3;(2)∵(2b﹣1)2+|a+2|=0,∴2b﹣1=0,a+2=0,即a=﹣2,b=,则2ab﹣2b=﹣2﹣1=﹣3.26.元旦期间,某商场打出促销广告(如下表)小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是134元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?解:(1)∵第一次付了134元<200×90%=180元,∴第一次购物不享受优惠,即所购物品的原价为134元;故答案为134.(2)∵第二次付了490元>500×90%=450元,∴第二次购物享受了500元按9折优惠,超过部分8折优惠.设小明妈妈第二次所购物品的原价为x元,根据题意得:90%×500+(x﹣500)×80%=490,得x=550.答:小明妈妈第二次所购物品的原价分别为550元.(3)500×90%+(550+134﹣500)×80%=597.2(元),又134+490=624(元),624﹣597.2=26.8(元)她将这两次购物合为一次购买节省26.8元.27.期末考试快到了,小天同学需要复印一些复习资料.某誊印社的报价是:复印不超过20时,每页收费0.12元;复印页数超过20时,超过部分每页收费降为0.09元.某图书馆复印同样大小文件,不论复印多少页,每页收费0.1元.请问小天应该选择到哪里复印复习资料?【解答】解:设当复印x(x>20)页时,两处收费一样,根据题意,得:20×0.12+0.09×(x﹣20)=0.1x,解得:x=60.①当复印少于20页时,图书馆合算;②当20<x<60时,取x=30,则誊印社收费20×0.12+0.09×10=3.3元,图书馆收费0.1×30=3元,所以图书馆合算;③当x>60时,取x=100,则誊印社收费20×0.12+0.09×80=9.6元,图书馆收费0.1×100=10元,所以誊印社合算.综上所述,当复印页数少于60页时,去图书馆合算;当复印页数等于60页时,两处一样合算;当复印页数多于60页时,去誊印社合算.28.襄阳市某校七年级有5名教师带学生去公园秋游,公园的门票为每人30元,现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都按7.5折收费.(1)若有x名学生,则用式子表示两种优惠方案各需要多少元?(2)当学生人数是多少时,两种方案费用一样多?(3)当学生人数分别是40人,100人,你打算采用哪种方案优惠?为什么?【解答】解:(1)甲:0.8•30x=24x(元);乙:(x+5)•0.75×30=22.5x+112.5(2)依题意得:24x=22.5x+112.5,解得x=75.答:当学生人数是75人时,两种方案费用一样多;(3)m=40时,甲方案付费为24×40=960元,乙方案付费22.5×45=1012.5元,所以采用甲方案优惠;m=100时,甲方案付费为24×100=2400元,乙方案付费22.5×105=2362.5元,所以采用乙方案优惠.29.已知当x=﹣1时,代数式2mx3﹣3mx+6的值为7.(1)若关于y的方程2my+n=11﹣ny﹣m的解为y=2,求n的值;(2)若规定[a]表示不超过a的最大整数,例如[4.3]=4,请在此规定下求[m﹣n]的值.(n为(1)中求出的数值)解:(1)把x=﹣1代入得:﹣2m+3m+6=7,解得:m=1,把m=1,y=2代入得:4+n=11﹣n×2﹣1,解得:n=2;(2)把m=1,n=2代入得:m﹣n=1﹣×2=1﹣3.5=﹣2.5,则[m﹣n]=[﹣2.5]=﹣3.30.如图,直线AB、CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.【解答】解:(1)OF与OD的位置关系:互相垂直,理由:∵OF平分∠AOE,∴∠AOF=∠FOE,∵∠DOE=∠BOD,∴∠AOF+∠BOD=∠FOE+∠DOE=×180°=90°,∴OF与OD的位置关系:互相垂直;(2)∵∠AOC:∠AOD=1:5,∴∠AOC=×180°=30°,∴∠BOD=∠EOD=30°,∴∠AOE=120°,∴∠EOF=∠AOE=60°.31.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分.(1)直接写出图中∠AOC的对顶角:∠BOD,∠EOB的邻补角:∠AOE (2)若∠AOC=70°且∠BOE:∠EOD=2:3,求∠AOE的度数.【解答】解:(1)∠AOC的对顶角是∠BOD,∠EOB的邻补角是∠AOE,故答案为:∠BOD,∠AOE;(2)∵∠AOC=70°,∴∠BOD=∠AOC=70°,∵∠BOE:∠EOD=2:3,∴∠BOE=×70°=28°,∴∠AOE=180°﹣28°=152°.∴∠AOE的度数为152°.32.如图所示,AB:BC=3:4,M是AB的中点,BC=2CD,N是BD的中点,如果AB=6cm,求线段MN的长度.【解答】解:∵AB:BC=3:4、AB=6cm,∴BC=8cm,∵BC=2CD、M是AB的中点,∴CD=BC=4cm,BM=AB=3cm,∴BD=BC+CD=12cm,∵N是BD的中点,∴BN=BD=6cm,则MN=BM+BN=9cm.33.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C 在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=2,DM=4;(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=4(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【解答】解:(1)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM=AB=4,故答案为:4;(4)①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴==;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴==1;综上所述=或1.34.如图,AB、CD交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.【解答】解:∵OE平分∠BOD,∴∠1=∠2,∵∠3:∠1=8:1,∴∠3=8∠1.∵∠1+∠2+∠3=180°,∴∠1+∠1+8∠1=180°,解得∠1=18°,∴∠4=∠1+∠2=36°.35.如图,将两块直角三角尺的直角顶点C叠放在一起.①若∠DCE=35°,求∠ACE、∠DCB、∠ACB的度数;②若∠ACB=140°,求∠DCE的度数;③猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.【解答】解:①∵∠ACD=90°,∠BCE=90°,∠DCE=35°,∴∠ACE=55°,∠DCE=55°,∠ACB=125°;②∵∠ACB=140°,∠ACD=90°∴∠DCB=140°﹣90°=50°∵∠ECB=90°∴∠DCE=90°﹣50°=40°.③猜想得∠ACB+∠DCE=180°(或∠ACB与∠DCE互补)理由:∵∠ECB=90°,∠ACD=90°∴∠ACB=∠ACD+∠DCB=90°+∠DCB ∠DCE=∠ECB﹣∠DCB=90°﹣∠DCB∴∠ACB+∠DCE=180°.。
2022-2023学年浙江七年级上学期数学重难题型精炼第1章 有理数 章末检测卷(含详解)

第1章 有理数 章末检测卷(浙教版)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,考试时间120分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·山西·七年级期中)在世界数学史首次正式引入负数的中国古代数学著作是( ) A .《孙子算经》 B .《九章算术》 C .《算法统宗》 D .《周髀算经》 2.(2022·湖北武汉·中考真题)2022的相反数是( ) A .12022B .12022-C .−2022D .20223.(2022·山东菏泽·三模)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,用正、负数来表示只有相反意义的量.一次数学测试,以80分为基准简记,90分记作+10分,那么70分应记作( ) A .+10分B .0分C .-10分D .-20分4.(2022·贵州遵义·七年级期末)一种小吃包装袋上标注着“净含量:50g 1g ±”,则下列小吃净含量合格的是( ) A .52B .48C .50.5D .51.55.(2022·浙江宁波·七年级期末)a b c 、、三个数在数轴上的位置如图所示,则下列各式中正确的个数有( )(1) 0abc >;(2)c a b ->>-;(3) 11b a>;(4)c c =- A .4 个B .3 个C .2 个D .1 个6.(2022·广西贺州·七年级期末)下列说法正确的是( ) A .符号相反的两个数叫做相反数 B .只有正数的绝对值是它本身C .两个数的和一定大于这两个数中的任意一个D .最大的负整数是-17.(2022·广西·靖西市教学研究室七年级期中)下列各组数中,比较大小正确的是( )A .|﹣23|<|﹣12| B .﹣|﹣3411|=﹣(﹣3411) C .﹣|﹣8|>7 D .﹣56<﹣458.(2022·四川遂宁·七年级期末)方程32x -=的解是( ) A .5x = B .1x = C .15x x ==或 D .15x x =-=或 9.(2022·广西南宁·七年级期中)下列说法错误的是( )A .数轴上表示2-的点与表示2+的点的距离是4B .数轴上原点表示的数是0C .所有的有理数都可以用数轴上的点表示出来D .最大的负数是1-10.(2022·浙江·七年级课时练习)如图,数轴上4个点表示的数分别为a 、b 、c 、d .若|a ﹣d |=10,|a ﹣b |=6,|b ﹣d |=2|b ﹣c |,则|c ﹣d |=( )A .1B .1.5C .1.5D .211.(2022·浙江·七年级月考)如图,已知A ,B (B 在A 的左侧)是数轴上的两点,点A 对应的数为8,且AB =12,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为t (t >0)秒,则下列结论中正确的有( )①B 对应的数是-4;①点P 到达点B 时,t =6;①BP =2时,t =5;①在点P 的运动过程中,线段MN 的长度不变 A .1个B .2个C .3个D .4个12.(2022·重庆忠县·九年级期中)距离,是数学、天文学、物理学研究的基本问题,唯有对宇宙距离进行测量,人类才能掌握世界的尺度.若点A 、B 在数轴上代表的数为a ﹑b ,则A 、B 两点之间的距离AB a b ,则下列说法:①数轴上表示x 和1-的两点之间的距离是1x -﹔①若3AB =,点B 表示的数是2,则点A 表示的数是1; ①当3x =时,代数式135x x x ++-+-有最小值为6;①当代数式22x x ++-取最小值时,x 的取值范围是22x -≤≤;①点A ,B ,C 在数轴上代表的数分别为a ,b ,c ,若a b c a b c -+-=-﹐则点A 位于B ,C 两点之间. 其中说法正确的是( ) A .①①①B .①①①C .①①D .①①①二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)13.(2022·河南鹤壁·七年级期末)相反数等于它本身的数是__________,绝对值等于它本身的数是__________.14.(2022·湖南·衡阳市成章实验中学七年级期末)下列各数25,﹣6,25,0,3.14,20%中,其中分数有 个。
浙江省杭州市2023—2024学年数学七年级上学期期末复习卷(含答案)

浙教版数学七年级上学期期末复习卷(适用杭州)考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间120分钟。
2.答题前,必须在答题卡上填写校名,班级,姓名,座位号。
3.不允许使用计算器进行计算,凡题目中没有要求取近似值的,结果应保留根号或π一、选择题(本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.将4 000 000 000用科学记数法表示为( )A.0.4×109B.0.4×1010C.4×109D.4×10102.一天早晨的气温为-3℃,中午上升了7℃,半夜又下降了8℃,则半夜的气温是( )A.-5℃B.-4℃C.4℃D.-16℃3.已知a,b两数在数轴上对应的点如图所示,在下列结论中,①b>a;②a+b>0;③a﹣b>0;④ab<0;⑤ba>0;正确的是( )A.①②⑤B.③④C.③⑤D.②④4.若|a+9|+(b﹣8)2=0,则(a+b)2023的值为( )A.﹣1B.0C.1D.25.下列说法正确的是( )A.9的平方根是3B.-25的平方根是-5C.任何一个非负数的平方根都是非负数D.一个正数的平方根有2个,它们互为相反数6.某学校组织初一n名学生秋游,有4名教师带队,租用55座的大客车若干辆,共有3个空座位,那么用n的代数式表示租用大客车的辆数为( )A.n+155B.n+755C.n+455+3D.n+455―37.如图,数轴上的点M,N表示的数分别是m,n,点M在表示0,1的两点(不包括这两点)之间移动,点N在表示-1,-2的两点(不包括这两点)之间移动,则下列判断正确的是( )A.|3m+n|的值一定小于2B.1m―n的值可能比2020大C.m2―2n的值一定小于0D.1m+1n的值不可能比2020大8.若x+y=2,z―y=―3,则x+z的值等于( )A.5B.1C.-1D.-59.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.若设这个班有x名学生,可列出的方程为( )A.3x+20=4x―25B.3(x+20)=4(x―25)C.3x―25=4x+20D.3x―20=4x+2510.如果线段AB=3cm,BC=1cm,那么A、C两点的距离d的长度为( )A.4cmB.2cmC.4cm或2cmD.小于或等于4cm,且大于或等于2cm二、填空题(本大题有6个小题,每小题4分,共24分)11.绝对值小于4的所有整数的和为 .12.数轴上的A点与表示―3的点距离4个单位长度,则A点表示的数为 .13.定义新运算“&”如下:对于任意的实数a,b,若a≥b,则a&b=a―b;若a<b,则a&b=3a―b.下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上)①当a≥b时,a&b≥0;②2013&2021的值是无理数;③当a<b时,a&b<0;④2&1+1&2=0.14.若2x m-1y2与-3x6y2n是同类项,则m+n的值为 .15.如图,已知OA⊥OB,点O为垂足,OC是∠AOB内任意一条射线,OB,OD分别平分∠COD,∠BOE,下列结论:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC与∠BOD互余,其中正确的有 (只填写正确结论的序号).16.茶百道生产的一种由A、B两种原料按一定比例配制而成的奶茶,其中A原料成本价为10元/千克,B原料成本价为15元/千克,按现行价格销售每千克奶茶可获得4.8元的利润.由于物价上涨,A原料上涨20%,B原料上涨10%,配制后的总成本增加320.茶百道为了拓展市场,打算再投入现总成本的10%做广告宣传,使得销售成本再次增加,如果要保证每千克的利润不变,则此时这种奶茶每千克的售价与原售价之差为 元三、解答题(本大题有7小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.在数轴上表示下列各数:﹣2.5,3 1,-(-2),|-5|,并用“>”将它们连接起来.218.“低碳生活”从现在做起,从我做起,据测算,1公顷落叶阔叶林每年可吸收二氧化碳14吨,如果每台空调制冷温度在国家提倡的26摄氏度基础上调到27摄氏度,相应每年减排二氧化碳21千克.某市仅此项就大约减排相当于18000公顷落叶阔叶林全年吸收的二氧化碳,若每个家庭按2台空调计算,该市约有多少万户家庭?19.有一些分别标有7,13,19,25…的卡片,后一张卡片上的数比前一张卡片上的数大6,小彬拿了相邻的3张卡片,且这些卡片上的数之和为345.(1)猜猜小彬拿的3张卡片上的数各是多少?(2)小彬能否拿到相邻的3张卡片,使得3张卡片上的数字之和等于150?如果能拿到,请求出这3张卡片上的数各是多少,如果拿不到,请说明理由.20.工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个.(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?21.下面是某平台2023年国庆期间河北热门景点前两名,在某个时间段内,共售出a张北戴河门票和b张避暑山庄门票.(1)在该时间段内,该平台这两种门票共售出多少元?(2)当a=3×104,b=8×103时,该平台这两种门票共售出多少元?(用科学记数法表示)22.甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费.设小红在同一商场累计购物x元,其中x>100.(1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?23.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c―10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P运动到A、B之间,且到A点距离是到B点距离的2倍,求此时点P的对应的数;若运动到B、C之间时,是否存在点P,使它到A点距离是到B点距离的2倍,如果存在,请求出它所对应的数,如果不存在,请说明理由;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向终点C点运动,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.浙教版数学七年级上学期期末复习卷(适用杭州)参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】A5.【答案】D6.【答案】B7.【答案】A8.【答案】C9.【答案】A10.【答案】D11.【答案】012.【答案】―7或113.【答案】①③④14.【答案】815.【答案】①②④16.【答案】3.1817.【答案】解:-(-2)=2,|-5|=5,如图所示:>-(-2)>﹣2.5.用“>”将它们连接起来:|-5|>3 1218.【答案】解:由题意得:14×18000×1000÷(2×21)=14×18000×1000÷42=252000000÷42=6000000=600(万户).答:该市约有600万户家庭.19.【答案】(1)解:设小彬拿到的三张卡片为:x﹣6,x,x+6,(x﹣6)+x+(x+6)=345,解得,x=115,∴x﹣6=109,x+6=121,答:小彬拿到的三张卡片是109,115,121;(2)解:小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150,理由:假设小彬拿到的三张卡片为:a﹣6,a,a+6,(a﹣6)+a+(a+6)=150,解得,a=50,由题目中的数字可知,卡片上的数字都是奇数,而50是偶数,故小彬不能拿到相邻的3张卡片,使得这三张卡片上的数之和等于150.20.【答案】(1)设该车间有男生x人,则女生人数是人,则.解得则.答:该车间有男生18人,则女生人数是26人.(2)设应分配y名工人生产螺丝,名工人生产螺母,由题意得:解得:,答:分配24名工人生产螺丝,20名工人生产螺母.21.【答案】(1)解:100a+45b(2)解:当a=3×104,b=8×103时,代入可知:100×3×104+45×8×103=3×106+3.6×105=3. 36×106(元)22.【答案】(1)271;0.9x+10;278;0.95x+2.5(2)解:根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同。
新浙教版七年级上册数学第二章《有理数的运算》知识点及典型例题

期末复习二有理数的运算要求知识与方法了解有理数加、减、乘、除、乘方的运算法则倒数的概念,会求一个数的倒数乘方、幂、指数、底数的概念计算器的简单使用理解有理数的混合运算的运算顺序,能进行有理数的混合运算用科学记数法表示较大的数说出一个由四舍五入法得到的有理数的精确位数及根据精确度取近似值运用合理运用运算律简化有理数混合运算的过程利用有理数的混合运算解决简单的实际问题一、必备知识:1.若两个有理数的乘积为____________,就称这两个有理数____________.2.有理数的各种运算律:加法交换律、加法结合律、乘法交换律、乘法结合律、分配律.3.有理数混合运算的法则是:先算____________,再算____________,最后算____________.如有括号,先进行____________运算.4.把一个数表示成____________与____________的幂相乘的形式叫做科学记数法.二、防范点:1.倒数不要和相反数混淆,倒数符号不变,相反数要变号.2.乘方运算不要和乘法运算混淆,如23和32不相等.3.有理数混合运算中注意运算顺序,特别是乘、除同级运算时,注意从左到右的运算顺序.4.求用科学记数法表示的数及带单位的有理数的精确位数时要注意单位及10的幂的位数.倒数的概念例1 (1)2017的倒数为( )A .-2017B .2017C .-12017D .12017(2)已知a 与b 互为倒数,m 与n 互为相反数,则12ab -9m -9n 的值是________. 【反思】互为倒数的两个数乘积为1,注意互为倒数的两数符号是相同的,不要与相反数混淆起来.有理数运算法则及运算顺序例2 下列计算错在哪里?应如何改正?(1)74-22÷70=70÷70=1;(2)(-112)2-23=114-6=-434; (3)23-6÷3×13=6-6÷1=0.【反思】乘方运算是初中阶段新学的一种运算,要弄清楚它的法则,不要和乘法混淆起来;运算顺序也是学生的一个易错点,特别是乘、除同级运算过程中要遵循从左到右的运算顺序.有理数的混合运算例3 计算:(1)(-2)2+3×(-2)-1÷(14)2; (2)-32-[-(12)2-116]×(-2)÷(-1)2017.【反思】有理数的混合运算要注意运算的顺序不要搞错,-32的求值也是学生的一个易错点.有理数的简便计算例4 用简便方法计算:(1)(-6134)-(-512)+(134)-(+8.5); (2)19999899×(-11); (3)(-5)×713+7×(-713)-(+12)×713.【反思】合理地利用加法和乘法的运算律可以加快速度,分配律和分配律的逆向使用也是简便计算的一种重要的方法.近似数及科学记数法例5 (1)数361000000用科学记数法表示,以下表示正确的是( )A .0.361×109B .3.61×108C .3.61×107D .36.1×107(2)下列近似数精确到哪一位?①4.7万 ②17.68(3)用四舍五入法按要求取下列各数的近似数:①0.61548(精确到千分位);②73540(精确到千位).【反思】求带单位的近似数的精确度时,要注意单位也是有效的.有理数混合运算的应用例6 出租车司机王师傅从上午8:00~9:00在某市区东西向公路上营运,共连续运载八批乘客.若规定向东为正,向西为负,王师傅营运八批乘客里程如下:(单位:千米)+5,-6,+3,-7,+5,+4,-3,-4.(1)将最后一批乘客送到目的地时,王师傅在第一批乘客出发地的什么位置?(2)已知王师傅的车在市区耗油成本约为0.6元/千米,若出租车的收费标准为:起步价8元(不超过3千米),若超过3千米,超过部分按每千米2元收费,则王师傅在上午8:00~9:00扣除耗油成本后赚了多少元?【反思】用有理数的运算解决实际问题,主要是要抓住题中各数量之间的关系,弄清是求各数之和还是各数的绝对值之和.1.计算:3×(-1)3+(-5)×(-3)____________.2.已知(x -2)2+||2y +6=0,则x +y =____________.3.如图,数轴上A 、B 两点分别对应实数a 、b ,则a 与b 之间的关系是____________.(写出一个正确关系式即可)第3题图4.由四舍五入得到的近似数0.50,精确到____________位,它表示大于或等于____________且小于____________的数.5.数轴上A 、B 两点位于原点O 的两侧,点A 表示的实数是a ,点B 表示的实数是b ,若||a -b =2016,且AO =2BO ,则a +b 的值是____________.6.计算:(1)(34-112+13)×(-60);(2)(-3)2÷92+(-1)2017-|-2|.7.已知x ,y 为有理数,现规定一种新运算※,满足x ※y =xy +1.(1)求2※3的值;(2)求(3※5)※(-2)的值;(3)探索a ※(b +c)与a ※b +a ※c 的关系,并用等式把它们表达出来.参考答案期末复习二 有理数的运算【必备知识与防范点】1.1 互为倒数 3.乘方 乘除 加减 括号里的 4.a(1≤a<10) 10【例题精析】例1 (1)D (2)12例2 (1)运算顺序错.改正为:74-22÷70=74-4÷70=74-235=733335; (2)运算法则错.改正为:(-112)2-23=94-8=-234; (3)运算法则和运算顺序都错.改正为:23-6÷3×13=8-6×13×13=8-23=713.例3 (1)-18 (2)-838例4 (1)-63 (2)-2199989(3)-176 例5 (1)B (2)①千位 ②百分位 (3)①0.615 ②7.4×104例6 (1)正西方向3千米处 (2)67.8元【校内练习】1.12 2.-1 3.答案不唯一,如a >b4.百分 0.495 0.505 5.±6726.(1)(34-112+13)×(-60)=-60×34+60×112-60×13=-45+5-20=-60. (2)(-3)2÷92+(-1)2017-|-2|=9×29-1-2=-1. 7.(1)7 (2)-31 (3)∵a ※(b +c)=a(b +c)+1=ab +ac +1,a ※b +a ※c =ab +1+ac +1.∴a ※(b +c)+1=a ※b +a ※c.。
浙教版七年级(上)期末数学试卷(含解析)1
浙教版七年级(上)期末数学试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)﹣的绝对值是()A.B.﹣C.7D.﹣72.(3分)下列各数中,属于无理数的是()A.3.14159B.C.D.2π3.(3分)已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为()A.10℃B.﹣10℃C.20℃D.﹣20℃4.(3分)用四舍五入法把106.49精确到个位的近似数是()A.107B.107.0C.106D.106.55.(3分)下列各组数比较大小,判断正确的是()A.﹣6>﹣4B.﹣3>+1C.﹣9>0D.6.(3分)下列计算正确的是()A.5a﹣2a=3B.2a+3b=5abC.3a+2a=5a2D.﹣3ab+ba=﹣2ab7.(3分)估计的大小应在()A.3.5与4之间B.4与4.5之间C.4.5与5之间D.5与5.5之间8.(3分)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子年龄的4倍还大1岁,设今年儿子x岁,则可列方程为()A.4x+1+5=3(x+5)B.3x﹣5=4(x﹣5)+1C.3x+5=4(x+5)+1D.4x﹣5=3(x﹣5)+19.(3分)点A,B,C,D在数轴上的位置如图所示,点A,D表示的数是互为相反数,若点B所表示的数为a,AB=2,则点D所表示的数为()A.2﹣a B.2+a C.a﹣2D.﹣a﹣210.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣2的差倒数是,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是()A.﹣55B.55C.﹣65D.65二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)单项式﹣2ab2的系数是,次数是.12.(4分)太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为.13.(4分)计算:=,=.14.(4分)若∠α=25°42′,则它余角的度数是.15.(4分)如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.16.(4分)已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为(用含a,b的代数式表示).三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1)﹣5+7﹣8(2)18.(8分)解方程:(1)2﹣x=3x+8(2)19.(8分)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.20.(10分)(1)先化简.再求值:3(a2﹣ab)﹣2(a2﹣3ab),其中a=﹣2,b=3;(2)设A=2x2﹣x﹣3,B=﹣x2+x﹣25,其中x是9的平方根,求2A+B的值.21.(10分)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中90<m<100,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?22.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:类别水费价格(元/立方米)污水处理费(元/立方米)综合水价(元/立方米)第一阶梯≤120(含)立方米 3.5 1.55第二阶梯120~180(含)立方米5.25 1.56.75第三阶梯>180立方米10.5 1.512例如,某户家庭年用水124立方米,应缴纳水费:120x5+(124﹣120)x6.75=627(元).(1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m立方米(m>200),请用含m的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少?23.(12分)直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF =∠DOF,求∠BOD的度数.2019-2020学年浙江省杭州市余杭区七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(3分)﹣的绝对值是()A.B.﹣C.7D.﹣7【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值等于它的相反数,得|﹣|=.故选:A.2.(3分)下列各数中,属于无理数的是()A.3.14159B.C.D.2π【分析】直接利用有理数和有理数的定义分析得出答案.【解答】解:A、3.14159是有理数,不合题意;B、=0.3是有理数,不合题意;C、是有理数,不合题意;D、2π是无理数,符合题意;故选:D.3.(3分)已知某冰箱冷藏室的温度为5℃,冷冻室的温度比冷藏室的温度要低15℃,则冷冻室的温度为()A.10℃B.﹣10℃C.20℃D.﹣20℃【分析】用某冰箱冷藏室的温度减去冷冻室的温度比冷藏室的温度要低的温度,求出冷冻室的温度为多少即可.【解答】解:5﹣15=﹣10(℃)答:冷冻室的温度为﹣10℃.故选:B.4.(3分)用四舍五入法把106.49精确到个位的近似数是()A.107B.107.0C.106D.106.5【分析】根据近似数的精确度求解.【解答】解:用四舍五入法把106.49精确到个位的近似数是106,故选:C.5.(3分)下列各组数比较大小,判断正确的是()A.﹣6>﹣4B.﹣3>+1C.﹣9>0D.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣6<﹣4,∴选项A不符合题意;∵﹣3<+1,∴选项B不符合题意;∵﹣9<0,∴选项C不符合题意;∵﹣>﹣,∴选项D符合题意.故选:D.6.(3分)下列计算正确的是()A.5a﹣2a=3B.2a+3b=5abC.3a+2a=5a2D.﹣3ab+ba=﹣2ab【分析】根据合并同类项的法则把系数相加即可.【解答】解:A、5a﹣2a=3a,故A不符合题意;B、2a与3b不是同类项不能合并,故B不符合题意;C、3a+2a=5a,故C不符合题意;D、﹣3ab+ba=﹣2ab,故D符合题意;故选:D.7.(3分)估计的大小应在()A.3.5与4之间B.4与4.5之间C.4.5与5之间D.5与5.5之间【分析】直接利用估算无理数的方法分析得出答案.【解答】解:∵4.52=20.25,∴的大小应在4.5与5之间.故选:C.8.(3分)今年父亲的年龄是儿子年龄的3倍,5年前父亲的年龄比儿子年龄的4倍还大1岁,设今年儿子x岁,则可列方程为()A.4x+1+5=3(x+5)B.3x﹣5=4(x﹣5)+1C.3x+5=4(x+5)+1D.4x﹣5=3(x﹣5)+1【分析】设今年儿子x岁,根据五年前父亲的年龄不变,即可得出关于x的一元一次方程,此题得解.【解答】解:设今年儿子x岁,依题意,得:3x﹣5=4(x﹣5)+1.故选:B.9.(3分)点A,B,C,D在数轴上的位置如图所示,点A,D表示的数是互为相反数,若点B所表示的数为a,AB=2,则点D所表示的数为()A.2﹣a B.2+a C.a﹣2D.﹣a﹣2【分析】根据两点间的距离公式求得点A表示的数为a﹣2,由相反数的定义得到点D所表示的数.【解答】解:由题意知,点A表示的数为a﹣2,因为点A,D表示的数是互为相反数,所以点D所表示的数为2﹣a.故选:A.10.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣2的差倒数是,如果a1=﹣4,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…以此类推,则a1+a2+a3+a4+…+a61的值是()A.﹣55B.55C.﹣65D.65【分析】根据题意可以写出前几项,然后即可发现数字的变化规律,然后即可求得所求式子的值,本题得以解决.【解答】解:由题意可得,a1=﹣4,a2=,a3=,a4=﹣4,a5=,a6=,…,∵﹣4+==﹣,61÷3=20…1,∴a1+a2+a3+a4+…+a61=20×(﹣)+(﹣4)=﹣51+(﹣4)=﹣55,故选:A.二、填空题:本题有6个小题,每小题4分,共24分.11.(4分)单项式﹣2ab2的系数是﹣2,次数是3.【分析】单项式的次数是所含所有字母指数的和,系数就前面的数字,由此即可求解.【解答】解:单项式﹣2ab2的系数是﹣2,次数是3.故答案为:﹣2,3.12.(4分)太阳中心的温度可达15500000℃,数据15500000用科学记数法表示为 1.55×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将15500000用科学记数法表示为1.55×107.故答案为:1.55×107.13.(4分)计算:=5,=﹣3.【分析】根据立方根及算术平方根的定义即可得出答案.【解答】解:①由(±5)2=25得:25的算术平方根为=5,②由(﹣3)3=﹣27,所以=﹣3.故答案为:5,﹣3.14.(4分)若∠α=25°42′,则它余角的度数是64°18′.【分析】两角互为余角和为90°,据此可解此题.【解答】解:根据余角的定义得,25°42′的余角度数是90°﹣25°42′=64°18′.故答案为:64°18′.15.(4分)如图,有一个盛有水的正方体玻璃容器,从内部量得它的棱长为30cm,容器内的水深为8cm,现把一块长,宽,高分别为15cm,10cm,10cm的长方体实心铁块平放进玻璃容器中,容器内的水将升高cm.【分析】利用实心铁块浸在水中的体积等于容器中水位增加后的体积解答即可.【解答】解:铁块的体积为:15×10×10=1500(cm3),容器内的水将升高的高度为:1500÷(30×30)=(cm).故答案为:16.(4分)已知点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,则线段BC的长为a+2b 或a﹣2b或﹣a+2b.(用含a,b的代数式表示).【分析】根据点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,分三种情况即可求线段BC的长.【解答】解:∵点A,B,C都在直线l上,点P是线段AC的中点.设AB=a,PB=b,①如图BC=a+2b;②如图,BC=a﹣2b;③如图,BC=a﹣(2a﹣2b)=﹣a+2b.则线段BC的长为:a+2b或a﹣2b或﹣a+2b.故答案为:a+2b或a﹣2b或﹣a+2b.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.(6分)计算:(1)﹣5+7﹣8(2)【分析】(1)根据有理数的加减混合运算顺序和运算法则计算可得;(2)先计算乘方和括号内的减法,再计算乘除,最后计算加减可得.【解答】解:(1)原式=2﹣8=﹣6;(2)原式=36×(﹣)+×(﹣)=﹣42﹣2=﹣44.18.(8分)解方程:(1)2﹣x=3x+8(2)【分析】(1)按照解一元一次方程的步骤:移项、合并同类项、系数化为1,进行解答便可;(2)按照解一元一次方程的一般步骤进行解答便可.【解答】解:(1)﹣x﹣3x=8﹣2﹣4x=6x=﹣1.5;(2)12x﹣3(3x﹣1)=2x12x﹣9x+3=2x12x﹣9x﹣2x=﹣3x=﹣3.19.(8分)如图,已知点A,B,C,D,请按要求画出图形.(1)画直线AB和射线CB;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(要求保留作图痕迹)(3)在直线AB上确定一点P,使PC+PD的和最短,并写出画图的依据.【分析】(1)画直线AB和射线CB即可;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC即可;(3)在直线AB上确定一点P,使PC+PD的和最短.【解答】解:如图所示,(1)直线AB和射线CB即为所求作的图形;(2)连结AC,并在直线AB上用尺规作线段AE,使AE=2AC;(3)在直线AB上确定一点P,使PC+PD的和最短.20.(10分)(1)先化简.再求值:3(a2﹣ab)﹣2(a2﹣3ab),其中a=﹣2,b=3;(2)设A=2x2﹣x﹣3,B=﹣x2+x﹣25,其中x是9的平方根,求2A+B的值.【分析】(1)原式去括号合并得到最简结果,把a与b的值代入计算即可求出值;(2)把A与B代入2A+B中,去括号合并得到最简结果,求出x的值,代入计算即可求出值.【解答】解:(1)原式=3a2﹣3ab﹣a2+6ab=2a2+3ab,当a=﹣2,b=3时,原式=8﹣18=﹣10;(2)∵A=2x2﹣x﹣3,B=﹣x2+x﹣25,∴2A+B=2(2x2﹣x﹣3)+(﹣x2+x﹣25)=4x2﹣2x﹣6﹣x2+x﹣25=3x2﹣x﹣31,由x是9的平方根,得到x=3或﹣3,当x=3时,原式=27﹣3﹣31=﹣7;当x=﹣3时,原式=27+3﹣31=﹣1.21.(10分)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m人去两处支援,其中90<m<100,若要使甲处植树的人数仍然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?【分析】(1)设应从乙处调x人去甲处,根据等量关系甲处植树的人数=3×乙处植树人数列出方程,再解即可;(2)设调往乙处y人,则调往甲处(m﹣y)人,由题意得等量关系:在甲处植树的人数=3×在乙处植树的人数,根据等量关系列出方程,再解即可.【解答】解:(1)设应从乙处调x人去甲处,则3(96﹣x)=220+x解得x=17;答:应从乙处调17人去甲处;(2)设调往乙处y人,则调往甲处(m﹣y)人,则3(96+y)=220+y+my=17+0.25m因为y是正整数,且90<m<100,所以m=92或m=96.当m=92时,调往甲处96人,调往乙处6人.当m=96时,调往甲处89人,调往乙处7人.22.(12分)自2016年1月1日起,某市居民生活用水实施年度阶梯水价,具体水价标准见下表:类别水费价格污水处理费综合水价(元/立方米)(元/立方米)(元/立方米)第一阶梯≤120(含)立方米 3.5 1.555.25 1.56.75第二阶梯120~180(含)立方米第三阶梯>180立方米10.5 1.512例如,某户家庭年用水124立方米,应缴纳水费:120x5+(124﹣120)x6.75=627(元).(1)小华家2017年共用水150立方米,则应缴纳水费多少元?(2)小红家2017年共用水m立方米(m>200),请用含m的代数式表示应缴纳的水费.(3)小刚家2017年,2018年两年共用水360立方米,已知2018年的年用水量少于2017年的年用水量,两年共缴纳水费2115元,求小刚家这两年的年用水量分别是多少?【分析】(1)根据表格中规定的分段计算方法列式计算可得;(2)利用总价=单价×数量,结合阶梯水价,即可得出结论;(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费2115元即可得出关于x 的一元一次方程,解之即可得出结论【解答】解:(1)小华家2017年应缴纳水费为120×5+(150﹣120)×6.75=802.5(元).答:小华家2017年应缴纳水费802.5元;(2)小红家2017年共用水m立方米(m>200),则应缴纳的水费为:120×5+(180﹣120)×6.75+12(m﹣180)=(12m﹣1155)元.答:小红家2017年应缴纳的水费是(12m﹣1155)元.(3)设2017年用水x立方米,则2018年用水(360﹣x)立方米.根据两年共缴纳水费2115元可得:120×5+(180﹣120)×6.75+12(x﹣180)+120×5+(360﹣x﹣120)×6.75=2115.解得:x=200.2018年用水量:360﹣200=160(立方米).答:小刚家2017年用水200立方米,2018年用水160立方米.23.(12分)直线AB与直线CD相交于点O,OE平分∠BOD.(1)如图①,若∠BOC=130°,求∠AOE的度数;(2)如图②,射线OF在∠AOD内部.①若OF⊥OE,判断OF是否为∠AOD的平分线,并说明理由;②若OF平分∠AOE,∠AOF =∠DOF,求∠BOD的度数.【分析】(1)根据∠BOC=130°,OE平分∠BOD即可求∠AOE的度数;(2)①根据OF⊥OE,OE平分∠BOD,即可判断OF是∠AOD的平分线;②根据OF平分∠AOE,∠AOF=∠DOF,即可求∠BOD的度数.【解答】解:(1)∵∠BOC=130°,∴∠AOD=∠BOC=150°,∠BOD=180°﹣∠BOC=50°∵OE平分∠BOD,∴∠DOE=25°∴∠AOE=∠AOD+∠DOE=155°.答:∠AOE的度数为155°(2)①OF是∠AOD的平分线,理由如下:∵OF⊥OE,∴∠EOF=90°∴∠BOE+∠AOF=90°∵OE平分∠BOD,∴∠BOE=∠DOE∴∠DOE+∠AOF=90°∠DOE+∠DOF=90°∴∠AOF=∠DOF∴OF是∠AOD的平分线;②∵∠AOF=∠DOF,设∠DOF=3x,则∠AOF=∠5x,∵OF平分∠AOE,∴∠AOF=∠EOF=5x∴∠DOE=2x∵OE平分∠BOD,∴∠BOD=4x5x+3x+4x=180°∴x=15°.∴∠BOD=4x=60°.答:∠BOD的度数为60°.。
浙教版七年级上册数学第一单元《有理数》教学质量检测(含答案)
(浙教版)七年级上册数学第一单元《有理数》教学质量检测
学校:___________姓名:___________班级:___________考号:___________一、单选题
A .
B .a c >-a
A.数轴是以小明所在的位置为原点
B.数轴采用向北为正方向
二、填空题
17.如图1,点A,B,C是数轴上从左到右排列的三个点,对应的数分别为某同学将刻度尺如图2放置,使刻度尺上的数字0对齐数轴上的点
18.如图,在一张纸条上画有一条数轴.
(1)将数轴沿过原点且与数轴垂直的直线折叠,则表示的点与表示 的点
三、解答题
21.如图,在一条不完整的数轴上有A ,B 两点,它们表示的数分别为
(1)求线段的长度.
3-AB
(1)若点A所表示的数是,则点C所表示的数是
1-
参考答案:
答案第1页,共1页。
初中数学浙教版七年级上学期期末复习专题3——有理数的乘方及混合运算、近似数
初中数学浙教版七年级上学期期末复习专题3——有理数的乘方及混合运算、近似数一、单选题(共10题;共20分)1.山东省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示()A. 5.47×108B. 0.547×108C. 547×105D. 5.47×1072.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A. 0.1(精确到0.1)B. 0.05(精确到百分位)C. 0.050(精确到千分位)D. 0.0501(精确到0.0001)3.高度每增加1千米,气温就下降2℃,现在地面气温是10℃,那么高度增加7千米后,高空的气温是( )A. -4℃B. -14℃C. -24℃D. 14℃4.计算的结果是()A. 16B. 4C. -4D. -165.近似数4.50所示的数值a的取值范围是( )A. 4.495≤a<4.505B. 4.040≤a<4.60C. 4.495≤a≤4.505D. 4.500≤a≤4.50566.在下列各式中,计算结果为零的是()A. B. C. D.7.以下说法,正确的是().A. 数据475301精确到万位可表示为480000.B. 王平和李明测量同一根钢管的长,按四舍五入法得到结果分别是0.80米和0.8米,这两个结果是相同的.C. 近似数1.5046精确到0.01,结果可表示为1.50.D. 小林称得体重为42千克,其中的数据是准确数.8.下列计算:① ;② ;③ ;④ ;⑤ .其中正确的是()A. 1个B. 2个C. 3个D. 4个9.若(-ab)123>0,则下列正确的是()A. B. C. a>0,b<0 D. a<0,b>010.计算(﹣2)100+(﹣2)101所得的结果是()A. 2100B. ﹣1C. ﹣2D. ﹣2100二、填空题(共5题;共8分)11.光年是天文学中的距离单位,1光年大约是950 000 000 000千米,用科学记数法表示为________.12.将下列各数按要求取近似数(1)1.804(精确到0.01)________.(2)456000(精确到万位)________.(3)1.151万(精确到百位)________.13.如图是一个计算程序,若输入a的值为-1,则输出的结果应为________.14.已知a和n都是正整数,且a n=16,则a可能取的值是________.15.现有四个有理数-9,-2,6,3,运用加减乘除符号及括号连接(每个数都要用到,每个数只能用一次),使其结果为24.写出两个算式:________,________三、综合题(共4题;共40分)16.简便计算(1)(2)17.我校体育器材室共有篮球120个,一天课外活动,有三个班级分别计划借篮球总数的,和.请你算一算,这120个篮球够借吗?如果够了,还多几个篮球,如果不够缺几个篮球?18.一次数学测验后,王老师把某一小组10名同学的成绩以平均成绩为基准,并以高于平均成绩记为“+”,分别记为+10分,-5分,0分,+8分,-3分,6分,-5分,-3分,+4分,-12分,通过计算知道这10名同学的平均成绩是82分(1)这一小组成绩最高分与最低分相差多少分?(2)如果成绩不低于80分为优秀,那么这10名同学在这次数学测验中优秀率是百分之几?19.2008年奥运会期间,一辆大巴车在一条南北方向的道路上来回运送旅客,某一天早晨该车从A地出发,晚上到达B地,预定向北为正方向,当天行驶记录如下(单位:千米)+18,-9,+7,-14,-6,+13,-6,-8请你根据计算回答下列问题:(1)B地在A地何方?相距多少千米?(2)该车这一天共行驶多少千米?(3)若该车每千米耗油0.4升,这一天共耗油多少升?答案解析部分一、单选题1.【答案】D【解析】【解答】科学记数法:将一个数表示成的形式,其中,n为整数,这种记数的方法叫做科学记数法,则,故答案为:D.【分析】根据科学记数法的定义即可得.2.【答案】D【解析】【解答】A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项正确;D、0.05019≈0.0502(精确到0.0001),所以此选项错误;故答案为:D.【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;3.【答案】A【解析】【解答】解:根据题意得:.故答案为:A.【分析】根据题意,先求得7千米高空气温下降了多少摄氏度,再根据该地区高度每增加1千米,气温就下降大约,这一条件进行求解.4.【答案】A【解析】【解答】解:.故答案为:A.【分析】由有理数的乘方可求解.5.【答案】A【解析】【解答】解:根据题意可知,近似数4.50表示的准确值a的取值范围是4.495≤a<4.505故答案为:A.【分析】根据近似数的精确度进行作答即可得到答案。
浙教版2022年七年级(上)数学期末复习必刷题:图形的初步认识(第二部分)(含解析)
浙教版2022年七年级(上)数学期末复习必刷题图形的初步认识(第二部分)一、选择题 1.(2021·浙江嵊州·七年级期末)下列图中是对顶角的为( )A .B .C .D .2.(2021·浙江仙居·七年级期末)如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .若∠BOD =42°,则∠EOD 的度数为( )A .96°B .94°C .104°D .106°3.(2020·浙江杭州·七年级期末)已知2A B ∠=∠,下列选项正确的是( ) A .若A ∠是锐角,则B 是钝角 B .若A ∠是钝角,则B 是锐角 C .若B 是锐角,则A ∠是锐角D .若B 是锐角,则A ∠是钝角4.(2020·浙江浙江·七年级期中)比较16.30,1630160,.3'︒︒︒大小,正确的是( ) A .163016.3016.03'︒>︒>︒ B .16.30163016.03'︒>︒>︒ C .16.3016.031630'︒>︒>︒D .无法比较5.(2020·浙江杭州·七年级期末)如图,点O 在直线AB 上,射线OC ,射线OD ,射线OE 在直线AB 同侧,若OC OD ⊥,OE 平分AOC ∠,则( )A .DOE BOC ∠=∠B .3DOE BOD ∠=∠C .DOC COE BOD AOE ∠-∠=∠+∠D .DOC COE BOD AOE ∠+∠=∠+∠二、填空题 6.(2021·浙江仙居·七年级期末)如图,三角形ABC 中,AC ⊥BC ,则边AC 与边AB 的大小关系是________,依据是________.7.(2020·浙江杭州·模拟预测)1.471︒=︒_______分_________秒.8.(2021·浙江嵊州·七年级期末)已知25α∠=︒,则α∠的余角=_______________.三、解答题 9.(2021·浙江·杭州市公益中学七年级月考)如图,将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′. (1)若∠AOB =90°,且∠A ′OB =32°,求∠AOB ′的度数.(2)若∠AOB ′=160°,且∠A ′OB :∠BOB ′=2:3,求θ角的度数.10.(2020·浙江杭州·七年级期中)计算:1081856.5'︒-︒11.(2021·浙江浙江·七年级期中)已知:如图,直线AB CD 、相交于点O ,EO CD ⊥于O .(1)若:2:7BOD BOC ∠∠=,求AOE ∠的度数;(2)在(1)的条件下,请你过点O 画直线MN AB ⊥,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出EOF ∠的度数.12.(2021·浙江浙江·七年级期末)已知同一平面上以O 为端点有三条射线,,OA OB OC ; ①若80,20AOB BOC ∠=︒∠=︒,求AOC ∠的度数;②若,AOB BOC αβ∠=∠∠=∠,(,αβ∠∠均为锐角),求AOC ∠的度数(用,αβ∠∠表示).13.(2018·浙江镇海·七年级期末)已知O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若30AOC ∠=︒,求DOE ∠的度数;(2)在图①中,若AOC α∠=,直接写出DOE ∠的度数(用含α的代数式表示); (3)在(1)问前提下COD ∠绕顶点O 顺时针旋转一周.①当旋转至图②的位置,写出AOC ∠和DOE ∠的度数之间的关系,并说明理由; ②若旋转的速度为每秒10︒,几秒后30BOD ∠=︒?(直接写出答案)14.(2020·浙江·金华市南苑中学七年级月考)如果两个锐角的和等于90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,0为直线AB 上一点,OC 丄AB 于点O ,OE ⊥OD 于点O ,请写出图中所有互为垂角的角有_____________; (2)如果有一个角的互为垂角等于这个角的补角的45,求这个角的度数.15.(2017·浙江嵊州·七年级期末)点A,O,B依次在直线MN上,如图1,现将射线OA绕点O顺时针方向以每秒10°的速度旋转,同时射线OB绕着点O按逆时针方向以每秒15°的速度旋转,直线MN保持不动,如图2,设旋转时间为t秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB的度数.(2)在旋转过程中,当∠AOB=105°时,求t的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t的值.一、单选题1.(2021·浙江嵊州·七年级期末)下列图中是对顶角的为()A.B.C.D.【答案】D【分析】根据对顶角的定义:如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角,据此判断即可.【详解】解:根据对顶角的定义可知,为对顶角的只有D,故选:D.【点睛】本题考查了对顶角的定义,熟知定义是解本题的关键.2.(2021·浙江仙居·七年级期末)如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A .96°B .94°C .104°D .106°【答案】A【分析】根据对顶角相等可得∠AOC =∠BOD =42°,由于OA 平分∠COE ,可得∠AOE 的度数,再由平角的定义可求出∠EOD 的度数.【详解】解:∵∠AOC =∠BOD ,∠BOD =42°, ∴∠AOC =42°, ∵OA 平分∠EOC , ∴∠AOE =∠AOC =42°,∴∠EOD =180°−(∠AOE +∠BOD )=180°−(42°+42°)=96°. 故选:A .【点睛】本题考查了角平分线的定义和对顶角的性质.解决本题的关键是熟记对顶角相等. 3.(2020·浙江杭州·七年级期末)已知2A B ∠=∠,下列选项正确的是( ) A .若A ∠是锐角,则B 是钝角 B .若A ∠是钝角,则B 是锐角 C .若B 是锐角,则A ∠是锐角 D .若B 是锐角,则A ∠是钝角【答案】B【分析】根据锐角、钝角的定义推理或举反例判断即可.【详解】A.根据∠A=2∠B ,可知∠B=12∠A ,所以∠A 是锐角时,∠B 一定是锐角,故选项错误;B.若∠A 是钝角,则90°<∠A <180°,那么12∠A 一定小于90°,即∠B 一定小于90°,所以∠B 一定是锐角,故选项正确;C.若∠B=80°,根据∠A=2∠B ,可知∠A=160°>90°,所以∠B 为锐角时,∠A 不一定为锐角,故选项错误;D.若∠B=30°,根据∠A=2∠B ,可知∠A=60°<90°,所以∠B 为锐角时,∠A 不一定为钝角,故选项错误. 故选:B.【点睛】本题考查锐角和钝角,掌握锐角、钝角定义是解题关键.4.(2020·浙江浙江·七年级期中)比较16.30,1630160,.3'︒︒︒大小,正确的是( ) A .163016.3016.03'︒>︒>︒ B .16.30163016.03'︒>︒>︒ C .16.3016.031630'︒>︒>︒ D .无法比较【答案】A【分析】先把1630'︒化成只有度的单位,统一单位后再比较角的大小,选出正确答案即可. 【详解】解:∵1630=16.5'︒︒ 比较16.30︒,16.5︒,16.03︒,16.516.3016.03︒>︒>︒,∴163016.3016.03'︒>︒>︒. 故选:A .【点睛】本题考查了角度单位的换算,角的度数大小比较,统一角度单位后再进行比较是解题关键.5.(2020·浙江杭州·七年级期末)如图,点O 在直线AB 上,射线OC ,射线OD ,射线OE 在直线AB 同侧,若OC OD ⊥,OE 平分AOC ∠,则( )A .DOE BOC ∠=∠B .3DOE BOD ∠=∠C .DOC COE BOD AOE ∠-∠=∠+∠ D .DOC COE BOD AOE ∠+∠=∠+∠【答案】C【分析】根据条件及角度之间的关系逐项进行判断即可. 【详解】由OC ⊥OD 可知,∠DOC=90°,∠AOC+∠BOD=90°, 由OE 平分∠AOC 可得,∠COE=∠AOE=12∠AOC ,A.∵∠DOE=∠DOC+∠COE=90°+∠COE ,∠BOC=∠DOC+∠BOD=90°+∠BOD , ∠COE≠∠BOD ,∴∠DOE≠∠BOC ,故本选项错误; B.∵∠DOE=∠DOC+∠COE=90°+12∠AOC=90°+12(90°-∠BOD)=135°-12∠BOD , ∴∠DOE≠3∠BOD ,故本选项错误; C.∵∠BOD+∠AOC=90°, ∴∠BOD+∠AOE+∠COE=90°,∴∠BOD+∠AOE=90°-∠COE=∠DOC -∠COE ,故本选项正确; D.∵∠COE=∠AOE ,∠DOC≠∠BOD ,∴∠DOC+∠COE≠∠BOD+∠AOE ,故本选项错误, 故选:C.【点睛】本题考查角的计算,正确找出角之间的关系是解题的关键.二、填空题6.(2021·浙江仙居·七年级期末)如图,三角形ABC 中,AC ⊥BC ,则边AC 与边AB 的大小关系是________,依据是________.【答案】AC <AB 垂线段最短【分析】点到直线的距离也是点到直线的垂线段,是最短的;据此解答 【详解】AC 小于AB ,因为垂线段最短故答案为①AC <AB ②垂线段最短【点睛】本题考查两点之间垂线段最短,掌握这一点就能正确解题. 7.(2020·浙江杭州·模拟预测)1.471︒=︒_______分_________秒. 【答案】28 12【分析】度、分、秒是常用的角的度量单位.1度=60分,即1°=60′,1分=60秒,即1′=60″.依此即可求解. 【详解】解:1.47°=1°28分12秒, 故答案为:28,12.【点睛】本题考查了度分秒的换算,具体换算可类比时钟上的时、分、秒来说明角的度量单位度、分、秒之间也是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.同时,在进行度、分、秒的运算时也应注意借位和进位的方法.8.(2021·浙江嵊州·七年级期末)已知25α∠=︒,则α∠的余角=_______________. 【答案】65︒【分析】根据互为余角的两个角的和是90度,用90α︒-∠即可得解; 【详解】∵25α∠=︒,∴α∠的余角90902565α=︒-∠=︒-︒=︒; 故答案是:65︒.【点睛】本题主要考查了余角的计算,准确计算是解题的关键.三、解答题 9.(2021·浙江·杭州市公益中学七年级月考)如图,将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′. (1)若∠AOB =90°,且∠A ′OB =32°,求∠AOB ′的度数.(2)若∠AOB ′=160°,且∠A ′OB :∠BOB ′=2:3,求θ角的度数.【答案】(1)∠AOB ′=148°;(2)θ=60°【分析】(1)由旋转可知:∠AOB =∠A ′OB ′,可得∠AOB ﹣∠A ′OB =∠A ′OB ′﹣∠A ′OB ,即∠AOA ′=∠BOB ′,求得∠AOA ′,结论可求;(2)利用(1)中的结论∠AOA ′=∠BOB ′,设∠A ′OB =2x °,则∠BOB ′=3x °,依题意列出方程,结论可求. 【详解】解:(1)∵将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′, ∴∠AOB =∠A ′OB ′.∴∠AOB ﹣∠A ′OB =∠A ′OB ′﹣∠A ′OB . 即∠AOA ′=∠BOB ′.∵∠AOB =90°,∠A ′OB =32°, ∴∠AOA ′=90°﹣32°=58°.∴∠AOB ′=∠AOB +∠BOB ′=90°+58°=148°. (2)由(1)知:∠AOA ′=∠BOB ′. ∵∠A ′OB :∠BOB ′=2:3,∴设∠A ′OB =2x °,则∠AOA ′=∠BOB ′=3x °. ∵∠AOB ′=160°,∴∠AOA ′+∠A ′OB +∠BOB ′=160°. ∴3x +2x +3x =160. ∴x =20.∵将∠AOB 绕点O 逆时针旋转θ角,得到∠A ′OB ′, ∴θ=∠AOA ′=3x =60°.【点睛】本题主要考查了角度计算.利用旋转不变性得到:∠AOB =∠A ′OB ′是解题的关键. 10.(2020·浙江杭州·七年级期中)计算:1081856.5'︒-︒【答案】5148︒′【分析】先把度的形式化为度,分,秒的形式,进而即可求解. 【详解】原式=108185630'︒-︒′=5148︒′.【点睛】本题主要考查有理数的混合运算以及角度的运算,熟练掌握角度的单位换算,是解题的关键. 11.(2021·浙江浙江·七年级期中)已知:如图,直线AB CD 、相交于点O ,EO CD ⊥于O .(1)若:2:7BOD BOC ∠∠=,求AOE ∠的度数;(2)在(1)的条件下,请你过点O 画直线MN AB ⊥,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出EOF ∠的度数.【答案】(1)130°;(2)40°或140°【分析】(1)依据平角的定义以及垂线的定义,即可得到∠AOE 的度数;(2)分两种情况:若F 在射线OM 上,则∠EOF =∠BOD =40°;若F '在射线ON 上,则∠EOF '=∠DOE +∠BON -∠BOD =140°. 【详解】解:(1)∵∠BOD :∠BOC =2:7, ∴∠BOD =29∠COD =40°, ∴∠AOC =40°, 又∵EO ⊥CD ,∴∠AOE =90°+40°=130°; (2)分两种情况: 若F 在射线OM 上, ∵∠EOD =∠BOF =90°, ∴∠EOF =∠BOD =40°; 若F '在射线ON 上,则∠EOF '=∠DOE +∠BON -∠BOD =140°;综上所述,∠EOF 的度数为40°或140°.【点睛】本题考查了角的计算,对顶角,垂线等知识点的应用,关键是分类讨论思想的运用. 12.(2021·浙江浙江·七年级期末)已知同一平面上以O 为端点有三条射线,,OA OB OC ; ①若80,20AOB BOC ∠=︒∠=︒,求AOC ∠的度数;②若,AOB BOC αβ∠=∠∠=∠,(,αβ∠∠均为锐角),求AOC ∠的度数(用,αβ∠∠表示). 【答案】①100°或60°;②∠α+∠β或∠β-∠α或∠α-∠β【分析】①分两种情况讨论,①若OC 在∠AOB 外部时,②OC 在∠AOB 内部时,分别计算出∠AOC 的度数即可; ②1)、∠α≥∠β,OC 在∠AOB 外部时;2)∠α≥∠β,OC 在∠AOB 内部时,3)∠α<∠β,当OC 均在∠AOB 外部,依次计算即可.【详解】解:①若OC 在∠AOB 外部时,∠AOC =80°+20°=100°;若OC 在∠AOB 内部时,∠AOC =80°-20°=60°; ∴∠AOC =100°或60°.②1)、若∠α≥∠β时,当OC 在∠AOB 外部时,∠AOC =∠α+∠β, 2)、若∠α≥∠β时,若OC 在∠AOB 内部时,∠AOC =∠α-∠β, 3)、若∠α<∠β时,OC 均在∠AOB 外部,∠AOC =∠α+∠β,或∠AOC =∠β-∠α, 故∠AOC =∠α+∠β或∠β-∠α或∠α-∠β.【点睛】此题考查了余角和补角的知识,解题的关键是分类讨论,难点在于比较容易漏解. 13.(2018·浙江镇海·七年级期末)已知O 是直线AB 上的一点,COD ∠是直角,OE 平分BOC ∠.(1)如图①,若30AOC ∠=︒,求DOE ∠的度数;(2)在图①中,若AOC α∠=,直接写出DOE ∠的度数(用含α的代数式表示); (3)在(1)问前提下COD ∠绕顶点O 顺时针旋转一周.①当旋转至图②的位置,写出AOC ∠和DOE ∠的度数之间的关系,并说明理由; ②若旋转的速度为每秒10︒,几秒后30BOD ∠=︒?(直接写出答案)【答案】(1)DOE ∠=15︒;(2)12DOE α∠=;(3)①2AOC DOE ∠=∠,见解析,②3t s =或9t s =.【分析】利用∠COD 及∠AOC 的度数不难求出∠BOD 的度数,再结合∠COD 是直角可进一步求出∠BOC 的度数; 接下来根据角平分线的定义即可求出∠BOE 的度数,观察图形可知∠DOE=∠BOE-∠BOD ,据此,即可(1); (2),参照(1)的方法即可用含a 的代数式表示出∠DOE 的度数;(3),把∠AOC 当作已知数即可求出∠BOC ,此时利用角平分线的定义可求出∠BOE ;接下来再结合∠DOC 是直角,可表示出∠BOD ,由图形可知∠DOE=∠BOE+∠BOD ,据此即可得到∠AOC 和∠DOE 的度数之间的关系了. 【详解】解:(1)由题意得180150BOC AOC ∠=︒-∠=︒,又∵COD ∠是直角,OE 平分BOC ∠, ∴12DOE COD COE COD BOC ∠=∠-∠=∠-∠ 190150152=︒-⨯︒=︒.(2)12DOE α∠=.(3)①2AOC DOE ∠=∠.∵COD ∠是直角,OE 平分BOC ∠,∴90COE BOE DOE ∠=∠=︒-∠,∴1801802AOC BOC COE ∠=︒-∠=︒-∠ ()1802902DOE DOE =︒-︒-∠=∠.②3t s =或9t s =【点睛】本题考查角的运算 ,角平分线的定义,掌握角度间的转化是解题关键.14.(2020·浙江·金华市南苑中学七年级月考)如果两个锐角的和等于90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1-∠2|=90°,则∠1和∠2互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,0为直线AB 上一点,OC 丄AB 于点O ,OE ⊥OD 于点O ,请写出图中所有互为垂角的角有_____________;(2)如果有一个角的互为垂角等于这个角的补角的45,求这个角的度数.【答案】(1)∠EOB 和∠DOB ;∠EOB 和∠EOC ;∠A0D 和∠COD ;∠A0D 和∠AOE;(2)30°或130°. 试题分析:(1)根据互为垂角定义,可得: ∠EOB 和∠DOB ,∠EOB 和∠EOC ,∠AOD 和∠COD ,∠AOD 和∠AOE ;(2)设这个角为x,则它的互为垂角为(x -90°)和(x +90°),这个角的补角的45为:()4 1805x ︒-,根据题意可列方程即可求解. 试题解析: (1)根据互为垂角定义,可得:∠EOB 和∠DOB ,∠EOB 和∠EOC ,∠AOD 和∠COD ,∠AOD 和∠AOE ;(2)设这个角为x ,则它的互为垂角为(x -90°)和(x +90°),这个角的补角的45为:()4 1805x ︒-,根据题意可得: (x -90°)=()4 1805x ︒-和(x +90°)=()4 1805x ︒-, 解得: 1x =30°和x =30°. 15.(2017·浙江嵊州·七年级期末)点A ,O ,B 依次在直线MN 上,如图1,现将射线OA 绕点O 顺时针方向以每秒10°的速度旋转,同时射线OB 绕着点O 按逆时针方向以每秒15°的速度旋转,直线MN 保持不动,如图2,设旋转时间为t 秒(t≤12).(1)在旋转过程中,当t=2时,求∠AOB 的度数.(2)在旋转过程中,当∠AOB=105°时,求t 的值.(3)在旋转过程中,当OA或OB是某一个角(小于180°)的角平分线时,求t的值.【答案】(1) 130°;(2)t=3或11.4;(3)t=4.5或367或9或727【分析】(1)分别求出∠AOM和∠BON的度数,即可得出答案;(2)分为两种情况,得出方程10t+15t=180-105或10t+15t=180+105,求出方程的解即可;(3)分为四种情况,列出方程,求出方程的解即可.【详解】(1)当t=2时,∠AOM=10°t=20°,∠BON=15°t=30°,所以∠AOB=180°﹣∠AOM﹣∠BON=130°;(2)当∠AOB=105°时,有两种情况:①10t+15t=180﹣105,解得:t=3;②10t+15t=180+105,解得:t=11.4;(3)①当OB是∠AON的角平分线时,10t+15t+15t=180,解得:t=4.5;②当OA是∠BOM的角平分线时,10t+10t+15t=180,解得:t=367;③当OB是∠AOM的角平分线时,5t+15t=180,解得:t=9;④当OA是∠BON的角平分线时,10t+7.5t=180,解得:t=727.【点睛】本题考查了角平分线的定义和邻补角的定义,能求出符合的所有情况是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上有理数期末复习试卷一(浙教版有答案)
期末复习一有理数
要求知识与方法
了解用正数、负数表示相反意义的量,有理数的分类
数轴的概念
相反数和绝对值的概念,求某个有理数的相反数、绝对值
理解画数轴,描点,读数
互为相反数的两数绝对值相等,互为相反数的两数在数轴上的位置关系
已知某数的绝对值求某数
有理数的大小比较
运用利用数形结合的方法,用数轴解决一些实际问题
涉及字母的绝对值问题
一、必备知识
1.规定了____________、____________和____________的直线叫做数轴.
2.在数轴上,表示互为相反数(0除外)的两个点,位于原点的____________,并且到原点的距离____________.
3.一个正数的绝对值是____________;一个负数的绝对值是它的相反数;0的绝对值是0____________的两个数的绝对值相等.4.在数轴上表示的两个数,____________的数总比____________的数大;两个负数比较大小,绝对值大的数____________.
二、防范点
1.到数轴上的某点距离等于a的点所表示的数有两种情况,已知某数的绝对值求某数时也要注意有两个答案.
2.两个负数比较大小时,注意绝对值大的数反而小.
用正数、负数表示相反意义的量
例1 (1)如果南湖的水位升高04,水位变化记做+04,那么水位。