工程热力学 第三章 气体和蒸汽的性质

合集下载

工程热力学-第四版思考题答案(完整版)(沈维道)(高等教育出版社)

工程热力学-第四版思考题答案(完整版)(沈维道)(高等教育出版社)

工程热力学-第四版思考题答案(完整版)(沈维道)(高等教育出版社)工程热力学第四版沈维道 思考题 完整版第1章 基本概念及定义1.闭口系与外界无物质交换,系统内质量将保持恒定,那么,系统内质量保持恒定的热力系一定是闭口系统吗?答:否。

当一个控制质量的质量入流率与质量出流率相等时(如稳态稳流系统),系统内的质量将保持恒定不变。

2.有人认为,开口系统中系统与外界有物质交换,而物质又与能量不可分割,所以开口系不可能是绝热系。

这种观点对不对,为什么? 答:不对。

“绝热系”指的是过程中与外界无热量交换的系统。

热量是指过程中系统与外界间以热的方式交换的能量,是过程量,过程一旦结束就无所谓“热量”。

物质并不“拥有”热量。

一个系统能否绝热与其边界是否对物质流开放无关。

⒊平衡状态与稳定状态有何区别和联系,平衡状态与均匀状态有何区别和联系? 答:“平衡状态”与“稳定状态”的概念均指系统的状态不随时间而变化,这是它们的共同点;但平衡状态要求的是在没有外界作用下保持不变;而平衡状态则一般指在外界作用下保持不变,这是它们的区别所在。

⒋倘使容器中气体的压力没有改变,试问安装在该容器上的压力表的读数会改变吗?在绝对压力计算公式中,当地大气压是否必定是环境大气压?答:可能会的。

因为压力表上的读数为表压力,是工质真实压力与环境介质压力之差。

环境介质压力,譬如大气压力,是地面以上空气柱的重量所造成的,它随着各地的纬度、高度和气候条件不同而有所变化,因此,即使工质的绝对压力不变,表压力和真空度仍有可能变化。

“当地大气压”并非就是环境大气压。

准确地说,计算式中的P b 应是“当地环境介质”的压力,而不是随便任何其它意义上的“大气压力”,或被视为不变的“环境大气压力”。

⒌温度计测温的基本原理是什么?答:温度计对温度的测量建立在热力学第零定律原理之上。

它利用了“温度是相互热平衡的系统所具有的一种同一热力性质”,这一性质就是“温度”的概念。

工程热力学总复习

工程热力学总复习

O
5
6
1
1
a
2
2
a
s
图11-3 初温t1对ηt的影响
优点: 循环吸热温度 , ,有利于汽机安全。
缺点: 对耐热及强度要求高,目前最高初温一般在550℃左右,很少超过600 ℃; 汽x
2a
v
t
h
2、初压p1对热效率的影响
基本状态参数,需要掌握①温标转换②压力测量(转换)③比体积与密度的转换。
04
03
01
02
系统在不受外界的影响的条件下,如果宏观热力性质不随时间而变化,这时系统的状态称为热力平衡状态,简称平衡状态。
系统内部及系统与外界之间的一切不平衡势差(力差、温差、化学势差)消失是系统实现热力平衡状态的充要条件。
k=1.3
νcr=0.577
干饱和蒸汽
k=1.135
关键:状态判断(习题8-2)
流量按最小截面(即收缩喷管的出口截面,缩放喷管的喉部截面)来计算
0
a
q m
c
b
图8-7 喷管流量qm
临界
临界 流量
喷管两种计算
设计计算
校核计算
已知
进口参数(p1、t1)、出口背压(pb)、流量qm
喷管形状、尺寸(A2、Acr)、进口参数(p1、t1)、出口背压(pb)
工 程 热 力 学
添加副标题
总复习
第一章基本概念
热力系统:人为地分割出来作为热力学分析对象的有限物质系统。 外界:系统周围物质的统称。 边界(界面):热力系与外界的分界面。 界面可以是真实,也可以是虚拟的;可以是固定,也可以是变化(运动)的。 闭口系统:与外界无物质交换,又称控制质量。 开口系统:与外界有物质交换,又称控制体积。 绝热系统:与外界无热量交换。 孤立系统:与外界无能量交换又无物质交换。可以理解成闭口+绝热,但是实际上孤立系统是不存在的。

工程热力学第三章气体和蒸汽的性质ppt课件

工程热力学第三章气体和蒸汽的性质ppt课件

标准状态下的体积流量:
qV 0 Vm0qn 22.4103 288876 6474.98m3 / h
☆注意:不同状态下的体积不同。
3-2 理想气体的比热容
1、比热容的定义 ■比热容 c(质量热容)(specific heat)
1kg物质温度升高1K所需的热量, c q / dT J / (kg K)
(T 1000
)2
C3
(T 1000
)3
见附表4(温度单位为K)。
qp
T2 T1
cpdT
qV
T2 T1
cV
dT
说明:此种方法结果比较精确。
(2)平均比热容表
c
t2 t1
q t2 t1
q
t2 cdt
t1
t2 cdt
0℃
t1 cdt
0℃
c
t2 0℃
t2
c
t t1
0℃ 1
平均比热容 c t0℃的起始温度为0℃,见附表5(温
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
理想气体是实际上并不存在的假想气体。 假设: (1)分子是弹性的、不占体积的质点(与空间相比) (2)分子间没有作用力。(分子间的距离很大) ■作为理想气体的条件
气体 p 0 ,v ,即要沸点较低、远离液态。
■比定压热容c p 和比定容热容 cV 比定压热容(specific heat at constant pressure):定压
过程的比热容。
比定容热容(specific heat at constant volume):定容过
程的比热容。
●可逆过程

工程热力学思考题答案,第三章

工程热力学思考题答案,第三章

工程热力学思考题答案,第三章TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-第三章理想气体的性质1.怎样正确看待“理想气体”这个概念在进行实际计算是如何决定是否可采用理想气体的一些公式答:理想气体:分子为不占体积的弹性质点,除碰撞外分子间无作用力。

理想气体是实际气体在低压高温时的抽象,是一种实际并不存在的假想气体。

判断所使用气体是否为理想气体(1)依据气体所处的状态(如:气体的密度是否足够小)估计作为理想气体处理时可能引起的误差;(2)应考虑计算所要求的精度。

若为理想气体则可使用理想气体的公式。

2.气体的摩尔体积是否因气体的种类而异是否因所处状态不同而异任何气体在任意状态下摩尔体积是否都是 0.022414m 3 /mol答:气体的摩尔体积在同温同压下的情况下不会因气体的种类而异;但因所处状态不同而变化。

只有在标准状态下摩尔体积为 0.022414m 3 /mol 3.摩尔气体常数 R 值是否随气体的种类不同或状态不同而异?答:摩尔气体常数不因气体的种类及状态的不同而变化。

4.如果某种工质的状态方程式为pv =R g T,那么这种工质的比热容、热力学能、焓都仅仅是温度的函数吗?答:一种气体满足理想气体状态方程则为理想气体,那么其比热容、热力学能、焓都仅仅是温度的函数。

5.对于一种确定的理想气体,()p v C C -是否等于定值?p v C C 是否为定值?在不同温度下()p v C C -、pv C C 是否总是同一定值?答:对于确定的理想气体在同一温度下()p v C C -为定值,pv C C 为定值。

在不同温度下()p v C C -为定值,pv C C 不是定值。

6.麦耶公式p v g C C R -=是否适用于理想气体混合物是否适用于实际气体答:迈耶公式的推导用到理想气体方程,因此适用于理想气体混合物不适合实际气体。

7.气体有两个独立的参数,u(或 h)可以表示为 p 和 v 的函数,即(,)u u f p v =。

工程热力学童钧耕第六版

工程热力学童钧耕第六版

工程热力学童钧耕第六版简介《工程热力学童钧耕第六版》是一本经典的工程热力学教材,由童钧耕教授编写。

本书系统地介绍了工程热力学的基本概念、原理和应用,适用于工科相关专业的学生和从事相关领域的工程师。

内容概述《工程热力学童钧耕第六版》共分为十章,内容涵盖了热力学的基本概念、气体和蒸汽的性质、能量转换与传递、理想气体混合物等方面。

以下将对每一章节进行简要介绍。

第一章:引言这一章主要介绍了工程热力学的基本概念和范围,以及其在实际应用中的重要性。

同时还对温度、压力、体积等基本物理量进行了定义和解释。

第二章:能量转换与能量传递本章讲述了能量转换与传递的基本原理,包括能量守恒定律、功与功率、传热与传质等内容。

通过对各种能量转换过程的分析,读者可以深入理解能量守恒定律在工程实践中的应用。

第三章:气体与蒸汽的性质这一章主要介绍了气体和蒸汽的基本性质,包括物态方程、气体混合物、湿空气等内容。

通过对气体和蒸汽性质的分析,读者可以了解到它们在工程热力学中的重要作用。

第四章:一次能源与二次能源本章重点讲述了一次能源和二次能源的概念和特点。

同时还介绍了常见的一次能源和二次能源类型,以及它们在工程实践中的应用。

第五章:理想气体混合物这一章主要介绍了理想气体混合物的基本原理和计算方法。

通过对理想气体混合物进行分析,读者可以掌握计算混合气体性质和热力学过程参数的技巧。

第六章:燃烧与燃烧产物本章讲述了燃烧与燃烧产物的基本原理和特点。

同时还介绍了常见的燃料类型、燃烧过程中的能量转换和产物生成等内容。

第七章:蒸汽发生器这一章主要介绍了蒸汽发生器的原理和构造,包括锅炉、汽轮机等设备。

通过对蒸汽发生器的分析,读者可以了解到其在能量转换中的重要作用。

第八章:蒸汽涡轮机本章重点讲述了蒸汽涡轮机的工作原理和性能特点。

同时还介绍了蒸汽涡轮机在电力工业中的应用和优化方法。

第九章:压缩机与风机这一章主要介绍了压缩机和风机的基本原理和分类。

通过对压缩机和风机的分析,读者可以掌握它们在工程实践中的应用技巧。

工程热力学 第三章 气体和蒸汽的性质.

工程热力学 第三章 气体和蒸汽的性质.
第三章 气体和蒸汽的性质
3-1 理想气体的概念 3-2 理想气体的比热容 3-3 理想气体的热力学能、焓和熵 3-4 水蒸汽的饱和状态和相图 3-5 水的汽化过程和临界点 3-6 水和水蒸汽的状态参数 3-7 水蒸汽表和图
3-1 理想气体的概念
1、理想气体模型(perfect gas, ideal gas) ■理想气体的两点假设
dT
p


dh vdp dT
p


h T
p
cV


q
dT
V


du
pdv dT
V


u T
V
☆注意:上式适用于任何工质,表明 c p、cV为状态参数
●理想气体
热力学能只包括内动能,只与温度有关,u f (T )
cp,423K 1.01622kJ /(kg K) cp,623K 1.05652kJ /(kg K)
623K
cp 423K (1.01622 1.05652) / 2 1.0364kJ /(kg K)
623K
qp cp 423K (T2 T1) 1.0364 (623 423) 207.27kJ / kg
5、不同形式的理想气体状态方程式
1kg的气体: pv RgT mkg的气体: pV mRgT 1mol的气体:pVm RT nmol的气体:pV nRT 流量形式: pqV qm RgT qn RT
例3-2:某台压缩机每小时输出 3200m3、表压力 pe 0.22MPa 温度t 156℃的压缩空气。设当地大气压pb 765mmHg ,求 压缩空气的质量流量qm及标准状态下的体积流量qV 0 。

工程热力学理想气体的热力性质及基本热力过程


气体 CV,m Cp,m 种类 [J/(kmol· K)] [J/(kmol· K)] 单原子 3×R/2 5×R/2 双原子 5×R/2 7×R/2 多原子 7×/2 9×R/2
Cm c M
Cm c' 22 .4
22
对1kg(或标态下1m3)气体从T1变到T2所需热量为:
q cdT c dT cT2 T1
17
比较cp与cv的大小:
结论:cp>cv
18
理想气体定压比热容与定容比热容的关系 迈耶公式: c p

cV Rg (适用于理想气体)
cp / c k , . V 称为比热比或绝热指数
当比热容为定值时,К为一常数,与组成气体的 原子数有关。如:
单原子气体 К=1.66;
双原子气体 К=1.4;
R 8314 J /( kmol K )
各种物量单位之间的换算关系:
1kmol气体的量 Mkg气体的量 标态下22.4m 气体的量
3
7
气体常数Rg与通用气体常数R的关系:
m pV nRT RT M pV mRg T
R 8314 Rg 或 R MRg M M
w
0 4
2 3 v
q 0 4 3 s
w pdv
1
2
q Tds
1
14
2
3-2 理想气体的比热容
一、比热容的定义及单位
1.比热容定义
热容量:物体温度升高1K(或1℃)所需的热量 称为该物体的热容量,单位为J /K.
比热容:单位物量的物质温度升高1K(或1℃) 所需的热量称为比热容,单位由物量单位决定。

沈维道《工程热力学》(第4版)名校考研真题-气体和蒸汽的性质(圣才出品)


2.理想气体只有取定比热容时,才能满足迈耶公式:cp − cv = Rg 。( )[南京航空
航天大学 2008 研] 【答案】错 【解析】只要是理想气体,就满足迈耶公式。
3.(1)理想气体任意两个状态参数确定后,气体的状态就一定确定了。( )
(2)活塞式压气机采用多级压缩和级间冷却方法可以提高它的容积效率。( )[西
【答案】T1(p2/p1);0; cv (T2 − T1) ; cv (T2 − T1)
3 / 13
圣才电子书

三、判断题
十万种考研考证电子书、题库视频学习平台
1.流动功的大小仅取决于系统的进口和出口状态,而与经历的过程无关。( )[天
津大学 2005 研]
【答案】对
【答案】A
十万种考研考证电子书、题库视频学习平台
【解析】在四个选项中,只对于理想气体的绝热过程, du = cV dT ,且 dq = 0 ,即 w = −cV dT 。
4.理想气体等温过程的技术功=( )。[宁波大学 2008 研] A.0 B2
【答案】C
【解析】 wt
A.升高 B.降低 C.不变 【答案】A 【解析】充气的过程中增加了流动功,故导致瓶子气体的内能升高,温度升高。
3. w = cvdT 使用条件为(
A.理想气体绝热过程
)。[湖南大学 2007 研]
B.理想气体可逆过程
C.任何工质定容过程
D.任何工质绝热过程
1 / 13
圣才电子书

【答案】错 【解析】上式不仅只适应于理想气体,也只能用于可逆过程。
四、名词解释 1.理想气体与实际气体。[天津大学 2005 研] 答:理想气体是不考虑分子之间的作用力以及气体分子本身所占体积的气体模型,严格 地说它是一种假想的气体。实际气体则是实际存在的气体。前者遵循理想气体方程式等规律, 后者则不遵循这种规律。实际气体的压力趋近于零时,实际气体就趋向于理想气体。

工程热力学 第三章 气体和蒸汽的性质

第三章 气体和蒸汽的性质
3-1 理想气体的概念
一 理想气体的模型
➢ 理想气体指分子间没有相互作用力、分 子是不具有体积的弹性质点的假想气体
➢ 实际气体是真实气体,在工程使用范围 内离液态较近,分子间作用力及分子本 身体积不可忽略,热力性质复杂,工程 计算主要靠图表
➢ 理想气体是实际气体p0的极限情况。
0
D(t1)
C(t2) t
=q02-q01
t2 cdt t1 cdt
0
0
c
t2 0
t2
c
t1 0
t1
c
t2 0
,
c
t1 0
表示温度自0C到t1和0C到t2的平均比热容.
c t2 q t1 t2 t1
t2 cdt
t1 t2 t1
0
cdt
t2 cdt
t1
0
t2 cdt
0
➢比热容、摩尔热容及体积热容三者之间的关 系:
Cm=Mc=0.0224141 C´
二、定压比热容及定容比热容
热量是过程量,因此比热容也与各过 程特性有关,不同的热力过程,比热容也 不相同:
➢定容比热容:可逆定容过程的比热容
cV
q
dT
v
du pdv dT v
u T
v
➢定压比热容:可逆定压过程的比热容
➢ 简化了物理模型,不仅可以定性分析气体某些 热现象,而且可定量导出状态参数间存在的简 单函数关系
➢ 在常温、常压下H2、O2、N2、CO2、CO、He及 空气、燃气、烟气等均可作为理想气体处理, 误差不超过百分之几。因此理想气体的提出具 有重要的实用意义。
二 理想气体状态方程式
理想气体在任一平衡状态时p、v、T之间关系

西安交大工程热力学 第三章 气体和蒸汽的性质

7
三、摩尔质量和摩尔体积
摩尔:物质的量的基本单位,mol
1mol~ 0.012kg C(12)的原子数目为6.0225×1023
1 kmol : pV R T
摩尔质量:1mol物质的质量,用M表示,单位 g/mol,数值上等于物质的分子量。
物质的量 n m 物质的质量 M 摩尔质量
摩尔体积:1mol气体的体积
1. cp const
理想气体,任何过程
h cp T h cp dT
T1
t2
1
cp 为真实比热 cp 为平均比热
T2
dh cpdT
理想气体,任何过程
h cp t (T2 T1 )
31
4. 若取0oC为零点 h c t t p 32
0
附表7,8
(3) 理想气体的熵

q h h4 汽 h3
2、实际气体
不能用简单的式子描述,真实工质 火力发电的水和水蒸气、制冷空调中 制冷工质等
2
wc wi h1 h4
给水泵
1
工质的性质
第三章 气体和蒸汽的性质
1、理想气体的性质 2、水和水蒸气的性质 ※
第十二章 理想气体混合物及湿空气 第六章 实际气体的性质及热力学一般 关系式
cv ( u )v T cp ( h )p T
0oC时:
常见工质的cv和cp的数值
cv,air= 0.716 kJ/kg.K cp,air= 1.004 kJ/kg.K cv,O2= 0.655 kJ/kg.K cp,O2= 0.915 kJ/kg.K 1000oC时: cv,air= 0.804 kJ/kg.K cp,air= 1.091 kJ/kg.K cv,O2= 0.775 kJ/kg.K cp,O2= 1.035 kJ/kg.K 25oC时: cv,H2O= cp,H2O= 4.1868 kJ/kg.K
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T
dv
17
对定容过程,dv 0,由上两式可得
qV
u T
V
dT
由比定容热容定义式可得
cV
qV
dT
u T
V
18
(2)比定压热容
cp
qp
dT
据热力学第一定律,对微元可逆过程,
q dh vdp
焓也是状态参数,h h(T , p)
dh
h T
p
dT
h p
T
dp
对定压过程,dp 0 ,由上两式可得
10
4、摩尔气体常数
pv RgT
pvM MRgT pVm RT
R MRg
当两种不同气体在相同状态下时:
p1Vm1 R1T1 p2Vm2 R2T2
由阿伏伽德罗定律得:
R1 (MRg )1 R2 (MRg )2
R MRg 既与状态无关,也与气体性质无关。
称为摩尔气体常数。
R 8.3145J/(mol K)
Rg
R M
(M 单位为kg) 11
不同物质的量下理想气体的状态方程式
pv RgT pV mRgT pVm RT pV nRT
1 kg 理想气体 m kg 理想气体 1 mol 理想气体 n mol 理想气体
12
注意:统一单位、采用国际单位制
例:一体积为4立方米容器内充有压力为0.981bar,温度为 20摄氏度的空气,抽气后容器真空度变为700mmHg,若当 地大气压力为735.6mm Hg。如抽气前后温度保持不变,试 求:1)抽气后容器内空气绝对压力为多少bar?2)抽气后容 器内空气质量为多少kg?3)从容器中抽走了多少kg空气?
qp
h T
p
dT
19
由比定压热容的定义式可得
cp
qp
dT
h T
p
cv
( u T
)v
cp
( h T
)p
适用于任何气体。
cv物理意义:定容时1kg工质升高1K内能的增加
量 cp物理意义:定压时1kg工质升高1K焓的增加

20
2、理想气体的比热容
(1)理想气体的比定容热容与比定压热容
U f (T,v )
理想气体的热力学能仅包含与温度有关的分 子动能,只是温度的单值函数。
u f T
由式
cV
qV
dT
u T
V
可得
cV
du dT
21
对于理想气体,根据焓的定义,
h u pv u RgT
h f T
可见,理想气体的焓 h 也是温度的单值函数。
由式
cp
物质中包含的基本单元数与0.012kg碳12的原子 数目相等时物质的量为1mol。因此1mol任何物质 的分子数为6.0225×1023个。
1mol物质的质量称为摩尔质量,用符号M表示。 数值上等于物质的相对分子量。
若物质质量为m,则物质的量n为:
m
n M 103
8
摩尔体积: Vm ,1 mol物质的体积, m3/mol。
pv
2
Nv
m'
2
c
NvkT
32
pv RgT
Rg kNv
k : 波尔茨曼常数 Nv :1kg气体所具有的分子数
又 称 克 拉 贝 龙 方 程 式 。 Rg 为 气 体 常 数 , 单 位 为
J/(kg·K),其数值取决于气体的种类,与气体状态无
关。
7
3、摩尔质量和摩尔体积
摩尔(mol)是国际单位制中用来表示物质的量 的基本单位。
Cm M c
15
比热容是过程量还是状态量?
T
1K
(1) (2)
c q
dt
c1
ห้องสมุดไป่ตู้
c2
s
定容比热容
用的最多的某些特定过程的比热容
定压比热容
16
(1)比定容热容
cV
qV
dT
据热力学第一定律,对微元可逆过程
q du pdv
热力学能 u 是状态参数,u u(T , v)
du
u T
V
dT
u v
mV M 10 3 Vm
n
Vm M 10 3
V m
v
Vm Mv 10 3
Vm Mv (M 单位为kg )
9
阿伏伽德罗定律:同温、同压条件下,各种气体 的摩尔体积都相同。
在标准状态下(p0=101325Pa,T0=273.15K), 1mol任意气体的体积为:
Vm0 (Mv)0 0.022414m3/mol
易于分析气体某些热现象;
易于定量导出状态参数间存在的简单函数关系。
火力发电厂中的水蒸汽、制冷装置中的氟利昂等工 质离液态较近,容易液化,不能看作理想气体,宏 观上反映状态参数的函数关系复杂,热工计算中一 般借助计算机或利用各种蒸汽专门编制的图或表。
6
2、理想气体状态方程式
p
2
N
m'
2
c
32
N :1m3所具有的分子数
(2)气体分子之间以及分子与容器壁的碰撞都是弹 性碰撞。
(3)气体分子之间无作用力;(无内位能) u f T
理想气体在自然界并不存在,但实验证明:气体 压力不太高(P→0,v→∞),温度不太低时,即 远离液态的稀薄气体,气体分子间作用力及分子本 身的体积可忽略,气体性质接近理想气体。
5
意义:
简化物理模型;
第三章 气体和蒸汽的性质
1
燃气轮机
压气机: wc h2 h1 燃烧室: q1 h2 h1
燃气涡轮: ws h1 h2
在各种燃气和蒸汽动力装置中,要实现能量的 转换和传递,需要工质状态的变化,如压缩、吸 热、膨胀、排热等过程。
2
对工质的要求:
1)膨胀性
2)流动性 3)热容量 4)稳定性,安全性 5)对环境友善 6)价廉,易大量获取
1、比热容的定义
为了计算气体状态变化过程中的吸(放)热量, 引入比热容概念。
物体温度升高1K(或1℃)所需要的热量称为该 物体的热容量,简称热容。
C Q Q
dT dt
14
比热容(质量热容) : 单位质量物质的热容,c ,J/(kg·K)。
c q q
dT dt
摩尔热容: 1 mol物质的热容,Cm,J/(mol·K)。
物质三态中 气态最适宜。
工质视其距离液态的远近分为气体和蒸气。
3
3-1 理想气体的概念
1、理想气体与实际气体
热机的工质通常采用气态物质:气体或蒸气。 气体:远离液态,不易液化。 蒸气:离液态较近,容易液化。
理想气体:一种经过科学抽象的假想气体。
4
理想气体的特征:
(1)气体分子的距离足够大,体积忽略不计;
1) : p2 pb pv 735 .6 700 35.6mmHg 0.0475 bar
pV
mRgT
m
pV RgT
Rg
R M
8.314 28.96103
287J/(kg K)
m2
p2V RgT2
0.226kg
m1
p1V RgT1
4.67kg
m m1 m2 4.44kg
13
3-2 理想气体的比热容
相关文档
最新文档