圆周角定理及其运用PPT课件

合集下载

圆周角定理及其运用课件

圆周角定理及其运用课件

已知:△ABC 中,CO为AB边上的中线,且CO= 1 AB
2 求证: △ABC 为直角三角形.
C
证明: 以AB为直径作⊙O, 1
∵AO=BO, CO= 2 AB,
A
·
B
O
∴AO=BO=CO.
∴点C在⊙O上.
又∵AB为直径,
∴∠ACB=
1 2
×180°= 90°.
∴ △ABC 为直角三角形.
•圆周角定理及其运用
D
A1
87
2
3 4
B
6
5
C
•圆周角定理及其运用
探究与思考:
问题1:如图,AB是⊙O的直径,请问: ∠C1、∠C2、∠C3的度数是 90°。
C1 C2
C3
问题2: 若∠C1、∠C2、∠C3是
直角,那么∠AOB是

180°
A
O
B 推论:半圆(或直径)所对的 圆周角是直角;90°的圆周 角所对的弦是直径。
A
则∠AOC等于( )
A、50°;
B、D 80°;
C、90°;
D、100°
BO
C
2、如图,△ABC是等边三角形,
C
动点P在圆周的劣弧AB上,且不
与A、B重合,则∠BPC等于( B)
A、30°;
B、60°;
A
B
C、90°;
D、45°
P
•圆周角定理及其运用
练一练
3、如图,∠A=50°, ∠AOC=60 °
A C
●O
B
A C
A C
●O
●O
B
B
•圆周角定理及其运用
圆周角定理的证明
• H:\第24章圆.课件\圆周角定理的证明.gsp • 结论:在同圆或等圆中,一条弧所对的圆

数学九年级上第三篇第四节《圆周角》课件

数学九年级上第三篇第四节《圆周角》课件
数学九年级上第三篇第四节《圆周 角》课件
目录
• 圆周角基本概念与性质 • 圆周角定理及其推论 • 弧长与扇形面积计算 • 圆锥曲线中圆周角应用 • 拓展延伸:其他几何图形中圆周角应用 • 总结回顾与课堂练习
01 圆周角基本概念与性质
圆周角定义及特点
圆周角定义
顶点在圆上,并且两边都和圆相 交的角叫做圆周角。
圆周角性质总结
01
02
03
性质1
在同圆或等圆中,如果两 个圆周角相等,那么它们 所对的弧也相等。
性质2
在同圆或等圆中,如果两 条弧相等,那么它们所对 的圆周角也相等。
性质3
在同圆或等圆中,同弧或 等弧所对的圆周角相等, 都等于这条弧所对的圆心 角的一半。
02 圆周角定理及其推论
圆周角定理内容
ห้องสมุดไป่ตู้圆周角定义
圆柱、圆锥等立体图形中圆周角应用
圆柱中的圆周角
圆柱侧面展开图是一个矩形,其相邻两边夹角即为圆周角。利用圆周角定理可解决圆柱中 的相关问题。
圆锥中的圆周角
圆锥侧面展开图是一个扇形,其圆心角即为圆锥的顶角,而圆周角则为顶角的一半。利用 这些性质可解决圆锥中的相关问题。
圆周角定理在立体图形中的应用
在解决立体图形的问题时,可利用圆周角定理将问题转化为平面问题,从而简化计算过程 。
设扇形半径为r cm,则根据扇 形面积计算公式有 (45° × π × r²) / 360 = 24cm²,解得 r≈4.37cm(保留两位小数)。 再根据弧长计算公式,弧长 = 45° × 4.37cm × π / 180 ≈ 3.43cm(保留两位小数)。
04 圆锥曲线中圆周角应用
圆锥曲线基本概念回顾
典型例题解析

圆周角定理 课件

圆周角定理 课件

AD=BD=5
3 2 cm.
在 Rt△AOD 中,OD=
OA2-AD2

5 2
cm,所以
∠OAD=30°,
所以∠AOD=60°.


∠AOB

2∠AOD

120
°



∠ACB

1 2
∠AOB=60°.因为∠AOB=120°,所以劣弧A︵EB的度数为
︵ 120°,优弧ACB的度数为 240°.
所以∠AEB=12×240°=120°. 所以此弦所对的圆周角为 60°或 120°.
所以 OG∥CF.所以∠AOB=∠FCB,(2 分) 所以∠DAO=90°-∠AOB, ∠FBC=90°-∠FCB,(4 分) 所以∠DAO=∠FBC.(6 分)
(2)连接 AB,AC, 因为 BC 为直径, 所以∠BAC=π2, 又因为 AD⊥BC, 所以∠BAD=∠BCA,(8 分)
︵︵ 又因为AB=AF, 所以∠ABF=∠BCA,(9 分) 所以∠ABF=∠BAD, 所以 AE=BE.(10 分)
类型 2 利用定理及推论进行证明(规范解答)
[典例 2] 如图所示,BC 是半圆 O 的直径,AD⊥BC, ︵︵
垂足为 D,AB=AF,BF 与 AD、AO 分别交于点 E、G. (1)证明:∠DAO=∠FBC; (2)证明:AE=BE.
︵︵ [规范解答] (1)连接 FC,OF,因为AB=AF,OB =OF, 所以点 G 是 BF 的中点, OG⊥BF. 因为 BC 是⊙O 的直径, 所以 CF⊥BF.(1 分)
反过来,弧的度数相等,它们所对圆心角的度数也相 等.2.由于圆心角的度数与它所对弧的度数相等,所以圆周 角的度数等于它所对弧的度数的一半.

《圆周角定理》课件

《圆周角定理》课件

[例2] 如图所示,已知点A,B,C为圆上三个点,且∠AOB=2∠BOC.求证:∠ACB=2∠CAB.
[导学探究]
由圆周角定理可得∠AOB=2∠
可得结论.
ACB
,∠BOC=2∠
CAB ,从而根据∠AOB=2∠BOC
证明:因为∠AOB 和∠ACB 对着,
所以∠AOB=2∠ACB.
因为∠BOC 和∠CAB 对着,
所以∠BOC=2∠CAB.
因为∠AOB=2∠BOC,
所以 2∠ACB=2×2∠CAB,
即∠ACB=2∠CAB.
[例3] 如图所示,四边形ABCD的四个顶点都在☉O上,点E在对角线AC上.
(1)若∠CBD=35°,∠CDB=30°,求∠BAD的度数;
[导学探究]
1.题(1)由同弧所对圆周角相等,可得∠CAD=∠
3.圆周角
第1课时
圆周角定理
一、圆周角
,并且两边都和圆 相交 的角叫做圆周角.
2.半圆或直径所对的圆周角都 相等 ,都等于 90° (直角).
1.顶点在
圆上
二、圆周角定理
在同圆或等圆中,同弧或等弧所对的圆周角
一半 .相等的圆周角所对的弧 相等
相等 ,都等于该弧所对的圆心角的
.
探究点一
直径、半圆所对的圆周角
AC= -= - =8.
因为 PE⊥AB,所以∠APE=90°.
又因为∠ACB=90°,所以∠APE=∠ACB.
又因为∠PAE=∠CAB,
所以△AEP∽△ABC.

所以 = ,


×
即 =



.

所以 PE= = .


探究点二

2第4课时圆周角PPT课件(人教版)

2第4课时圆周角PPT课件(人教版)
• 课后作业:“学生用书”的“课后作业”部 分.
第4课时 圆周角
学习目标
• 1. 学习圆周角、圆内接多边形的概念,圆 周角定理及推论.
• 2. 掌握圆周角与圆心角、直径的关系,能 用分类讨论的思想证明圆周角定理.
• 3. 会用圆周角定理及推论进行证明和计算.
一、概念 顶点在圆上,并且两边都和圆相交的角
顶点在圆上,并且两边都和圆相交的角.
D
【针对训练】
(1)(3)(4)
120
25
C 60°
探究点二 圆周角定理及其推论的 应用
针对训练】
1.两个概念:圆周角,圆内接四边形. 2.圆周角定理及其推论. 3.圆内接四边形的性质. 4.分类讨论的数学思想方法.
C C
C
C 40
课后作业
• 上交作业: 教科书第89页习题24.1第4,5,6题 .
A
试找出图中的圆周角 C

E
BB
探究点一 圆周角定理及其推论的推导 1.圆周角定理的推导
D A
C

E
B
2.
思考:
半圆(或直径)所对的圆周角是多少度?90°的圆周角 所对的弦是什么?
在半径不等的圆中,如果两个圆周角相等,它们所对的 弧相等吗?
在同圆或等圆中,如果两个圆周角相等,它们所对的弧 一定相等吗?为什么?圆内接四边形的两组对角分别有 怎样的关系?

圆周角-PPT课件

圆周角-PPT课件

E
20°
30°
∴∠ABF=∠D=20°,∠FBC=∠E=30°.
∴∠x=∠ABF+∠FBC=50°.
A F
C
下列说法是否正确,为什么?
拓展巩固
“在同圆或等圆中,同弦或等弦所对的圆周角相等”.
一条弦所对应的圆周角有两类.
D
如图所示,连接BO、EO. 显然,∠C与∠D所对应的圆心角和为 ,
O.
所以36根0°据圆周角定理可知∠C+∠D = . 180°
通过积极引导,帮助学生有意识地积累活动经验,获得成功的 体验.
知识回顾
O
1.圆心角的定义?
顶点在圆心的角叫圆心角.
A
B
2.图中∠ACB 的顶点和边有哪些特点?
C
考考你:你能仿照圆心角的定义,给下
图中象∠ACB 这样的角下个定义吗?
O
A
B
探索新知
顶点在圆上,并且两边都和圆相交 的角叫圆周角.(两个条件必须同时具备,缺一不可)
24.1 圆的有关性质
24.1.4 圆周角
教学目标
【知识目标】 理解圆周角的概念。探索圆周角与同弧所对的圆心角之间的关
系,并会用圆周角定理及推论进行有关计算和证明. 【能力目标】
经历探索圆周角定理的过程,初步体会分类讨论的数学思想, 渗透解决不确定的探索型问题的思想和方法,提高学生的发散思维能 力. 【情感目标】
意两点,连接AB,AC,BD,CD.∠A与∠D相等吗? 请说明理由.
D
同弧所对的圆周角相等.
问题2 如图,若
,那么 ∠A与∠B相等吗?
想一想: 反过来,若∠A=∠B,那么
成立吗?
AB E
O
C

圆周角定理 课件

圆周角定理  课件

(2)因为△ABE∽△ADC, 所以AABE=AADC,即 AB·AC=AD·AE. 又 S=12AB·AC·sin ∠BAC,且 S=12AD·AE, 所以 AB·AC·sin ∠BAC=AD·AE. 则 sin ∠BAC=1. 又∠BAC 为三角形内角, 所以∠BAC=90°.
2.已知 AD 是△ABC 的高,AE 是△ABC 的外接圆的直径. 求证:∠BAE=∠DAC. 证明:连接 BE,因为 AE 为直径, 所以∠ABE=90°. 因为 AD 是△ABC 的高,所以∠ADC=90°. 所以∠ADC=∠ABE. 因为∠E=∠C,所以∠BAE=90°-∠E, ∠DAC=90°-∠C. 所以∠BAE=∠DAC.
5.如图,△ABC 的角平分线 AD 的延长线交 它的外接圆于点 E. (1)证明:△ABE∽△ADC; (2)若△ABC 的面积 S=12AD·AE, 求∠BAC 的大小. 解:(1)证明:由已知条件可得∠BAE=∠CAD. 因为∠AEB 与∠ACB 是同弧上的圆周角, 所以∠AEB=∠ACD. 故△ABE∽△ADC.
利用圆周角进行计算
[例 2] 如图,已知 BC 为半⊙O 的直径, AD⊥BC,垂足为 D,BF 交 AD 于 E,且 AE =BE.
(1)求证: AB= AF ; (2)如果 sin ∠FBC=35,AB=4 5,求 AD 的长. [思路点拨] BC 为半⊙O 的直径,连接 AC,构造 Rt△ABC.
4.如图,△ABC ຫໍສະໝຸດ 接于⊙O,OD⊥BC 于 D,∠A=50°,则
∠OCD 的度数是
()
A.40° C.50°
B.25° D.60°
解析:连接 OB.因为∠A=50°,所以弦 BC 所 对的圆心角∠BOC=100°,∠COD=12∠BOC =50°,∠OCD=90°-∠COD=40°. 答案:A

圆周角定理 课件

圆周角定理 课件

3.关于圆周角定理推论的理解
(1)在推论1中,注意:“同弧或等弧”改为“同弦或等弦” 的话结论就不成立了,因为一条弦所对的圆周角有两种可 能,在一般情况下是不相等的.
(2)圆心角的度数和它所对的弧的度数相等,但并不是 “圆心角等于它所对的弧”.
(3)“相等的圆周角所对的弧也相等”的前提条件是“在 同圆或等圆中”.
【示例2】 如图,D,E分别为△ABC边AB,AC 的中点,直 线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明: (1)CD=BC; (2)△BCD∽△GBD.
证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又 已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD = AD. 而 CF∥AD , 连 接 AF , 所 以 ADCF 是 平 行 四 边 形 , 故 CD=AF.
证明 连结 CE、CF、EF,∵BC 为⊙O 的直径,∴∠BFC =90°,∠BEC=90°.又∵∠ACB=90°,∴∠BCE=∠A. 又∵∠BFE=∠BCE,∴∠BFE=∠A.又∵∠EBF=∠DBA, ∴△BEF∽△BDA.∴EBFE=ABDD. ∵∠BFC=∠BCA,∠CBD=∠CBD, ∴△CBF∽△DBC.∴CBCF=CBDD. 又∵AD=CD,∴EBFE=CBCF,∴BBCE=CEFF.
(4)在同圆或等圆中,由弦相等⇒弧相等时,这里的弧要求 同是优弧或同是劣弧,一般选劣弧.
题型一 圆中相关角度数的求解
【例 1】 在半径为 5 cm 的圆内有长为 5 3 cm 的弦 AB,求此弦
所对的圆周角.
[思维启迪] 对于弦所对的圆周角要考虑全面.
解 如图所示,过 O 点作 OD⊥AB 于点 D.因为 OD⊥AB,OD
反思感悟 弦所对的圆周角有两个,易丢掉120°导致错误,另外求圆周角时易应用到解三角形的知识.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A、30°;
B、60°;
A
B
C、90°;
D、45°
P
.
15
练一练
3、如图,∠A=50°, ∠ABC=60 °
BD是⊙O的直径,则∠AEB等于( B)
A、70°;
B、110°;
C、90°;
D、120°
B
4、如图,△ABC的顶点A、B、C
都在⊙O上,∠C=30 °,AB=2,
则⊙O的半径是 2 。
解:连接OA、OB
• 回顾:圆周角定理及推论?
• 思考:判断正误:
1.同弧或等弧所对的圆周角相等( )
2.相等的圆周角所对的弧相等( )
3.90°角所对的弦是直径( )
4.直径所对的角等于90°(

5.长等于半径的弦所对的圆周角等于30°( )
.
23
例题
例 如图,⊙O直径AB为10cm,弦AC为6cm,∠ACB的平课本 练 习
3.求证:如果三角形一边上的中线等于这边的一半,那么这个 三角形是直角三角形.(提示:作出以这条边为直径的圆.)
已知:△ABC 中,CO为AB边上的中线,且CO= 1 AB
2 求证: △ABC 为直角三角形.
求证:∠BAE=∠CAD
A
B
E
.
O DC
21
归纳:
定理
在同圆或等圆中,同弧或等弧所对的圆周角 相等,都等于这条弧所对的圆心角的一半.相 等的圆周角所对的弧相等
推论
1、半圆(或直径)所对的圆周角是
C2
直角。
C1
90°的圆周角所对的弦是直径。
C3
2、圆内接四边形的对角互补。 A
·O
B
.
22
第二课时 应用
●O
大小关系会怎样?
B
提示:能否也转化为1的情况?
A
过点B作直径BD.由1可得:
C
∠ABD
=
1∠AOD,∠CBD
2
= 1 ∠COD,
2
B
●O
∴ ∠ABC = 1∠AOC.
2
你能写出这个命题吗?
同弧所对的圆周角等于它所对
的圆心角的一半.
.
9
巩固练习:
如图,点A,B,C,D在同一个圆上,四 边形ABCD的对角线把4个内角分成 8个角,这些角中哪些是相等的角?

180°
A
O
B 推论:半圆(或直径)所对的 圆周角是直角;90°的圆周角 所对的弦是直径。
.
14
练一练
1、如图,在⊙O中,∠ABC=50°,
A
则∠AOC等于( )
A、50°;
B、D 80°;
C、90°;
D、100°
BO C
2、如图,△ABC是等边三角形,
C
动点P在圆周的劣弧AB上,且不
与A、B重合,则∠BPC等于( B )
D
A1
87
2
3
6
45
B
C
.
10
练习:
D
1.求圆中角X的度数
C 120°
O
.O
C
70° x
O.
X BA
B
A
B
A
C
2.如图,圆心角∠AOB=100°,则∠ACB=___。
.
11
在同圆或等圆中,如果两个圆周角相等, 它们所对弧一定相等吗?为什么?
C G
A
O
在同圆或等圆中,如果两个
F 圆周角相等,它们所对的弧
.
18
7、如图,在⊙O中,AB为直径,⌒CB =⌒CF,
弦CG⊥AB,交AB于D,交BF于E
求证:BE=EC
.
19
8、如图 AB是⊙O的直径, C ,D是圆上的两点 若∠ABD=40°,则∠BCD=_____.
D
A
O 40° B
C
.
20
9、如图所示,已知⊿ABC的三个顶点都在 ⊙O上,AD是⊿ABC的高,AE是⊙O的直 径.
即 ∠ABC = 1 ∠AOC.
2
B
你能写出这个命题吗?
同弧所对的圆周角等于它所对 的圆心角的一半.
.
7
• 第二种情况:如果圆心不在圆周角的 一边上,结果会怎样?
• 2.当圆心O在圆周角(∠ABC)的内部时, 圆周角∠ABC与圆心角∠AOC的大小关 系会怎样?
A C
●O
提示:能否转化为1的情况?
B
B
E
一定相等.
.
12
在同圆或等圆中 相等的圆周角所对的弧相等.
⌒⌒
A
B
如图, 若 AC = BD
则 ∠ D=∠A
C
D
∴AB∥CD
.
13
探究与思考:
问题1:如图,AB是⊙O的直径,请问:
∠C1、∠C2、∠C3的度数是 90° 。
C1 C2
C3
问题2: 若∠C1、∠C2、∠C3是
直角,那么∠AOB是
A C
A C
A C
●O
●O
●O B
B B
.
6
圆周角和圆心角的关系
• 1.首先考虑第一种情况:
• 当圆心O在圆周角(∠ABC)的一边(BC)上时,圆周角 ∠ABC与圆心角∠AOC的大小关系.
∵∠AOC是△ABO的外角,
∴∠AOC=∠B+∠A. ∵OA=OB,
A C
∴∠A=∠B.
●O
∴∠AOC=2∠B.
A
∵∠C=30 ° ,∴∠AOB=60 °
又∵OA=OB ,∴△AOB是等边三角形 ∴OA=OB=AB=2,即半径为. 2。
A ED
O C
C O
B
16
5、已知⊙O中弦AB的长等于半径, 求弦AB所对的圆心角和圆周角的度数。
圆心角为60度
O
圆周角为 30 度
或 150 度。
A
B
.
17
6、在⊙O中,∠CBD=30° ,∠BDC=20°,求∠A
圆周角
.
1
复习旧知:请说说我们是如何给 圆心角下定义的,试回答?
顶点在圆心的角叫圆心角。
能仿照圆心角的定义, 给下图中象∠ACB 这样的角下个
定义吗?
顶点在圆上,并且两边都和圆 相交的角叫做圆周角.
.
2
问题探讨:
判断下列图形中所画的∠P是否为圆周角?并说明理由。
P
P
P
P 不是
顶点不 在圆上。

顶点在圆上, 两边和圆相 交。
过点B作直径BD.由1可得:
∠ABD
=
1 ∠AOD,
2
∠CBD
=1
2
∠COD,
∴ ∠ABC =
1 ∠AOC.
2
AD C
●O
能写出这个命题吗?
B
同弧所对的圆周角等于它所对
的圆. 心角的一半.
8
• 第三种情况:如果圆心不在圆周角
的一边上,结果会怎样?
A
C
• 3.当圆心O在圆周角(∠ABC)的外部 时,圆周角∠ABC与圆心角∠AOC的
不是
两边不和 圆相交。
.
不是 有一边和圆 不相交。
3
A
O B
⌒ ⌒
有没有圆周角? 有没有圆心角?
它们有什么共同的特点? 它们都对着同一条弧
C
.
4
画一个圆,再任意画一个圆周角,看一下圆心 在什么位置?
圆心在一边上 圆心在角内
.
圆心在角外
5
• 如图,观察圆周角∠ABC与圆心角∠AOC,它们的大
小有什么关系?
线交⊙O于D,求BC、AD、BD的长.
解:∵AB是直径,
∴ ∠ACB= ∠ADB=90°.
C
在Rt△ABC中,
B C A2 B A2 C12 0 6 2 8A
O
B
∵CD平分∠ACB,
A C D B C D .
D
∴AD=BD.
又在Rt△ABD中,AD2+BD2=AB2,
A D B D 2A B 2 1 0 52 (c m )
相关文档
最新文档