第7章磁场中的磁介质.ppt.

合集下载

第七章磁介质

第七章磁介质
M
A D B C
Is
I
l 取一长方形闭合回路ABCD,AB边在磁介质内部,平 行与柱体轴线,长度为l,而BC、AD两边则垂直于柱面。
B Ml M AB M d l M d l
A
M sຫໍສະໝຸດ M d l sl I s
第七章 磁介质
§7.3 磁介质中的磁场 B 0 H 0 M
M mH
B 0 (1 m ) H
B r B0 0
绝对 磁导 率
令r 1 m
相对 磁导 率
场性质的基本物理量, 才是反映磁场性质的基本物理量。 B
解:在环内任取一点,过 该点作一和环同心、半径 为r 的圆形回路。
r
H d l NI
式中 为螺绕环上线圈 N 的总匝数。由对称性可知,在所取圆形回路上各点的磁感 应强度的大小相等,方向都沿切线。
第七章 磁介质
例题:在均匀密绕的螺绕环内充满均匀的顺磁介质,已知螺绕环 中的传导电流为 I ,单位长度内匝数 ,环的横截面半径比环的 n r 。 平均半径小得多,磁介质的相对磁导率和磁导率分别为 和 求环内的磁场强度和磁感应强度。
r 2 式中 I 是该环路所包围的电流部分,由此得 R 2
2 1
第七章 磁介质
§7.3 磁介质中的磁场
Ir2 H= 2R12
由B= H,得
0 Ir2 B= 2 R12
(3)在圆柱面外取一点,它到轴的垂直距离是 r 3,以 r 3 为半径作一圆,根据安培环路定理 , 考虑到环路中所包 围的电流的代数和为零,所以得
磁化强度对闭合回路的线积分等于通过回路所包围的 面积内的总磁化电流。

7第七章 稳恒磁场

7第七章 稳恒磁场
2
0
r
2
θ2
dz θ v
I
z
r
v dB
* y o dz = r0dθ / sin θ P x θ1 0I θ2 A B= ∫θ1 sin θdθ 4 π r0 0 I 0I θ2 B= ∫θ1 sin θdθ = 4π r0(cosθ1 cosθ2) 4 π r0
r0
B=
(cosθ1 cosθ2) 4 π r0
v 的方向: 磁感应强度 B 的方向:
v B
小磁针在场点处时其N 极的指向. 小磁针在场点处时其 极的指向.
二 洛仑兹力
由实验知电量为q电 荷在磁场中受到的磁场力: 荷在磁场中受到的磁场力 :
v v v Fm = qv × B
v F
+ q0
v 称运动电荷在磁场中 所受的力为洛仑兹力. 所受的力为洛仑兹力. 洛仑兹力总与带电粒子的运动速度垂直. 因此, 洛仑兹力总与带电粒子的运动速度垂直. 因此, 洛仑兹力对运动电荷不作功. 洛仑兹力对运动电荷不作功. 洛仑兹力只改变运动电 荷的方向, 不改变速度的大小. 荷的方向, 不改变速度的大小.
MN NO OP PM
螺线管内选回路 螺线管内选回路L .
v B
B MN = 0 n MN I
B = 0 nI
7-5 介质中的磁场
预习要点 1. 磁介质的磁化对磁场分布有什么影响? 磁介质的磁化对磁场分布有什么影响 2. 顺磁质和抗磁质的区别是什么? 顺磁质和抗磁质的区别是什么 3. 磁场强度与磁感应强度的关系如何 磁场强度与磁感应强度的关系如何? 4. 了解铁磁质的特性及应用 了解铁磁质的特性及应用.
v v Φ = ∫s B dS
v v dΦ = B dS

磁场中的磁介质

磁场中的磁介质

e ev 电子电流 I 2r / v 2r ev evr 2 m IS r 2r 2
m en
I S
e L 2m e
角动量 L me vr
二、原子的磁矩
2.电子的量子轨道磁矩
h L m, m 0,1,2, 1.05 10 34 J S 2 e 24 一个可能的值 m 9.27 10 J / T 2m e
分子电流为
dI n a 2 dr cos i
n m dr cos
M dr cos M dr


dI M dr
三、磁介质的磁化
若 dr 选在磁介质表面,则 d I 为面束缚电流。
面束缚电流密度
dI M cos M r j dr
电流为i,半径为 a,分子磁 矩为 m ,任取一微小矢量 dr 2 a 元 dr ,它与外磁场 B 的夹角 m i 为,则与 dr 套住的分子电 流的中心都是位于以为 dr 轴、 以 a2 为底面积的斜柱体内。 i
m
B
三、磁介质的磁化
若单位体积内的分子数为n ,则与 dr 套连的总
2.磁化强度
单位体积内分子磁矩的矢量和称作磁介质的 磁化强度。 mi M V
单位 安每米(A/m)
3.实验规律
实验发现,在外磁场不是很强时,对所有磁 介质
r 1 M BB
0 r
三、磁介质的磁化
3.束缚电流与磁化强度之间的关系
以顺磁质为例 , 等效分子
电子的自旋磁矩(内禀磁矩) 电子自旋角动量 内禀磁矩
s 2
玻尔磁子
e e mB s 9.27 10 24 J / T me 2me

§7.6.2 磁介质中的安培环路定理

§7.6.2 磁介质中的安培环路定理

Chapter 7.6. 磁场中的磁介质

L
(
B
0

M ) dl

I0i
( L内 )
令: H

B
0

M
称作磁场强度 ( A·m-1 )

H dl L

I0i
( L内 )

H
的安培环路定理。
§7.6 磁介质中的安培环路定理
即沿任一闭合路径磁场
强度的环路积分等于该 闭合路径所包围的自由 电流代数和。
M ?
js M eˆ n
js ?
·9 ·
Chapter 7.6. 磁场中的磁介质
§7.6 磁介质中的安培环路定理
1. H 的安培环路定理:

H L
dl

I0i
( L内 )
2. H、B、M 间的关系:

Mp

m r 0

B,
B


H,

Mp


mH
( The end ) · 10 ·
H dl H 2 r I I
L
H 0
0 I 2 R12
r
( r R1 )
I
I 2 r
(R1 r R2 )
BH
R32 r 2 R32 R22

0 2
I r
(R2 r R3)
0
(r R3)
I
磁介质内:
H

I
2
r
M
p

m H

·4 ·
Chapter 7.6. 磁场中的磁介质

第7章磁场中的磁介质.ppt

第7章磁场中的磁介质.ppt
第7章 磁介质
§7.1 磁介质对磁场的影响
§7.2 原子的磁矩
§7.3 磁介质的磁化
§7.4 H的环路定理
§7.5 铁磁质 §7.6 简单的磁路
1
一、磁介质 二、 磁介质磁化的微观机理
三、磁化电流与磁化强度
四、H的环路定理 五、铁磁质 六、简单的磁路
2
一、磁介质
1.磁介质的定义 在磁场中会受磁场影响而发生 变化,反过来又对磁场产生影响 的物质就叫磁介质. 2.磁介质对磁场的影响 均匀介质充满磁 场的情况下
得:
H dr I 0内
L
•H 的单位: A/m ( SI );
•真空: M 0 ,H B
0
18
2. B, M , H 的关系
各向同性磁介质 r 1 将 M B 代入 0 r 各向同性电介质 P 0 r 1E D 0E P
3. 磁化规律
各向同性磁介质 (顺磁质或抗磁质)
各向同性电介质
r 1 1 1 M B (1 ) B 0 r 0 r
P 0 r 1E
0 r
介质的 磁导率
0 r
介质的介 电常数
15
四、H的环路定理 1. H的环路定理
L
NI H nI 2πr 细螺绕环
R1 R2 r
O R1 r R2
22
NI H nI 2πr
B H nI
M ( r 1) H ( r 1)nI
j M 表
代入数据
M 7.94 10 A/m
5
7.94 10 5 A/m j
23
j 7.94 10 A/m

磁场中的磁介质ppt

磁场中的磁介质ppt

第五版
一、 H矢量的安培环路定理
几点说明
15
磁场中的介质

H dl I0
L
(1)只与传导电流有关,与束缚电流无关
(2) H 与 D 一样是辅助量,描述电磁场
ED

B H
B 0 H
9
(3)在真空中: M 0 r 1
第五版
15
磁场中的介质
当外磁场由 H m 逐渐减小时,这种 B 的变化落后于H的变 化的现象,叫做磁滞 现象 ,简称磁滞. 由于磁滞, H 0 时,磁感强度 B 0 Br 叫做剩余磁感强 , 度(剩磁).
Bm
H m Br
B
Q
P
Hm
H
O
P
'
Hc
Bm
磁滞回线 矫顽力
Hc
17
第七章 恒定磁场
r
第七章 恒定磁场
13
物理学
第五版
15
磁场中的介质
解 rd R
B H
dR
0 r I
H dl I
l
2π dH I
2π d H dl I I 0
l
r
I
2π dH 0 , H 0
d
I
B H 0
同理可求 d r , B 0
物理学
第五版
15
磁场中的介质
3 铁磁性材料 不同铁磁性物质的磁滞回线形状相差很大.
B B B
O
H
O
H
O
H
软磁材料
硬磁材料
第七章 恒定磁场
矩磁铁氧体材料

第七章磁介质

对于各向同性的线性的磁介质,磁化强度M、磁感强度B和磁 场强度H的关系分别为:
1 M
m B 0 1 m
1 m r
M m H (r 1)H
式中
m 称为介质的磁化率,它是一个与磁场无关的常量,仅取
第七章 —— 磁介质
1
学习重点
1、介质中磁场的安培环路定理 2、介质中的电磁场的能量密度与能流密度
学习难点
1、磁化电流的面密度与体密度 2、铁磁性
第七章 —— 磁介质 2
本章的基本内容及思路
本章主要讲两个问题,一是介绍磁介质的性质,二是讨论磁
介质与磁场的相互作用规律。磁介质指的是放入磁场后会受到磁场 的影响,反过来又会影响磁场分布的物质。从这个意义上说,所有 实物质都可以说是磁介质,只不过不同物质受磁场影响和对磁场影 响有所不同。本章首先从实验事实出发,对磁介质进行分类,定性
磁介质的磁化程度M取决于组成磁介质的每个分子磁矩Pm的大小
以及它们排列整齐的程度,用磁化强度来描写介质磁化程度,磁化强
度定义为单位体积内各分子磁矩的矢量和,即 : Pmi M V 上式中,分子为V内所有各分子的磁矩的矢量和,V为物理无限小 体积元。
2、磁化电流
磁介质在外磁场的作用下,介质被磁化,在介质内或介质表面出 现磁化电流,它是由束缚在原子内的电荷形成的,也称为束缚电流。
第七章 磁介质
学习目标
1、了解顺磁质,抗磁质及铁磁质的特点及其微观解释。
2、领会磁化强度,磁化电流的概念,明确M 、B、H三个
矢量的联系。 3、熟练运用有介质存在时的安培环路定理计算一些特殊 电流分布所产生的磁场。 4、了解磁路定理,会运用它对简单磁路进行计算。
5、掌握介质中电磁场的能量密度与能流密度表达式。

磁场中磁介质


磁介质的分类
顺磁性介质
抗磁性介质
铁磁性介质
反铁磁性介质
在磁场中容易被磁化的 物质,如铝、铂等。
在磁场中不容易被磁化 的物质,如铜、金等。
在磁场中极易被磁化的 物质,如铁、钴、镍等。
在磁场中具有反铁磁性 的物质,如锰、铬等。
02
磁场对磁介质的影响
磁场对磁介质的作用
磁化现象
磁场对磁介质产生作用,使其内 部磁矩定向排列,形成磁化现象。
剩余磁化强度
当磁场去除后,磁介质仍会保留一部分磁化强度, 称为剩余磁化强度。
磁介质的磁导率
相对磁导率
描述磁介质在磁场中的导磁能力与真空导磁能 力的比值。
最大磁导率
在一定磁场强度下,磁介质的磁导率达到最大 值。
温度系数
表示磁导率随温度变化的系数,某些材料的温度系数较大,对温度变化较为敏 感。
03
磁介质的性质与特点
磁滞现象
磁介质在磁化过程中会出现滞后现 象,即当磁场反向时,磁介质的磁 化强度不会立即消失,而是逐渐减 小。
磁损耗
在交变磁场中,磁介质会因为磁滞 现象和涡流效应产生能量损耗。
磁介质的磁化过程
起始磁化
磁介质在磁场中开始被磁化的过程,起始磁化曲 线通常是非线性的。
磁饱和
随着磁场强度的增加,磁介质的磁化强度逐渐达 到饱和状态,此时磁导率不再变化。
3
磁滞损耗
由于磁滞现象产生的能量损耗,通常表现为热量。
磁介质的损耗特性
介电损耗
01
由于电场作用在磁介质上产生的能量损耗,通常表现为热量。
涡流损耗
02
由于磁场变化产生的涡旋电流在磁介质中产生的能量损耗,通
常表现为热量。

7-9磁场中的磁介质


磁介质 磁化 磁介质的分类: 一、磁介质的分类: 电介质的极化 电介质的极化
E
'
磁介质的磁化 磁介质的磁化
B0
r = 1 + χm
B0
+ +
E0
B'
or
B'
B r = B0
'
E = E0 + E' E < E0
B = B0 + B' B > B0
B = B0 + B B < B0
= 0r
r > 1 锰、铬、铝、氧、氮 … 顺磁质: 顺磁质:B>B0 抗磁质:B<B0 r < 1 金、银、铜、铋、锑、氢… 镍等合金。 铁磁质: 铁磁质:B>>B0 r >> 1 铁、钴、镍等合金。 注意: 真空: 注意: 10 真空 B=B0 ,r=1 χm = 0 。 20 顺: χm > 0 抗: χm < 0 超导: χm = 1 , ,超导:
高磁导率, 高磁导率, 计算机中的记忆元件;电子 矩磁材料 高电阻率。 高电阻率。 技术中的天线和电感中磁心
B
B
O
H
O
H
O
H
软磁材料
硬磁材料
矩磁铁氧体材料
小 结 名称 特点 应用
相对磁导率 和饱和磁感 电磁铁、变压器、交流电动 软磁材料 强度较大, 强度较大, 机、交流发电机中的铁心。 矫顽力小。 矫顽力小。 剩磁和矫顽 硬磁材料 力都比较大。 力都比较大。 压磁材料 磁致伸缩 适于制造永磁体 探测海洋深度和鱼群
r
介质中磁导率。 介质中磁导率。
相对磁导率。 B 相对磁导率。 0 χm : 磁化率 r = 1 + χm 本节主要讨论磁介质对磁场的影响:从微观结构出发, 本节主要讨论磁介质对磁场的影响:从微观结构出发 分析磁介质的磁性起源,简单介绍磁化规律。 分析磁介质的磁性起源,简单介绍磁化规律。

磁场中的磁介质


2 . 磁化曲线( H—B曲线)
(1)弱磁质(顺磁质、 (2)铁磁质, r 是变量。
抗磁质), r 为常量。
B H—B曲线斜率: tg 0 r H
Bm是饱和磁感应强度
3. 铁磁向顺磁质的转化 当温度达到一定时,铁磁质转变为顺磁质。 这一温度被称为“居里点”。
二、铁磁质的磁化过程与磁滞回线
dt
B
pm
L
p m M
L
进动附加的进动角动量 L 是与 B0 的方向一致的。与这一进
动相应的磁矩 p m ,称感应磁矩,它是 B0 与反向的。 反向磁矩对应的磁场使介质内 B B B B 0 0 部磁场减弱。 虽然顺磁质分子也会产生感应磁矩,但由于它远小于 固有磁矩(相差五个数量级),所以顺磁质中主要是固有 磁矩起作用。
B0
I
I
B
I
I
B r B0
r ……该磁介质的相对磁导率
磁介质的分类

2 磁介质磁化的微观机制 分子磁矩 分子是一个复杂的带电系统。原子 Pm 中电子参与两种运动:自旋及绕核 i 的轨道运动,对应有轨道磁矩和自 旋磁矩。一个分子对应一个等效电 S 流i , 相应有一个 分子等效磁矩。 pm 是各个的电子轨道磁矩、电子 p m is 自旋磁矩、原子核磁矩的总和。 分子电流所对应的磁矩在外磁场中的行为决定介质 的特性。
顺磁质 : B B0 B B0
抗磁质 : B B0 B B0
磁化电流
' B B0 B
2. 磁化强度与磁化电流
(1)磁化强度
Σpm
M=
Σ pm +Σ Δ pm
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.磁致伸缩变磁畴方向改变晶格间距改变铁磁体长度和体积改变—磁致伸缩长度相对改变约10-5量级某些材料在低温下可达10 -1 磁致伸缩有一定固有频率当外磁场变化频率和固有频率一致时发生共振 46 可用于制作激振器、超声波发生器等
3.深入认识磁畴根据现代理论,铁磁质相邻原子的电子之间存在很强的“交换耦合作用” 使得在无外磁场作用时电子自旋磁矩能在小区域内自发地平行排列形成自发磁化达到饱和状态的微小区域这些区域称为“磁畴” 用磁畴理论可以解释铁磁质的磁化过程、磁滞现象、磁滞损耗以及居里点 1892年罗辛格首先提出磁畴的形成是由于磁偶极子间非磁性的相互作用. 47
1926年海森堡用量子力学中的交换力解释了磁偶极子间相互作用的起源 48
1935年朗道和栗佛希兹从磁场能量的观点说明了磁畴的成因 49。

相关文档
最新文档