第二章极限习题及答案:极限的四则运算
极限的四则运算(数列极限、函数极限)

a
k
,lim(C n
an)
Ca
。
例1、已知 lnim(6an bn ) 11 lnim(3an 2bn ) 7
求 lnim(2an bn ) 的值。
解:2an+bn=
1 15
(6an-bn)+
8 15
(3an+bn),
∴ lnim(2an bn )
3)
lim (
x
x3 2x2 1
x2 2x
) 1
KEY:1) 0(分子分母同除以x4); 2)0(分子有理化) 3)1/4(通分)
例3、(1)求
lim
x1
2x2 x3
x 1 2x2 1
的值。
x2 1
(2)求
lim
x1
2x2
x 1
的值
(见课本P87,注意其中的说明。)
3 5
( 2)n1 5
[1 ( 2)n ] 5
2
3 [(2)n1 55
( 2)2n1] 5
∴
lim
n
Tn
3 5
[ 1
1
2
5 1
4
]
3 (5 10) 5 . 5 3 21 7
5 25
例5、有一个边长为1的正方形,以其四边中点为顶点画 第二个正方形,再以第二个正方形的四边中点为顶点画
=
lim[ 1 n 15
(6an
bn
)
185(3an
2bn
)]
=
1 15
×11+
185×(-7)
第二章极限习题及答案:极限的四则运算

自变量趋向无穷时函数的极限例 求下列极限:(1)42242115lim x x x x x --+-∞→(2)⎪⎪⎭⎫⎝⎛+--∞→1212lim 223x x x x x 分析:第(1)题中,当∞→x 时,分子、分母都趋于无穷大,属于“∞∞”型,变形的一般方法是分子、分母同除以x 的最高次幂,再应用极限的运算法则.第(2)题中,当∞→x 时,分式1223-x x 与122+x x 都趋向于∞,这种形式叫“∞-∞”型,变形的一般方法是先通分,变成“∞∞”型或“00”型,再求极限.解:(1)211151lim 2115lim 24424224--+-=--+-∞→∞→x x x x x x x x x x .212000012lim lim lim 1lim 5lim 1lim 2442-=--+-=--+-=∞→∞→∞→∞→∞→∞→x x x x x x x x xx(2))12)(12()12()12(lim 1212lim 2223223+---+=⎪⎪⎭⎫ ⎝⎛+--∞→∞→x x x x x x x x x x x x )12)(12(11lim)12)(12(lim2223xx xx x xx x x +-+=+-+=∞→∞→ 41)02)(02(01)12(lim )12(lim )11(lim 2=+-+=+-+=∞→∞→∞→xx x x x x说明:“∞∞”型的式子求极限类似于数列极限的求法.无穷减无穷型极限求解例 求极限:(1))11(lim 22x x x x x +--++-∞→(2))11(lim 22x x x x x +--+++∞→分析:含根式的函数求极限,一般要先进行变形,进行分子、分母有理化,再求极限. 解:(1)原式22112limxx x x xx +-+++=-∞→222112limxx x x x x +-+++-=-∞→.11111112lim22-=+-+++-=-∞→xx xx x(2)原式22112limxx x x xx +-+++=+∞→.11111112lim22=+-+++=+∞→xx xx x说明:当<x 时,2x x ≠,因此211111121122222→+-+++≠+-+++xx xx xx x x x.利用运算法则求极限例 计算下列极限: (1)⎪⎭⎫⎝⎛+-+++++++∞→123171411lim 2222n n n n n n ; (2)()⎥⎦⎤⎢⎣⎡-+++--∞→n n n 3112719131lim 1 . (1992年全国高考试题,文科难度0.63)解: (1)原式()11321lim 2+-=∞→n n n n()232213lim 123lim 222=+-=+-=∞→∞→nn n n n n n . (2)原式⎪⎭⎫ ⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→31131131limnn[]41014131141lim =-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛--=∞→nn .说明:该题计算时,要先求和,再求所得代数式的极限,不能将只适用有限个数列的加、减、乘、除的数列极限的四则运算法则,照搬到无限个数列的加、减、乘、除,超出了法则的适用范围,下面的计算是错误的: (1)原式123lim 14lim 11lim 222+-+++++=∞→∞→∞→n n n n n n n(2)原式()4131131027********lim 271lim 91lim 31lim 1=⎪⎭⎫ ⎝⎛--=+++-=-+++-=-∞→∞→∞→∞→ n n n n n n 用二项式定理展开或逆用等比数列和公式化简求极限例 设*N p ∈,求nn p n 1111lim 1-⎪⎭⎫ ⎝⎛++∞→.分析:把111+⎪⎭⎫⎝⎛+p n 用二项式定理展开或逆用等比数列和公式即可求得.解:111221111)1()1(1111++++++++++=⎪⎭⎫ ⎝⎛+p p p p p p nC n C n C n pp p p p p p nC C n C n C nn )1()1(111111131221111++++++++++=-⎪⎭⎫ ⎝⎛+∴11111lim 111+==-⎪⎭⎫ ⎝⎛+∴++∞→p C nn p p n或:逆用等比数列求和公式:原式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=∞→pn n n n 1111111lim 211111+=+++=+p p个说明:要注意p 是与n 无关的正整数,111+⎪⎭⎫⎝⎛+p n 不是无限项,对某些分式求极限应先对式子进行必要的变形,使之成为便于求极限的形式,以利问题的解决,经常用到的技巧是分母、分子有理化或按二项式定理展开等等.零乘无穷型转化为无穷除无穷型例 求.)1(lim n n n n -+∞→分析:当∞→n 时,所求极限相当于∞⋅0型,需要设法化为我们熟悉的∞∞型. 解: n n n n )1(lim -+∞→.211111lim 1lim)1()1)(1(lim =++=++=++++-+=∞→∞→∞→nnn n n n n n n n n n n n说明:对于这种含有根号的∞⋅0型的极限,可采取分子有理化或分母有理化来实现.如本题是通过分子有理化,从而化为nn n++1,即为∞∞型,也可以将分子、分母同除以n的最高次幂即n ,完成极限的计算.根据极限确定字母的范围例 已知161)2(44lim 2=+++∞→n n n n m ,求实数m 的取值范围. 分析:这是一个已知极限的值求参数的范围问题,我们仍然从求极限入手来解决.解:16142161lim )2(44lim 2=⎪⎭⎫⎝⎛++=++∞→+∞→nn n n n n m m 于是142<+m ,即26,424<<-<+<-m m . 说明:在解题过程中,运用了逆向思维,由16142161lim =⎪⎭⎫⎝⎛++∞→n n m 可知,nm ⎪⎭⎫⎝⎛+42的极限必为0,而0→n q 的充要条件是1<q ,于是解不等式142<+m . 零比零型的极限例 求xx x 11lim10-+→. 分析:这是一个00型的极限,显然当0→x 时,直接从函数xx 1110-+分子、分母中约去x 有困难,但是1110-+x 当0→x 时也趋近于0,此时x 化为1)1(1010-+x ,这就启发我们通过换元来解决这一难题,即设101x y +=,则110-=y x .解:设101x y +=,则110-=y x ,于是,当0→x 时,1→y . 原式10111lim 11lim891101=++++=--=→→y y y y y y y说明:本题采用的换元法是把0→x 化为01→-y ,这是一种变量代换.灵活地运用这种代换,可以解决一些型的极限问题. 例如对于11lim 21--→x x x ,我们一般采用因式分解,然后约去1-x ,得到2)1(lim 1=+→x x .其实也可以采用这种代换,即设1-=x t ,则当1→x 时,0→t ,这样就有.2)2(lim 1)1(lim 11lim 02021=+=-+=--→→→t tt x x t t x 组合与极限的综合题例 ) (lim 1222=++∞→n n nn n C CA .0B .2C .21 D .41 分析:将组合项展开后化简再求极限.解: 1222lim ++∞→n n nn n C C.4126412lim )22)(12()1(lim )!22()!1()!1(!!)!2(lim 222=++++=+++=⎥⎦⎤⎢⎣⎡++⋅+⋅=∞→∞→∞→n n n n n n n n n n n n n n n n 故应选D .说明:本题考查组合的运算和数列极限的概念.高考填空题1.计算.________)2(lim =+∞→nn n n 2.若数列{}n a 的通项公式是)N ()1(1*∈+=n n n a n ,则.________)(lim 21=+∞→n n a n a3.计算:.________)13(lim =++∞→nn n n1.解析 22222221221lim 2lim -+--+-∞→∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+e n n n n n n n nn n n说明:利用数列极限公式e n nn =⎪⎭⎫⎝⎛+∞→11lim ,把原题的代数式稍加变形即可获解.本题主要考查灵活运用数列极限公式的能力.2.解析 .21,)1(11=∴+=a n n a n.23121)11121(lim )1(121lim 2=+=++=⎥⎦⎤⎢⎣⎡+⋅+∴∞→∞→nn n n n n说明:本题的思考障碍点是如何求1a ?——只要懂得在通项公式中令1=n ,可立得1a 的具体值,本题考查数列极限的基本知识.3.解析 nn n n )13(lim ++∞→ 21221)121(lim e n n n n n =⎥⎦⎤⎢⎣⎡++=++∞→说明:本题考查数列极限公式的应用.根据已知极限和四则运算求其它极限例 若12lim =∞→n n na ,且n n a ∞→lim 存在,则.________)1(lim =-∞→n n a nA .0B .21 C .21- D .不存在 分析:根据题设知n na 和n a 均存在极限,这是进行极限运算的前提,然后相减即可求得结论.解:,lim ,12lim 存在n n n n na na ∞→∞→=0lim 021lim2lim lim =∴==∴∞→∞→∞→∞→n n n nn nn a n na a又21lim ,12lim ==∞→∞→n n n n na na ∴21210lim lim )(lim )1(lim =-=-=-=-∞→∞→∞→∞→n n n n n n n n n na a na a a n 即.21)1(lim -=-∞→n n a n选C .说明:n n a ∞→lim 是关键,不能错误地认为0lim =∞→n n a ,0)1(lim =-∞→n n a n .两个数列{}n a 、{}n b 的极限存在是两个数列的和.差、积存在极限的充分条件.但⎭⎬⎫⎩⎨⎧n n b a 的极限不一定存在.化简表达式再求数列的极限例 求下列极限 (1)⎪⎭⎫⎝⎛+++++++++∞→112171513lim 2222n n n n n n (2)nnn 21412113191311lim ++++++++∞→ (3)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→211511411311lim n n n 分析:先运用等差数列、等比数列的前n 项公式求和,或运用其他方式化简所给表达式,再进行极限的四则运算.解:(1)原式1)12(753lim2++++++=∞→n n n 11121lim 1)2(lim 22=++=++=∞→∞→nn n n n n n (2)原式n n n n nn ⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=∞→∞→211311lim 34211231123lim 4301013421lim 1lim 31lim 1lim 34=--⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=∞→∞→∞→∞→n n n nn n (3)原式.222lim21544332lim =+=⎪⎭⎫ ⎝⎛++⋅⋅⋅=∞→∞→n n n n n n n 说明:先化简,再求极限是求极限经常用到的方法,不能认为0112lim ,,015lim ,013lim 222=++=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→∞→n n n n n n n 而得到(1)的结果是0.无穷比无穷和字母讨论的数列极限例 求下列极限:(1)n n n n n 3423352lim 11⋅+⋅⋅-++∞→ (2))0(11lim>+-∞→a a a nnn 分析:第(1)题属“∞∞”型,一般方法是分子,分母同除以各式中幂的值最大的式子.第(2)题中当a 的值在不同范围内变化时,分子,分母的极限或变化趋势)不同,因此要分各种情形进行讨论.解:(1)原式432315322lim 342331522lim +⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛⋅=⋅+⋅⋅-⋅=∞→∞→n nn n n nn n .41540315024lim 32lim 315lim 32lim 2-=+⨯-⨯=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=∞→∞→∞→∞→n nn n nn (2)当10<<a 时,01111lim 11lim=+-=+-∞→∞→n n n n a a , 当1>a 时,.110101lim 1lim 1lim 1lim 1111lim 11lim -=+-=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→∞→∞→∞→∞→n n n n nn n n n n n n a a a a a a说明:含参数的式子求极限,经常要进行讨论,容易出现的问题是错误地认为0lim =∞→n n a .根据极限确定等比数列首项的取值范围例 已知等比数列{}n a 的首项为1a ,公比为q ,且有211lim 1=⎪⎪⎭⎫ ⎝⎛-+∞→n n q q a ,求1a 的取值范围.分析:由已知条件及所给式子的极限存在,可知nn q ∞→lim 存在,因此可得q 的取值范围,从而确定出1a 的取值范围.解:由211lim 1=⎪⎪⎭⎫⎝⎛-+∞→n n q q a ,得nn q ∞→lim 存在. ∴1<q 且0≠q 或1=q .. 当1<q 时,有2111=+q a , ∴121-=a q ,∴112<-a 解得101<<a , 又0≠q ,因此211≠a . 当1=q 时,这时有2112lim 1=⎪⎭⎫⎝⎛-∞→a n , ∴31=a .综上可得:101<<a ,且211≠a 或31=a . 说明:在解决与数列有关的问题时,应充分注意相关知识的性质,仅从极限的角度出发来考虑q 的特点,容易将0≠q 这一条件忽视,从而导致错误.求函数在某一点处的极限例 求下列极限:(1)⎪⎪⎭⎫⎝⎛++++→22423lim 3322x x x x x (2)401335172lim 225++++→x x x x x(3)xxx 320cos 1sin lim -→(4)⎪⎭⎫⎝⎛---→9631lim 23x x x分析:第(1)题中,2=x 在函数的定义域内,可直接用极限的四则运算法则求极限;(2)、(3)两个极限分子、分母都趋近于0,属“”型,必须先对函数变形,然后施行四则运算;(4)为“∞-∞”型,也应先对函数作适当的变形,再进行极限的运算.解:(1)22lim 423lim 22423lim 332223322++++=⎪⎪⎭⎫ ⎝⎛++++→→→x x x x x x x x x x x )2(lim 2lim )4(lim )23(lim 3232222++++=→→→→x x x x x x x x 2lim lim lim 24lim lim 2lim lim 32323223222→→→→→→→++++=x x x x x x x x x x x.513581222242223322=+=+⨯+++⨯= (2).18)5(7)5(2872lim )8)(5()72)(5(lim 401335172lim 55225-=+-+-⨯=++=++++=++++→→→x x x x x x x x x x x x x (3)xx x x x x x x x x x 20220320cos cos 1cos 1lim )cos cos 1)(cos 1(cos 1lim cos 1sin lim +++=++--=-→→→ .3211111=+++= (4).6133131lim 96)3(lim 9631lim 32323=+=+=--+=⎪⎭⎫ ⎝⎛---→→→x x x x x x x x 说明:不能错误地认为,由于31lim3-→x x 不存在,96lim 23-→x x 也不存在,因此(4)式的极限不存在.(4)属于“∞-∞”型,一般要先对函数式进行变形,变为“00”型或“∞∞”型,再求极限.函数在某一点处零比零型的极限例 求下列极限:(1)3111lim x x x --→ (2)xx x x 32sin sin tan lim -→π 分析:第(1)题中,当1→x 时,分子、分母的极限都是0,不能用商的极限的运算法则,应该先对分式变形,约去一个极限为零的因式后再应用极限的运算法则求分式的极限,常用的变换方法有:①对多项式进行因式分解;②对无理式分子或分母有理化;③对三角函数式(如第(2)题,先进行三角恒等变换,再约分.解:(1)原式)1)(1)((1()1)(1)(1(lim 32333231x x x x x x x x x +++-+++-=→.23111111)1(lim )1)(1()1)(1(lim 32313231=+++=+++=+-++-=→→xx x x x x x x x x(2)原式xx x x x x x x x x cos sin cos sin sin lim sin sin cos sin lim 3232⋅-=-=→→ππ .211)11(1cos )cos 1(1lim cos sin cos 1lim222=⨯+=⋅+=⋅-=→→x x x x x ππ 说明:如果分子、分母同乘以31x +,对(1)式进行变形,思维就会受阻,正确的方法是分子、分母同乘以分子、分母的有理化因式,分母的有理化因式是)1(323x x ++.。
23极限的四则运算 共11页

lim n
n2
n(n1)
lim
n
2n2
1
lim n 1 lim 1 n n 2n n 2
1 . 2
内容小结
求函数极限的方法
(1)极限四则运算法则 (注意使用条件) (2) 分式函数极限求法
1)xx0( 分母不为 0 )时, 用代入法
2)xx0时,
对
0 0
lim ( x53)6 x 4
lim 2x13 . x4 x2 2
有理化
4x2 3x9
例4:求
lx im 5x2
. 2x1
( )
解
原式
l
i
43 m
1 x
9
1 x2
x
52
1 x
1 x2
4
5
分子、分母同除
的 x最高次幂
4x2 3x9 例5:求 lx im 5x3 2x1 .
.
x (2x3)20
例 7:l求 i(m 1 2 ) x 1 x1 x21
()
解
原式
limx12 x1 x2 1
1 lim
x1 x 1
1 2
通分
例 8:li(m 12 n) (无穷多个无穷小的代数 和)
n n n 2
2
n2
解
原式
12n
第二章
§2-3 极限的四则运算
极限的四则运算法则
定理 1 、若 li f( x m ) A ,li g ( x m ) B ,则有
1、lifm (x ) g [(x ) ]lifm (x ) lig m (x )AB
2、lim f(x)g [ (x) ]lim f(x)lig m (x) AB
第二章极限习题及答案:极限的四则运算

分类讨论求极限例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim-∞→nnn S S .(1997年全国高考试题,理科难度0.33)解: ()()111111--+--=q q b p p a S n n n()()()()()()()()111111111111111--+----+--=---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论;(1)当1>p 时,∵ 0>>q p ,故10<<pq, ∴1lim-∞→n nn S S()()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛--+⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-------1111111111111111111lim n n n n n n n n n np p q p b p q a p p p q p b p q a p()()()()()()01011010111111⨯-+--⨯-+--⋅=p b q a p b q a p()()p q a q a p =--⋅=1111 (2)当1<p 时,∵ 10<<<p q , ∴ 1lim-∞→n nn S S()()()()()()()()11111111lim111111--+----+--=--∞→n n n n n q p b p q a q p b p q a ()()()()()()()()1011011011011111--+---⨯-+-⨯-=p b q a p b q a()()()()111111111=--------=p b q a p b q a . 说明:该题综合考查了数列的基础知识、恒等变形的能力,分类讨论的数学思想方法和求极限的方法.自变量趋向无穷时函数的极限例 求下列极限:(1)42242115lim x x x x x --+-∞→(2)⎪⎪⎭⎫⎝⎛+--∞→1212lim 223x x x x x 分析:第(1)题中,当∞→x 时,分子、分母都趋于无穷大,属于“∞∞”型,变形的一般方法是分子、分母同除以x 的最高次幂,再应用极限的运算法则.第(2)题中,当∞→x 时,分式1223-x x 与122+x x 都趋向于∞,这种形式叫“∞-∞”型,变形的一般方法是先通分,变成“∞∞”型或“00”型,再求极限. 解:(1)211151lim 2115lim 24424224--+-=--+-∞→∞→x x x x x x x x x x .212000012lim 1lim 1lim 1lim 5lim 1lim 2442-=--+-=--+-=∞→∞→∞→∞→∞→∞→x x x x x x x x xx(2))12)(12()12()12(lim 1212lim 2223223+---+=⎪⎪⎭⎫ ⎝⎛+--∞→∞→x x x x x x x x x x x x )12)(12(11lim)12)(12(lim2223xx xx x xx x x +-+=+-+=∞→∞→ 41)02)(02(01)12(lim )12(lim )11(lim 2=+-+=+-+=∞→∞→∞→xx x x x x说明:“∞∞”型的式子求极限类似于数列极限的求法.无穷减无穷型极限求解例 求极限:(1))11(lim 22x x x x x +--++-∞→(2))11(lim 22x x x x x +--+++∞→分析:含根式的函数求极限,一般要先进行变形,进行分子、分母有理化,再求极限. 解:(1)原式22112limxx x x xx +-+++=-∞→222112limxx x x x x +-+++-=-∞→.11111112lim22-=+-+++-=-∞→x xx xx(2)原式22112limxx x x xx +-+++=+∞→.11111112lim22=+-+++=+∞→x xx xx说明:当<x 时,2x x ≠,因此211111121122222→+-+++≠+-+++x xx xxx x x x.利用运算法则求极限例 计算下列极限: (1)⎪⎭⎫⎝⎛+-+++++++∞→123171411lim 2222n n n n n n ; (2)()⎥⎦⎤⎢⎣⎡-+++--∞→n n n 3112719131lim 1 . (1992年全国高考试题,文科难度0.63)解: (1)原式()11321lim 2+-=∞→n n n n()232213lim 123lim 222=+-=+-=∞→∞→nn n n n n n . (2)原式⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→31131131lim nn []41014131141lim =-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→nn .说明:该题计算时,要先求和,再求所得代数式的极限,不能将只适用有限个数列的加、减、乘、除的数列极限的四则运算法则,照搬到无限个数列的加、减、乘、除,超出了法则的适用范围,下面的计算是错误的: (1)原式123lim14lim 11lim 222+-+++++=∞→∞→∞→n n n n n n n (2)原式()4131131027********lim 271lim 91lim 31lim 1=⎪⎭⎫ ⎝⎛--=+++-=-+++-=-∞→∞→∞→∞→ n n n n n n 用二项式定理展开或逆用等比数列和公式化简求极限例 设*N p ∈,求nn p n 1111lim1-⎪⎭⎫ ⎝⎛++∞→.分析:把111+⎪⎭⎫⎝⎛+p n 用二项式定理展开或逆用等比数列和公式即可求得.解:111221111)1()1(1111++++++++++=⎪⎭⎫ ⎝⎛+p p p p p p nC n C n C n pp p p p p p nC C n C n C nn )1()1(111111131221111++++++++++=-⎪⎭⎫ ⎝⎛+∴11111lim 111+==-⎪⎭⎫ ⎝⎛+∴++∞→p C nn p p n或:逆用等比数列求和公式:原式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=∞→pn n n n 1111111lim 211111+=+++=+p p个说明:要注意p 是与n 无关的正整数,111+⎪⎭⎫⎝⎛+p n 不是无限项,对某些分式求极限应先对式子进行必要的变形,使之成为便于求极限的形式,以利问题的解决,经常用到的技巧是分母、分子有理化或按二项式定理展开等等.零乘无穷型转化为无穷除无穷型例 求.)1(lim n n n n -+∞→分析:当∞→n 时,所求极限相当于∞⋅0型,需要设法化为我们熟悉的∞∞型. 解: n n n n )1(lim -+∞→.211111lim 1lim)1()1)(1(lim =++=++=++++-+=∞→∞→∞→nnn n n n n n n n n n n n说明:对于这种含有根号的∞⋅0型的极限,可采取分子有理化或分母有理化来实现.如本题是通过分子有理化,从而化为nn n++1,即为∞∞型,也可以将分子、分母同除以n的最高次幂即n ,完成极限的计算.根据极限确定字母的范围例 已知161)2(44lim 2=+++∞→n n n n m ,求实数m 的取值范围.分析:这是一个已知极限的值求参数的范围问题,我们仍然从求极限入手来解决.解:16142161lim )2(44lim 2=⎪⎭⎫⎝⎛++=++∞→+∞→nn n n nn m m 于是142<+m ,即26,424<<-<+<-m m . 说明:在解题过程中,运用了逆向思维,由16142161lim =⎪⎭⎫⎝⎛++∞→n n m 可知,nm ⎪⎭⎫⎝⎛+42的极限必为0,而0→nq 的充要条件是1<q ,于是解不等式142<+m . 零比零型的极限例 求xx x 11lim10-+→. 分析:这是一个00型的极限,显然当0→x 时,直接从函数x x 1110-+分子、分母中约去x 有困难,但是1110-+x 当0→x 时也趋近于0,此时x 化为1)1(1010-+x ,这就启发我们通过换元来解决这一难题,即设101x y +=,则110-=y x .解:设101x y +=,则110-=y x ,于是,当0→x 时,1→y .原式10111lim 11lim891101=++++=--=→→y y y y y y y 说明:本题采用的换元法是把0→x 化为01→-y ,这是一种变量代换.灵活地运用这种代换,可以解决一些型的极限问题. 例如对于11lim 21--→x x x ,我们一般采用因式分解,然后约去1-x ,得到2)1(lim 1=+→x x .其实也可以采用这种代换,即设1-=x t ,则当1→x 时,0→t ,这样就有.2)2(lim 1)1(lim 11lim 02021=+=-+=--→→→t tt x x t t x 组合与极限的综合题例 ) (lim 1222=++∞→n n nn n C CA .0B .2C .21 D .41 分析:将组合项展开后化简再求极限.解: 1222lim ++∞→n n nn n C C.4126412lim )22)(12()1(lim)!22()!1()!1(!!)!2(lim 222=++++=+++=⎥⎦⎤⎢⎣⎡++⋅+⋅=∞→∞→∞→n n n n n n n n n n n n n n n n 故应选D .说明:本题考查组合的运算和数列极限的概念.高考填空题1.计算.________)2(lim =+∞→nn n n 2.若数列{}n a 的通项公式是)N ()1(1*∈+=n n n a n ,则.________)(lim 21=+∞→n n a n a3.计算:.________)13(lim =++∞→nn n n1.解析 22222221221lim 2lim -+--+-∞→∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+e n n n n n n n nn n n说明:利用数列极限公式e n nn =⎪⎭⎫⎝⎛+∞→11lim ,把原题的代数式稍加变形即可获解.本题主要考查灵活运用数列极限公式的能力.2.解析 .21,)1(11=∴+=a n n a n.23121)11121(lim )1(121lim 2=+=++=⎥⎦⎤⎢⎣⎡+⋅+∴∞→∞→nn n n n n说明:本题的思考障碍点是如何求1a ?——只要懂得在通项公式中令1=n ,可立得1a 的具体值,本题考查数列极限的基本知识.3.解析 nn n n )13(lim ++∞→ 21221)121(lim e n n n n n =⎥⎦⎤⎢⎣⎡++=++∞→说明:本题考查数列极限公式的应用.根据已知极限和四则运算求其它极限例 若12lim =∞→n n na ,且n n a ∞→lim 存在,则.________)1(lim =-∞→n n a nA .0B .21 C .21- D .不存在 分析:根据题设知n na 和n a 均存在极限,这是进行极限运算的前提,然后相减即可求得结论.解:,lim ,12lim 存在n n n n na na ∞→∞→=0lim 021lim2lim lim =∴==∴∞→∞→∞→∞→n n n nn nn a n na a又21lim ,12lim ==∞→∞→n n n n na na ∴21210lim lim )(lim )1(lim =-=-=-=-∞→∞→∞→∞→n n n n n n n n n na a na a a n 即.21)1(lim -=-∞→n n a n选C .说明:n n a ∞→lim 是关键,不能错误地认为0lim =∞→n n a ,0)1(lim =-∞→n n a n .两个数列{}n a 、{}n b 的极限存在是两个数列的和.差、积存在极限的充分条件.但⎭⎬⎫⎩⎨⎧n n b a的极限不一定存在.化简表达式再求数列的极限例 求下列极限 (1)⎪⎭⎫⎝⎛+++++++++∞→112171513lim 2222n n n n n n (2)nnn 21412113191311lim ++++++++∞→ (3)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→211511411311lim n n n 分析:先运用等差数列、等比数列的前n 项公式求和,或运用其他方式化简所给表达式,再进行极限的四则运算.解:(1)原式1)12(753lim2++++++=∞→n n n 11121lim 1)2(lim 22=++=++=∞→∞→nn n n n n n (2)原式nn n n nn ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∞→∞→211311lim 34211231123lim4301013421lim 1lim 31lim 1lim 34=--⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=∞→∞→∞→∞→n n n nn n (3)原式.222lim 21544332lim =+=⎪⎭⎫ ⎝⎛++⋅⋅⋅=∞→∞→n n n n n n n 说明:先化简,再求极限是求极限经常用到的方法,不能认为0112lim ,,015lim ,013lim 222=++=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→∞→n n n n n n n 而得到(1)的结果是0. 无穷比无穷和字母讨论的数列极限例 求下列极限:(1)n n n n n 3423352lim 11⋅+⋅⋅-++∞→ (2))0(11lim>+-∞→a a a nnn 分析:第(1)题属“∞∞”型,一般方法是分子,分母同除以各式中幂的值最大的式子.第(2)题中当a 的值在不同范围内变化时,分子,分母的极限或变化趋势)不同,因此要分各种情形进行讨论.解:(1)原式432315322lim 342331522lim +⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛⋅=⋅+⋅⋅-⋅=∞→∞→n nn n n n n n .41540315024lim 32lim 315lim 32lim 2-=+⨯-⨯=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=∞→∞→∞→∞→n nn n nn (2)当10<<a 时,01111lim 11lim=+-=+-∞→∞→n n n n a a , 当1>a 时,.110101lim 1lim 1lim 1lim 1111lim 11lim -=+-=+⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→∞→∞→∞→∞→n n n n nn n n n n n n a a a a a a 说明:含参数的式子求极限,经常要进行讨论,容易出现的问题是错误地认为0lim =∞→n n a .根据极限确定等比数列首项的取值范围例 已知等比数列{}n a 的首项为1a ,公比为q ,且有211lim 1=⎪⎪⎭⎫ ⎝⎛-+∞→n n q q a ,求1a 的取值范围.分析:由已知条件及所给式子的极限存在,可知nn q ∞→lim 存在,因此可得q 的取值范围,从而确定出1a 的取值范围.解:由211lim 1=⎪⎪⎭⎫⎝⎛-+∞→n n q q a ,得nn q ∞→lim 存在. ∴1<q 且0≠q 或1=q ..当1<q 时,有2111=+q a , ∴121-=a q , ∴112<-a 解得101<<a ,又0≠q ,因此211≠a . 当1=q 时,这时有2112lim 1=⎪⎭⎫⎝⎛-∞→a n , ∴31=a . 综上可得:101<<a ,且211≠a 或31=a . 说明:在解决与数列有关的问题时,应充分注意相关知识的性质,仅从极限的角度出发来考虑q 的特点,容易将0≠q 这一条件忽视,从而导致错误.求函数在某一点处的极限例 求下列极限:(1)⎪⎪⎭⎫ ⎝⎛++++→22423lim 3322x x x x x (2)401335172lim 225++++→x x x x x (3)xx x 320cos 1sin lim -→ (4)⎪⎭⎫ ⎝⎛---→9631lim 23x x x 分析:第(1)题中,2=x 在函数的定义域内,可直接用极限的四则运算法则求极限;(2)、(3)两个极限分子、分母都趋近于0,属“00”型,必须先对函数变形,然后施行四则运算;(4)为“∞-∞”型,也应先对函数作适当的变形,再进行极限的运算.解:(1)22lim 423lim 22423lim 332223322++++=⎪⎪⎭⎫ ⎝⎛++++→→→x x x x x x x x x x x )2(lim 2lim )4(lim )23(lim 3232222++++=→→→→x x x x x x x x2lim lim lim 24lim lim 2lim lim 32323223222→→→→→→→++++=x x x x x x x x x x x.513581222242223322=+=+⨯+++⨯= (2).18)5(7)5(2872lim )8)(5()72)(5(lim 401335172lim 55225-=+-+-⨯=++=++++=++++→→→x x x x x x x x x x x x x (3)xx x x x x x x x x x 20220320cos cos 1cos 1lim )cos cos 1)(cos 1(cos 1lim cos 1sin lim +++=++--=-→→→ .3211111=+++= (4).6133131lim 96)3(lim 9631lim 32323=+=+=--+=⎪⎭⎫⎝⎛---→→→x x x x x x x x 说明:不能错误地认为,由于31lim3-→x x 不存在,96lim 23-→x x 也不存在,因此(4)式的极限不存在.(4)属于“∞-∞”型,一般要先对函数式进行变形,变为“00”型或“∞∞”型,再求极限.函数在某一点处零比零型的极限例 求下列极限:(1)3111lim x x x --→ (2)xx x x 32sin sin tan lim -→π 分析:第(1)题中,当1→x 时,分子、分母的极限都是0,不能用商的极限的运算法则,应该先对分式变形,约去一个极限为零的因式后再应用极限的运算法则求分式的极限,常用的变换方法有:①对多项式进行因式分解;②对无理式分子或分母有理化;③对三角函数式(如第(2)题,先进行三角恒等变换,再约分.解:(1)原式)1)(1)((1()1)(1)(1(lim 32333231x x x x x x x x x +++-+++-=→.23111111)1(lim )1)(1()1)(1(lim 32313231=+++=+++=+-++-=→→x x x x x x x x x x(2)原式xx x x x x xx x x cos sin cos sin sin lim sin sin cos sin lim 3232⋅-=-=→→ππ .211)11(1cos )cos 1(1lim cos sin cos 1lim222=⨯+=⋅+=⋅-=→→x x x x x ππ 说明:如果分子、分母同乘以31x +,对(1)式进行变形,思维就会受阻,正确的方法是分子、分母同乘以分子、分母的有理化因式,分母的有理化因式是)1(323x x ++.。
极限四则运算

(3n 2)(3n 1)
1/3
例4: 已知lim x2 ax 3 b, 求常数a,b的值
x1
x 1
a=-2;b=-4
例5: 在半径为R的圆内接正n边形中,r 是边心距, n
p 是周长,S 是面积
n
n
1) S 与p 有什么关系
n
n
2)
求 lim
rn与lim
p n
n
n
3) 利用1),2)的结果, 说明圆面积公式S R2
例6:1) 已知首项为a , 公比 1
为q(0 | q | 1)的无穷递缩等
比数列的前n项和为S , n
求 lim
S n
n
R O rn
2)如图, 在直角坐标平面内, 动点P由原点O出发,
沿x轴正方向前进a个单位, 到达P点, 接着沿y轴 1
的正方向前进a 个单位, 到达P点, 而后又沿x轴
2
2
的负方向前进个 a 单位, 到达P点, 再沿y轴的负
22
3
方向前进 a 个单位到达P点,
23
4
y
以后将以上述方式运动无限继续
下去, 试求点P的极限位置。
P3
P2
P4 P5
作业:练习:P91 4a , 2a O 5 5
P1 x
极限的 四则运算
引入 1、当 x
∞时, 函数f(x)的极限
lim f ( x) lim f (x) a lim f ( x) a
x
x
x
x x 2 、 当
0 时,函数f(x)的极限
lim f (x) lim f (x) a lim f (x) a
极限的四则运算1(2019新)

a b
(b
0)
特别地
(1)limC f ( x) C lim f ( x() C为常数)
x x0
x x0
n
(2) lim x x0
f
( x)n
lim
x x0
f ( x)
(n N* )
(3)这些法则对 x 的情况仍然成立.
; / 期货 ;
朝统治者多次称大元为“中国 : 孛儿只斤·蒙哥 9倍 其他 [30] 所以实质性的汉制改革是在熙宗朝进行的 无论多少 汉人占了409位 军事机关原设有都统 布里牙特·乌格齐 [59] 中央制度 等级制度 以刘整为前锋 改变了蒙古人的游牧传统 人视之以为血仇骨怨 但是长期以来 消除 后顾之忧后 至治1321年-1323年 1454年-1465年 防御州设防御使 1280年元世祖命女真人都实探求黄河河源 金朝户口流动表 [38] [143] 天元1379年-1388年 以毡帐为居室 元朝时 金朝壁画 主要国家 对经济采取务实的态度 民口一千 金哀宗先奔归德府(今河南商丘) 在戏曲方面 高丽基本上断绝了同北元的关系 藩属 [84] 元朝灭宋后 大汗权力高于一切 甘麻剌 - 吾从司马公 [73] [20] [2] 其中仅官员将校就有三千三百多人 [29] 蒙哥大汗登基的日期就是星占家们测定出来的 九月 公元1114年9月 西南诸族 可以单独唱也可以融入歌剧内 瓦剌的势力由此达 到最盛 蒙古帝国的版图扩张源于其曾发动三次蒙古西征 蒙古人的直系祖先是和鲜卑 契丹人属同一语系的室韦各部落 之后 完泽笃汗 随着时间的推移 向辽东和青海方向延伸 转为立足于蒙古本身 此外元廷还领有东北地区与云南地区 [4] 蒙古击败乃蛮部落时 占卜者们人数很多 仅率十 八骑逃入甘肃 孛儿只斤·布延 1592年-1
高等数学微积分第2章第4节极限的四则运算

x2 ax b
limBiblioteka 3x1 x 1所以 lim( x2 ax b) 0 x1
又 lim( x2 ax b) 1 a b 故 1 a b 0 x1
将 b 1 a 代入原式
得 lim x2 ax 1 a lim ( x 1)( x 1 a) 2 a
x
( x1 x)
lim
1
x x 1 x
0.
6.x 时多项式 / 多项式的极限
例8
求
lim
x
2x2 3x 3x3 4x2
1 2
.
解
原式
2 lim[( x x
3 x2
1 x3
) /(3
4 x
2 x3
)]
0.
例9
求
lim
x
3
约去公因子.
既使不是
0 0
型,
只要分子
分母中有公因子, 一般的处理方法也是
将公因子先约去然后再计算.
(3) 带根号将根号有理化.
5.函数相减求极限(其中每一部分均为)
例6
求
lim( 1 x1 x 1
2 x2 1).
解
原式
lim
x1
(
x 1) x2
1
2
lim
x1
x1 x2 1
7.分段函数求极限
8.数列求极限 9.杂例
总结
作业题
1.牢记各种类型极限的求法. 2.习题二 (A) 10、11、12、13、
14、15、16.
例2 求 lim x2 3x 1 . x2 x 3
极限的四则运算

例
3
求 解 lim x-0 lim x-0 lim x-0
x-1
x x-1
-1
-1
x
1
= lim x-0 x· ( = 1/2
x x+1 +1)
=
x+1 +1
注意:根式有理化
例 4 求 x-
lim
8
x2+x+1 1+1/x2 lim x- 1+1/x+1/x2
注意: 当 x-
分子、分母中同除以x的最高次幂,利 1 用 lim =0 就可以求极限了. n x- x 你们来做 3x2+5x+1 lim x4x2-5x+7
8
答案:3/4
8
8
8
解: lim x-
x2+x+1 =
=1
8
同学们我们这节一课学到了什么?
本节课主要学习了函数极限的四则运算法则, 其实质为函数极限运算与四则运算可以交换运 算顺序.并了解求函数极限的几种基本方法: (1)代入法 (2)对0/0型极限的求法可通过因 式分解,根式有理化约去“零因式” 8 8 (3) 对 思考 的极限的计算,通常是分子、分母 同除以分母的最高次幂
注意:这
个题目中, 我们把 X=1代入 函数的解 析式就可 以了, 这 叫做 :
代入法.
那么是不是所有函数在一点处的极限都可用代入法呢? 例2 求
2 lim x -1 x-1 2x2-x-1
分析:若用代入法.则分子,分母都为0,不能求解, 但是若将分子分母分解因式,它们共有x-1这个因子.又 X无限趋近于1,但X不等于1,所以可约去x-1项.从 (x+1)(x-1) 而求解 2-1 lim x =lim 解 x-1 2x2-x-1 x-1 (x-1)(2x+1) 注意 lim (x+1) lim X+1 2 = x-1 = x-1 2x+1 lim (2x+1) = 3 x-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类讨论求极限例 已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为q p ,,其中q p >,且1≠p ,1≠q ,设n n n b a c +=,n S 为数列{}n C 的前n 项和,求1lim-∞→nnn S S .(1997年全国高考试题,理科难度0.33)解: ()()111111--+--=q q b p p a S n n n()()()()()()()()111111111111111--+----+--=---n n n n n n q p b p q a q p b p q a S S . 分两种情况讨论;(1)当1>p 时,∵ 0>>q p ,故10<<pq, ∴1lim-∞→n nn S S()()()()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫⎝⎛--+⎪⎪⎭⎫ ⎝⎛--⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-------1111111111111111111lim n n n n n n n n n np p q p b p q a p p p q p b p q a p()()()()()()01011010111111⨯-+--⨯-+--⋅=p b q a p b q a p()()p q a q a p =--⋅=1111 (2)当1<p 时,∵ 10<<<p q , ∴ 1lim-∞→n nn S S()()()()()()()()11111111lim111111--+----+--=--∞→n n n n n q p b p q a q p b p q a ()()()()()()()()1011011011011111--+---⨯-+-⨯-=p b q a p b q a()()()()111111111=--------=p b q a p b q a . 说明:该题综合考查了数列的基础知识、恒等变形的能力,分类讨论的数学思想方法和求极限的方法.自变量趋向无穷时函数的极限例 求下列极限:(1)42242115lim x x x x x --+-∞→(2)⎪⎪⎭⎫⎝⎛+--∞→1212lim 223x x x x x 分析:第(1)题中,当∞→x 时,分子、分母都趋于无穷大,属于“∞∞”型,变形的一般方法是分子、分母同除以x 的最高次幂,再应用极限的运算法则.第(2)题中,当∞→x 时,分式1223-x x 与122+x x 都趋向于∞,这种形式叫“∞-∞”型,变形的一般方法是先通分,变成“∞∞”型或“00”型,再求极限. 解:(1)211151lim 2115lim 24424224--+-=--+-∞→∞→x x x x x x x x x x .212000012lim 1lim 1lim 1lim 5lim 1lim 2442-=--+-=--+-=∞→∞→∞→∞→∞→∞→x x x x x x x x xx(2))12)(12()12()12(lim 1212lim 2223223+---+=⎪⎪⎭⎫ ⎝⎛+--∞→∞→x x x x x x x x x x x x )12)(12(11lim)12)(12(lim2223xx xx x xx x x +-+=+-+=∞→∞→ 41)02)(02(01)12(lim )12(lim )11(lim 2=+-+=+-+=∞→∞→∞→xx x x x x说明:“∞∞”型的式子求极限类似于数列极限的求法.无穷减无穷型极限求解例 求极限:(1))11(lim 22x x x x x +--++-∞→(2))11(lim 22x x x x x +--+++∞→分析:含根式的函数求极限,一般要先进行变形,进行分子、分母有理化,再求极限. 解:(1)原式22112limxx x x xx +-+++=-∞→222112limxx x x x x +-+++-=-∞→.11111112lim22-=+-+++-=-∞→x xx xx(2)原式22112limxx x x xx +-+++=+∞→.11111112lim22=+-+++=+∞→x xx xx说明:当<x 时,2x x ≠,因此211111121122222→+-+++≠+-+++x xx xxx x x x.利用运算法则求极限例 计算下列极限: (1)⎪⎭⎫⎝⎛+-+++++++∞→123171411lim 2222n n n n n n ; (2)()⎥⎦⎤⎢⎣⎡-+++--∞→n n n 3112719131lim 1 . (1992年全国高考试题,文科难度0.63)解: (1)原式()11321lim 2+-=∞→n n n n()232213lim 123lim 222=+-=+-=∞→∞→nn n n n n n . (2)原式⎪⎭⎫⎝⎛--⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→31131131lim nn []41014131141lim =-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=∞→nn .说明:该题计算时,要先求和,再求所得代数式的极限,不能将只适用有限个数列的加、减、乘、除的数列极限的四则运算法则,照搬到无限个数列的加、减、乘、除,超出了法则的适用范围,下面的计算是错误的: (1)原式123lim14lim 11lim 222+-+++++=∞→∞→∞→n n n n n n n (2)原式()4131131027********lim 271lim 91lim 31lim 1=⎪⎭⎫ ⎝⎛--=+++-=-+++-=-∞→∞→∞→∞→ n n n n n n 用二项式定理展开或逆用等比数列和公式化简求极限例 设*N p ∈,求nn p n 1111lim1-⎪⎭⎫ ⎝⎛++∞→.分析:把111+⎪⎭⎫⎝⎛+p n 用二项式定理展开或逆用等比数列和公式即可求得.解:111221111)1()1(1111++++++++++=⎪⎭⎫ ⎝⎛+p p p p p p nC n C n C n pp p p p p p nC C n C n C nn )1()1(111111131221111++++++++++=-⎪⎭⎫ ⎝⎛+∴11111lim 111+==-⎪⎭⎫ ⎝⎛+∴++∞→p C nn p p n或:逆用等比数列求和公式:原式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=∞→pn n n n 1111111lim 211111+=+++=+p p个说明:要注意p 是与n 无关的正整数,111+⎪⎭⎫⎝⎛+p n 不是无限项,对某些分式求极限应先对式子进行必要的变形,使之成为便于求极限的形式,以利问题的解决,经常用到的技巧是分母、分子有理化或按二项式定理展开等等.零乘无穷型转化为无穷除无穷型例 求.)1(lim n n n n -+∞→分析:当∞→n 时,所求极限相当于∞⋅0型,需要设法化为我们熟悉的∞∞型. 解: n n n n )1(lim -+∞→.211111lim 1lim)1()1)(1(lim =++=++=++++-+=∞→∞→∞→nnn n n n n n n n n n n n说明:对于这种含有根号的∞⋅0型的极限,可采取分子有理化或分母有理化来实现.如本题是通过分子有理化,从而化为nn n++1,即为∞∞型,也可以将分子、分母同除以n的最高次幂即n ,完成极限的计算.根据极限确定字母的范围例 已知161)2(44lim 2=+++∞→n n n n m ,求实数m 的取值范围.分析:这是一个已知极限的值求参数的范围问题,我们仍然从求极限入手来解决.解:16142161lim )2(44lim 2=⎪⎭⎫⎝⎛++=++∞→+∞→nn n n nn m m 于是142<+m ,即26,424<<-<+<-m m . 说明:在解题过程中,运用了逆向思维,由16142161lim =⎪⎭⎫⎝⎛++∞→n n m 可知,nm ⎪⎭⎫⎝⎛+42的极限必为0,而0→nq 的充要条件是1<q ,于是解不等式142<+m . 零比零型的极限例 求xx x 11lim10-+→. 分析:这是一个00型的极限,显然当0→x 时,直接从函数x x 1110-+分子、分母中约去x 有困难,但是1110-+x 当0→x 时也趋近于0,此时x 化为1)1(1010-+x ,这就启发我们通过换元来解决这一难题,即设101x y +=,则110-=y x .解:设101x y +=,则110-=y x ,于是,当0→x 时,1→y .原式10111lim 11lim891101=++++=--=→→y y y y y y y 说明:本题采用的换元法是把0→x 化为01→-y ,这是一种变量代换.灵活地运用这种代换,可以解决一些型的极限问题. 例如对于11lim 21--→x x x ,我们一般采用因式分解,然后约去1-x ,得到2)1(lim 1=+→x x .其实也可以采用这种代换,即设1-=x t ,则当1→x 时,0→t ,这样就有.2)2(lim 1)1(lim 11lim 02021=+=-+=--→→→t tt x x t t x 组合与极限的综合题例 ) (lim 1222=++∞→n n nn n C CA .0B .2C .21 D .41 分析:将组合项展开后化简再求极限.解: 1222lim ++∞→n n nn n C C.4126412lim )22)(12()1(lim)!22()!1()!1(!!)!2(lim 222=++++=+++=⎥⎦⎤⎢⎣⎡++⋅+⋅=∞→∞→∞→n n n n n n n n n n n n n n n n 故应选D .说明:本题考查组合的运算和数列极限的概念.高考填空题1.计算.________)2(lim =+∞→nn n n 2.若数列{}n a 的通项公式是)N ()1(1*∈+=n n n a n ,则.________)(lim 21=+∞→n n a n a3.计算:.________)13(lim =++∞→nn n n1.解析 22222221221lim 2lim -+--+-∞→∞→=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+e n n n n n n n nn n n说明:利用数列极限公式e n nn =⎪⎭⎫⎝⎛+∞→11lim ,把原题的代数式稍加变形即可获解.本题主要考查灵活运用数列极限公式的能力.2.解析 .21,)1(11=∴+=a n n a n.23121)11121(lim )1(121lim 2=+=++=⎥⎦⎤⎢⎣⎡+⋅+∴∞→∞→nn n n n n说明:本题的思考障碍点是如何求1a ?——只要懂得在通项公式中令1=n ,可立得1a 的具体值,本题考查数列极限的基本知识.3.解析 nn n n )13(lim ++∞→ 21221)121(lim e n n n n n =⎥⎦⎤⎢⎣⎡++=++∞→说明:本题考查数列极限公式的应用.根据已知极限和四则运算求其它极限例 若12lim =∞→n n na ,且n n a ∞→lim 存在,则.________)1(lim =-∞→n n a nA .0B .21 C .21- D .不存在 分析:根据题设知n na 和n a 均存在极限,这是进行极限运算的前提,然后相减即可求得结论.解:,lim ,12lim 存在n n n n na na ∞→∞→=0lim 021lim2lim lim =∴==∴∞→∞→∞→∞→n n n nn nn a n na a又21lim ,12lim ==∞→∞→n n n n na na ∴21210lim lim )(lim )1(lim =-=-=-=-∞→∞→∞→∞→n n n n n n n n n na a na a a n 即.21)1(lim -=-∞→n n a n选C .说明:n n a ∞→lim 是关键,不能错误地认为0lim =∞→n n a ,0)1(lim =-∞→n n a n .两个数列{}n a 、{}n b 的极限存在是两个数列的和.差、积存在极限的充分条件.但⎭⎬⎫⎩⎨⎧n n b a的极限不一定存在.化简表达式再求数列的极限例 求下列极限 (1)⎪⎭⎫⎝⎛+++++++++∞→112171513lim 2222n n n n n n (2)nnn 21412113191311lim ++++++++∞→ (3)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-∞→211511411311lim n n n 分析:先运用等差数列、等比数列的前n 项公式求和,或运用其他方式化简所给表达式,再进行极限的四则运算.解:(1)原式1)12(753lim2++++++=∞→n n n 11121lim 1)2(lim 22=++=++=∞→∞→nn n n n n n (2)原式nn n n nn ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=∞→∞→211311lim 34211231123lim4301013421lim 1lim 31lim 1lim 34=--⋅=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=∞→∞→∞→∞→n n n nn n (3)原式.222lim 21544332lim =+=⎪⎭⎫ ⎝⎛++⋅⋅⋅=∞→∞→n n n n n n n 说明:先化简,再求极限是求极限经常用到的方法,不能认为0112lim ,,015lim ,013lim 222=++=⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→∞→n n n n n n n 而得到(1)的结果是0. 无穷比无穷和字母讨论的数列极限例 求下列极限:(1)n n n n n 3423352lim 11⋅+⋅⋅-++∞→ (2))0(11lim>+-∞→a a a nnn 分析:第(1)题属“∞∞”型,一般方法是分子,分母同除以各式中幂的值最大的式子.第(2)题中当a 的值在不同范围内变化时,分子,分母的极限或变化趋势)不同,因此要分各种情形进行讨论.解:(1)原式432315322lim 342331522lim +⎪⎭⎫ ⎝⎛⋅-⎪⎭⎫ ⎝⎛⋅=⋅+⋅⋅-⋅=∞→∞→n nn n n n n n .41540315024lim 32lim 315lim 32lim 2-=+⨯-⨯=+⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=∞→∞→∞→∞→n nn n nn (2)当10<<a 时,01111lim 11lim=+-=+-∞→∞→n n n n a a , 当1>a 时,.110101lim 1lim 1lim 1lim 1111lim 11lim -=+-=+⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛=+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+-∞→∞→∞→∞→∞→∞→n n n n nn n n n n n n a a a a a a 说明:含参数的式子求极限,经常要进行讨论,容易出现的问题是错误地认为0lim =∞→n n a .根据极限确定等比数列首项的取值范围例 已知等比数列{}n a 的首项为1a ,公比为q ,且有211lim 1=⎪⎪⎭⎫ ⎝⎛-+∞→n n q q a ,求1a 的取值范围.分析:由已知条件及所给式子的极限存在,可知nn q ∞→lim 存在,因此可得q 的取值范围,从而确定出1a 的取值范围.解:由211lim 1=⎪⎪⎭⎫⎝⎛-+∞→n n q q a ,得nn q ∞→lim 存在. ∴1<q 且0≠q 或1=q ..当1<q 时,有2111=+q a , ∴121-=a q , ∴112<-a 解得101<<a ,又0≠q ,因此211≠a . 当1=q 时,这时有2112lim 1=⎪⎭⎫⎝⎛-∞→a n , ∴31=a . 综上可得:101<<a ,且211≠a 或31=a . 说明:在解决与数列有关的问题时,应充分注意相关知识的性质,仅从极限的角度出发来考虑q 的特点,容易将0≠q 这一条件忽视,从而导致错误.求函数在某一点处的极限例 求下列极限:(1)⎪⎪⎭⎫ ⎝⎛++++→22423lim 3322x x x x x (2)401335172lim 225++++→x x x x x (3)xx x 320cos 1sin lim -→ (4)⎪⎭⎫ ⎝⎛---→9631lim 23x x x 分析:第(1)题中,2=x 在函数的定义域内,可直接用极限的四则运算法则求极限;(2)、(3)两个极限分子、分母都趋近于0,属“00”型,必须先对函数变形,然后施行四则运算;(4)为“∞-∞”型,也应先对函数作适当的变形,再进行极限的运算.解:(1)22lim 423lim 22423lim 332223322++++=⎪⎪⎭⎫ ⎝⎛++++→→→x x x x x x x x x x x )2(lim 2lim )4(lim )23(lim 3232222++++=→→→→x x x x x x x x2lim lim lim 24lim lim 2lim lim 32323223222→→→→→→→++++=x x x x x x x x x x x.513581222242223322=+=+⨯+++⨯= (2).18)5(7)5(2872lim )8)(5()72)(5(lim 401335172lim 55225-=+-+-⨯=++=++++=++++→→→x x x x x x x x x x x x x (3)xx x x x x x x x x x 20220320cos cos 1cos 1lim )cos cos 1)(cos 1(cos 1lim cos 1sin lim +++=++--=-→→→ .3211111=+++= (4).6133131lim 96)3(lim 9631lim 32323=+=+=--+=⎪⎭⎫⎝⎛---→→→x x x x x x x x 说明:不能错误地认为,由于31lim3-→x x 不存在,96lim 23-→x x 也不存在,因此(4)式的极限不存在.(4)属于“∞-∞”型,一般要先对函数式进行变形,变为“00”型或“∞∞”型,再求极限.函数在某一点处零比零型的极限例 求下列极限:(1)3111lim x x x --→ (2)xx x x 32sin sin tan lim -→π 分析:第(1)题中,当1→x 时,分子、分母的极限都是0,不能用商的极限的运算法则,应该先对分式变形,约去一个极限为零的因式后再应用极限的运算法则求分式的极限,常用的变换方法有:①对多项式进行因式分解;②对无理式分子或分母有理化;③对三角函数式(如第(2)题,先进行三角恒等变换,再约分.解:(1)原式)1)(1)((1()1)(1)(1(lim 32333231x x x x x x x x x +++-+++-=→.23111111)1(lim )1)(1()1)(1(lim 32313231=+++=+++=+-++-=→→x x x x x x x x x x(2)原式xx x x x x xx x x cos sin cos sin sin lim sin sin cos sin lim 3232⋅-=-=→→ππ .211)11(1cos )cos 1(1lim cos sin cos 1lim222=⨯+=⋅+=⋅-=→→x x x x x ππ 说明:如果分子、分母同乘以31x +,对(1)式进行变形,思维就会受阻,正确的方法是分子、分母同乘以分子、分母的有理化因式,分母的有理化因式是)1(323x x ++.。