极限的运算法则总结
极限的运算法则

常数因子可以提到极限记号外面.
推论2
如果 lim f ( x)存在,而n是正整数,则 lim[ f ( x)]n [lim f ( x)]n .
二、求极限方法举例
例1
求
lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3 x 5) lim x 2 lim 3 x lim 5
5 1
2 lim
x
7
3
x 4
x
5 x3 1 x3
2. 7
(无穷小因子分出法)
小结: 当a0 0, b0 0, m和n为非负整数时有
lim
x
a0 x m b0 x n
a1 x m 1 b1 x n1
am bn
0ab,00当,当n n
m m,
,
,当n m,
无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出 无穷小,然后再求极限.
lim
x x0
f
( x)
a
0
(
lim
x x0
x)n
a1
(
lim
x x0
x)n1
an
a0 x0 n a1 x0 n1 an f ( x0 ).
2. 设
f
(
x)
P( x) Q( x)
,
且Q( x0
)
0,
则有
lim P( x)
lim f ( x) x x0
x x0
lim Q( x)
x x0
一、极限运算法则
定理 设 lim f ( x) A, lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g( x) B
极限的运算法则及计算方法

极限的运算法则及计算方法极限是微积分中的一个重要概念,用于研究函数在接近其中一点时的趋势。
在许多情况下,计算极限可以通过应用一些运算法则来简化。
本文将介绍极限的运算法则以及一些常用的计算方法。
一、极限的四则运算法则1. 乘法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) * g(x))的极限等于f(x)的极限乘以g(x)的极限,即lim(x→a) [f(x) * g(x)] = lim(x→a) f(x) * lim(x→a) g(x)。
2. 除法法则:如果函数f(x)的极限存在,g(x)的极限存在且g(x)不等于0,则(f(x) / g(x))的极限等于f(x)的极限除以g(x)的极限,即lim(x→a) [f(x) / g(x)] = lim(x→a) f(x) / lim(x→a) g(x)。
3. 加法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) + g(x))的极限等于f(x)的极限加上g(x)的极限,即lim(x→a) [f(x) + g(x)] = lim(x→a) f(x) + lim(x→a) g(x)。
4. 减法法则:如果函数f(x)的极限存在,g(x)的极限存在,则(f(x) - g(x))的极限等于f(x)的极限减去g(x)的极限,即lim(x→a) [f(x) - g(x)] = lim(x→a) f(x) - lim(x→a) g(x)。
二、极限的乘方法则1. 幂函数法则:对于任意正整数n,如果函数f(x)的极限存在,则(f(x)^n)的极限等于f(x)的极限的n次方,即lim(x→a) [f(x)^n] = [lim(x→a) f(x)]^n。
2. 平方根法则:如果函数f(x)的极限存在且大于等于0,则√[f(x)]的极限等于f(x)的极限的平方根,即lim(x→a) √[f(x)] =√[lim(x→a) f(x)]。
三、特殊函数的极限计算法则1. 三角函数:常见的三角函数包括正弦函数sin(x)、余弦函数cos(x)和正切函数tan(x)等。
极限运算法则

但在点 x0 的某去心邻域内 ϕ ( x ) ≠ a,又 lim f ( u) = A,
u→ a
时的极限也存在, 则复合函数 f [ϕ ( x )] 当 x → x0 时的极限也存在,且
x → x0
lim f [ϕ ( x )] = lim f ( u) = A.
u→ a
意义: 意义:
x → x0
第六节
极限运算法则
1、极限运算法则 、 2、求极限方法举例 、
一、极限运算法则
定理 设lim f ( x) = A, lim g( x) = B,则
(1) lim[ f ( x) ± g( x)] = A ± B; (2) lim[ f ( x) ⋅ g( x)] = A⋅ B; f ( x) A (3) lim = , 其中B ≠ 0. g( x) B
证 Q lim f ( x ) = A, lim g ( x ) = B .
∴ f ( x ) = A + α,
g ( x ) = B + β. 其中α → 0, β → 0.
由无穷小运算法则,得 由无穷小运算法则 得
[ f ( x ) ± g ( x )] − ( A ± B ) = α ± β → 0. ∴ (1)成立. [ f ( x ) ⋅ g ( x )] − ( A ⋅ B ) = ( A + α )( B + β ) − AB = ( Aβ + Bα ) + αβ → 0.
2 x→2
= (lim x ) 2 − 3 lim x + lim 5
x→2 x→2 x→2
= 2 2 − 3 ⋅ 2 + 5 = 3 ≠ 0,
lim x − lim 1 x −1 23 − 1 7 x→2 x→2 = ∴ lim 2 = . = 2 x→2 x − 3 x + 5 3 lim( x − 3 x + 5) 3
高等数学 极限运算法则

x→ 0
x→ 0 2
x→ −∞
x→−∞
目录
上页
下页
返回
结束
内容小结
1. 极限运算法则 (1) 无穷小运算法则 (2) 极限四则运算法则 2. 求函数极限的方法 分式函数极限求法 1 x →x0 时, 用代入法 ) ( 要求分母不为 0 ) 注意使用条件
2) x →x0 时, 对 0 型 , 约去公因子 0
x −1 f (0 ) = lim f (x) = lim( 3 ) =−1 x→ + 0 x→ + x +1 0 故 lim f (x) =−1 x→ 0 x2 −1 lim f (x) = xlim( 3 ) = 0 → +∞ x +1 x→ +∞ lim f (x) = lim(x −1) =−∞
x = 3 时分母为 0 !
目录
上页
下页
返回
结束
例5 . 求 解: x = 1 时, 分母 = 0 , 分子≠0 ,
2
但因
x −5x + 4 12 −5⋅1+ 4 lim = =0 x→ 2x −3 1 2⋅1−3
目录
上页
下页
返回
结束
结论:
1.已知多项式 2.已知分式函数 若 若 则 去公因子再求 则 求
目录
上页
下页
返回
结束
( C 为常数 ) ( n 为正整数 )
目录
上页
下页
返回
结束
思考: 思考:1. 答: 不存在 . 否则由 利用极限四则运算法则可知 2.
问 是否存在 ? 为什么 ? 存在 , 矛盾 矛盾. 问 是否一定不存在 ?
极限的运算法则

lim(
n
1 n2
2 n2
n n2
)
lim
n
1
2
n2
n
1 n(n 1)
lim 2 n
n2
1 2
lim(1
n
n1 )
1. 2
目录
小结
------极限求法;
1.多项式与分母不为零的分式函数代入法求极限;
2.利用无穷小与无穷大的关系求 A型极限;
0
0
3.消去零因子法求 0极限;
4.分子分母同除以x的最高次方法求 (x 型) 极限; 5.通分法求 极限;
0
则来计算的极限
目录
*求未定式极限方法举例、练习 1. 0 型有理式 0
约零因子法(因 式分解)
方法:分子分母分解因式,消去使他们趋于
零的公因子
( 0型) 0
解
目录
x2 9 lim x3 x 3
解 分析:因为 lim(x2 9) 0,lim(x 3) 0.
x3
x3
lim x2 9 lim ( x 3)( x 3) lim( x 3) 6
lim[c f (x)] c lim f (x) (c为常数)
特例2:推广到有限个函数的积
3、除法法则: 商的极限等于极限的商
lim
f (x) g( x)
lim f (x)
lim g(x)
A B
(B 0)
小 结: 函数的和、差、积、商的极限等于函数极限
的和、差、积、商
目录
(1)和函数的极限等于极限的和. (2)积函数的极限等于极限的乘积. (3)商函数的极限等于极限的商(分母不为零).
lim
x
2 3
极限运算法则

= 2 2 − 3 ⋅ 2 + 5 = 3 ≠ 0,
lim x − lim 1 x −1 23 − 1 7 x→2 x→2 = ∴ lim 2 = . = 2 x→2 x − 3 x + 5 3 lim( x − 3 x + 5) 3 x→2
3
3
4x − 1 . 例2 求 lim 2 x →1 x + 2 x − 3
lim [ f ( x ) ⋅ g ( x )] = lim f ( x ) ⋅ lim g ( x )
x → x0 x → x0
x → x0
lim kf ( x ) = k lim f ( x )
x → x0
(k为常 数)
3) 当 lim g ( x ) ≠ 0 时,
x → x0
f ( x) lim = lim f ( x ) / lim g ( x ). x → x0 g ( x ) x → x0 x → x0
( x 2 + 2 x − 3) = 0, x − 1) = 3 ≠ 0,
x →1
x2 + 2x − 3 0 ∴ lim = = 0. x →1 4x − 1 3
∴ lim 4x − 1 x + 2x − 3
2 x →1
= ∞.
小结: 1. 设 f ( x ) = a 0 x n + a1 x n −1 +
=
u→ B ln A
lim e u = e B ln A = A B .
极限存在准则、两个重要极限
极限存在准则 两个重要极限
1、极限存在准则
数列极限的夹挤准则
准则Ⅰ 如果数列 x n , y n 及 z n 满足下列条件:
极限四则运算法则

DOCS SMART CREATE
极限四则运算法则
DOCS
01
极限四则运算的基本概念
极限的定义与性质
极限的定义
• 数列极限:当自变量趋向某一值时,数列的项趋向另一值
• 函数极限:当自变量趋向某一值时,函数的值趋向另一值
极限的性质
• 极限存在唯一性:如果一个函数在某个点存在极限,那么这个极限是唯一的
DOCS
间接法求解极限的步骤
• 通过已知条件和极限的性质,间接求出极限的值
• 分析已知条件,找出与极限相关的表达式
• 根据极限的性质,将表达式变形
• 求出极限的值
无穷小量与无穷大量在极限运算中的应用
无穷小量的概念
• 当自变量趋向某一值时,函数值趋向于0,但永远无法等于0
无穷大量的概念
• 当自变量趋向某一值时,函数值趋向于无穷大,但永远无法等于无穷
• 将复杂的极限问题转化为导数问题
过求导数的方法求解极限
• 通过洛必达法则求解极限,简化运算过程
对数函数与指数函数在极限运算中的技巧
对数函数与指数函数在极限运算中的性质
• 对数函数的极限:当自变量趋向于无穷大时,对数函数的极限等于无穷小量
• 指数函数的极限:当自变量趋向于无穷大时,指数函数的极限等于无穷大量
对数函数与指数函数在极限运算中的应用
• 利用对数函数和指数函数的性质,简化极限运算
• 通过变换函数形式,将复杂的极限问题转化为简单的极限问题
04
极限四则运算的案例分析
连续函数与间断函数的极限分析
连续函数的极限分析
断续函数的极限分析
• 连续函数在一点的极限等于函数在该点的值
极限运算法则

x 1 u2 1 u 1 ∴ 原式 lim(u 1) 2 u 1 x 1 u 1
方法 2
( x 1)( x 1) lim( x 1) lim x 1 x 1 x 1
2
小结
1.无穷小运算法则;极限的四则运算法则;复合函数的极 限运算法则. 2.极限求法; a.多项式与分式函数代入法求极限;
n 1
a n f ( x0 ).
P( x) 2. 设 f ( x ) , 且Q( x0 ) 0, 则有 Q( x )
P ( x0 ) lim f ( x ) f ( x0 ). x x0 lim Q( x ) Q( x 0 )
x x0 x x0
lim P ( x )
3 (1);
5
备用题 设 求 解: 是多项式 , 且 利用前一极限式可令
f ( x) 2 x 3 2 x 2 a x b
再利用后一极限式 , 得
f ( x) b 3 lim lim (a ) x 0 x x 0 x
可见 故
思考及练习 1. 问
是否存在 ? 为什么 ?
答: 不存在 . 否则由
利用极限四则运算法则可知
矛盾. 2.
存在 , 与已知条件
n (n 1) 1 1 1 解: 原式 lim lim (1 ) 2 n 2n n 2 n 2
3. 求 解法 1 原式 = lim
x x2 1 x
x
lim
x
若Q( x0 ) 0, 则商的法则不能应用 .
4x 1 . 例2 求 lim 2 x 1 x 2 x 3
解 lim( x 2 2 x 3) 0,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限的运算法则总结
在数学中,极限是一种重要的概念,用来描述函数在某一点趋近于某个值的行为。
极限的运算法则是一组规则,用于计算或简化满足特定条件的极限。
这些法则将在以下几个方面进行总结和讨论。
1. 四则运算法则:根据四则运算法则,如果两个函数的极限都存在,那么它们
的和、差、乘积以及商的极限也存在,并且等于相应运算的极限结果。
2. 乘法法则:该法则说明了两个函数极限的乘积是等于各自极限的乘积。
根据
这个法则,如果函数 f(x) 的极限为 A,函数 g(x) 的极限为 B,则 f(x) * g(x) 的极限
为 A * B。
3. 除法法则:该法则说明了两个函数极限的商等于各自极限的商。
按照这个法则,如果函数 f(x) 的极限为 A,函数 g(x) 的极限为 B,并且 B 不等于 0,则 f(x) /
g(x) 的极限为 A / B。
4. 幂函数法则:幂函数法则用于处理具有指数的函数。
根据这个法则,如果函
数 f(x) 的极限为 A,则 f(x)^n 的极限等于 A^n,其中 n 是一个常数。
5. 复合函数法则:复合函数法则适用于复合函数的极限计算,也称为链式法则。
根据这个法则,如果函数 f(x) 的极限为 A,函数 g(x) 在 A 的附近连续,则复合函
数 g(f(x)) 的极限等于 g(A)。
这些极限运算法则在求解极限问题时起到了重要的作用。
通过应用这些法则,
我们可以更简单地计算极限,并获得更准确的结果。
然而,在实际应用中,我们仍需注意特殊情况和条件,以确保运算正确性。