中考数学二次函数ppt精品课件

合集下载

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

中考数学专题《二次函数》复习课件(共18张PPT)

中考数学专题《二次函数》复习课件(共18张PPT)
(3)抛物线与y轴的交点坐标是(0,c) c决定抛物线与y轴的交点位置
(4)b2-4ac>0,抛物线与x轴有两个公共点 b2-4ac=0,抛物线与x轴有一个公共点 b2-4ac<0,抛物线与x轴没有公共点
基础训练
• 如图,是y=ax2+bx+c的图像, 则a___<___0 b___<___0 c___>__0 , b2-4ac___>__0 a+b+c_ <__0 4a-2b+c__>__0 2a-b__=__0
桥面
-5 0 5
x/m
抛物线顶点的纵坐标是
⑴钢缆的最低点到桥面的距离是__1_米__;
两条抛物线顶点间的距离是
⑵两条钢缆最低点之间的距离是__4_0_米_;
关于y轴对称的抛物线是
(3)右边的抛物线解析式是y_=__0_._0_2_2_5__(_x_-2__0_)__2.+1
高屋建瓴
——函数与几何的综合题
高屋建瓴
——求解析式
5、已知一条抛物线的对称轴是直线x=1,它 与x轴相交于A、B两点(点A在点B的左边)且线 段AB的长是4,它还与过点C(1,-2)的直线有 一个交点是点D(2,-3),求抛物线的解析式
模式识别: 顶点式
若这条抛物线有P点,使 S△ABP=12,求点P的坐标
高屋建瓴 ——实际应用
y
AO C
P Bx
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

《二次函数图象》PPT课件

《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c

初三数学《二次函数的认识》PPT课件

初三数学《二次函数的认识》PPT课件

(2)抛物线
y
2 3
x
2在x轴的

方(除顶点外),在对称轴的
左侧,y随着x的 增大而增大 ;在对称轴的右侧,y随着x的
增大而减小 ,当x=0时,函数y的值最大,最大值是 0 ,
当x 0时,y<0.
AAA
y=ax2 性质简单运用
3、已知抛物线y=ax2经过点A(-2,-8)。 (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上。 (3)求出此抛物线上纵坐标为-6的点的坐标。
y 2x2
y=ax2 性质简单运用
1、根据左边已画好的函数图象填空:
y 2 x2 3
(1)抛物线y=2x2的顶点坐标是(0,0), 对称轴是 y轴 ,在 对称轴的右 侧, y随着x的增大而增大;在对称轴的左 侧, y随着x的增大而减小,当x= 0 时, 函数y的值最小,最小值是 0 ,抛物 线y=2x2在x轴的 上 方(除顶点外)。
2
3
函数y=ax2的图象,以后叫做 抛物线y=ax2
y 2x2
抛物线y=ax2(a>0)性质:
– 对称性如何?
y=x²
– 位于哪些象限?
– 函数的最大、最小值?
– 顶点坐标? – 开口方向以及大小如何? – 增减性如何?
y 2 x2 3
AAA
二次函数y=ax2的性质
y=ax2
a>0
a<0
位置
17
解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2, 解出a= -2,所求函数解析式为y= -2x2.
(2)因为42(1)2,所以点B(-1 ,-4) 不在此抛物线上。
(3)由-6=-2x2 ,得x2=3, x 3

二次函数的课件ppt课件ppt课件

二次函数的课件ppt课件ppt课件
二次函数的极坐标表示
二次函数$y = ax^{2} + bx + c$在极 坐标系下的表示为$r = a\cos^{2}\theta + b\cos\theta + c$。
05
二次函数的应用实例
生活中的二次函数应用
打篮球的抛物线
篮球运动员投篮时,篮球的运动 轨迹可以近似为二次函数。通过 调整投篮角度和力度,可以最大
数是偶函数。
03
二次函数的公式与运算
二次函数的公式
标准的二次函数公式
y = ax^2 + bx + c,其中a、b、c为系数,且a≠0。
顶点式
y = a(x-h)^2 + k,其中(h,k)为顶点坐标。
交点式
y = a(x-x1)(x-x2),其中x1、x2为与x轴的交点坐标。
二次函数的运算规则

根据顶点式,可知顶点坐标为(1.5, -0.75);根据交点式,可知 与x轴的交点坐标为(2.5, 0)和(2.5, 0);与y轴的交点坐标为(0, 5)。
例题2
已知二次函数y = -3x^2 + 6x + 9,求函数的对称轴和最小值。
04
二次函数的图像变换
平移变换
水平平移
二次函数$y = ax^{2} + bx + c$ 向右平移$m$个单位,得到新的 二次函数$y = a(x - m)^{2} + b(x - m) + c$。
垂直平移
二次函数$y = ax^{2} + bx + c$ 向上平移$n$个单位,得到新的 二次函数$y = ax^{2} + bx + c + n$。

初三二次函数ppt课件ppt课件

初三二次函数ppt课件ppt课件
轴是$x = - \frac{b}{2,利用描点法可以 绘制出二次函数的图像。
与x轴交点
当$\Delta > 0$时,二次函数的 图像与x轴有两个交点;当
$\Delta = 0$时,二次函数的图 像与x轴只有一个交点;当
$\Delta < 0$时,二次函数的图 像与x轴没有交点。
理解二次函数的基本 概念和图像表示。
能够运用二次函数解 决实际问题。
掌握二次函数的性质 ,包括开口方向、顶 点坐标和对称轴。
课程计划
通过PPT演示,引导学生了解 二次函数的概念和图像表示。
通过例题讲解,帮助学生掌握 二次函数的性质和应用。
组织课堂练习和讨论,加深学 生对二次函数的理解和应用能 力。
二次函数的表达式
01
02
03
表达式
二次函数的表达式为$y = ax^{2} + bx + c$,其中 $a \neq 0$。
各项的意义
$a$是二次项系数,$b$ 是一次项系数,$c$是常 数项。
如何确定表达式
通过已知条件,利用待定 系数法可以确定二次函数 的表达式。
二次函数的图像
图像特点
二次函数的图像是一个抛物线, 其顶点坐标是$( - \frac{b}{2a}, \frac{4ac - b^{2}}{4a})$,对称
06
参考资料
初三二次函数ppt课件
初三二次函数的概念
介绍二次函数的基本定义、表达式和 图像特征。
初三二次函数的图像和性质
详细描述了如何绘制二次函数的图像 ,并分析了图像的开口方向、顶点坐 标、对称轴和增减性等性质。
初三二次函数的实际应用
通过实例和练习题,展示了二次函数 在解决实际问题中的应用,如最值问 题、行程问题等。

二次函数ppt课件

二次函数ppt课件
22.1.1 二次函数
年 级:九年级 学 科:数学(人教版)
1.函数的定义:
3.一元二次方程的一般形式是什么?
2.一次函数的定义是什么?
知识回顾

观察图片,这些曲线能否用函数关系式来表示?它们的形状是怎样画出来的?
实际问题
归纳、抽象
数学模型
(1) 写出 <m></m> 与 <m></m> 的函数关系式;
(2) 当 <m></m> 时,求 <m></m> 的值.
解:(1)其中一直角边长为 <m></m> ,则另一直角边长为 <m></m> ,依题意得 <m>
(2)当 <m></m> 时, <m></m> .
引入新课
观察这三个函数关系式有什么共同特点?
1.都有两个变量2.整式3.自变量最高次数是2次
讲授新课
二次函数的概念
二次
一元二次方程?
一次?
总结
二次函数的概念
陋室铭
例1:判断下列函数中,哪些是二次函数?若是二次函数,请指出二次项系数、一次项系数、常数项。
×
×
×
×

×


例题讲解
函数
二次项系数
布置作业
3、如图,在 <m></m> 中, <m></m> , <m></m> , <m></m> .动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动;动点 <m></m> 从点 <m></m> 开始沿边 <m></m> 向点 <m></m> 以 <m></m> 的速度移动.如果 <m></m> , <m></m> 两点同时出发,那么 <m></m> 的面积 <m></m> 随出发时间 <m></m> 如何变化?写出函数关系式.

初中数学九年级PPT课件二次函数可编辑全文

初中数学九年级PPT课件二次函数可编辑全文
2
解:根据题意,得
k
1 2
0

2k 2 k 1 2

由①,得 k 1
2
由②,得
k1
1 2
,
k
2
1

k 1
二.抛物线y=ax2+bx+c的特征与a、 b、c的符号:
(1)a决定开口方向:aa
0, 0,
开口向上, 开口向下;
((32))a与c决b定决抛定物对线称轴与位y轴置交:点aa,,位bb异 同置号 号, ,在 在yy轴 轴右 左侧 侧; ,
4a+2b+c=0
c=3
36a-6b+c=0
解得:
a=Leabharlann 1 4b= -1c=3
所以二次函数的解析式为: y 1 x2 x 3 4
顶点式:
解:因为二次函数的对称轴为x=-2,所以可设函 数的解析式为:y=a(x+2)2+k,把点(2,0) (0,3)代入可得:
16a+k=0
4a+k=3
解得
a=
例2、函数
y 1 x2 x 2
2
3
的开口方向
向上

顶点坐标是 ( 1 , 1 ) 6
,对称轴方程是 x 1.
解:a 1 ,b 1, c 2
2
3
a 0,
开口向上
又 b 2a
1 2
1
1
2
4ac b2
4 1 2 12 23
1
4a
4 1
6
2
∴ 顶点坐标为: (1, 1 ) 6
对称轴方程是: x 1
1 4
k=4 所以二次函数的解析式为:y 1 x2 x 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

DE=AF=m,DF=AE=AC=4m,∴CF=3m,则(3m)2+(4m)2=x2,
m 1x 5
梯形AEDC的面积=
(1 5
x

4 5
x)
4 5xΒιβλιοθήκη 2x2.2
5
即 y 2 x2.
5
9.(2010·兰州中考)如图,小明的父 亲在相距2米的两棵树间拴了一根绳 子,给小明做了一个简易的秋千.拴 绳子的地方距地面高都是2.5米,绳 子自然下垂呈抛物线状,身高1米的 小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子 的最低点距地面的距离为_____米.
(3)方法一:∵a=-10<0, ∴抛物线开口向下. ∴当30≤x≤40时,w≥2 000. ∵x≤32, ∴当30≤x≤32时,w≥2 000. 设成本为P(元),由题意,得: P=20(-10x+500) =-200x+10 000
设k=-200 ∵k=-200<0, ∴P随x的增大而减小. ∴当x =32时,P最小=3 600. 方法二:∵a=-10<0, ∴抛物线开口向下. ∴当30≤x≤40时,w≥2 000. ∵x≤32,∴30≤x≤32时,w≥2 000.
结合近几年中考试题分析,二次函数的内容考查主要有 以下特点:
1.命题方式为二次函数解析式的确定,二次函数的图象与 性质的应用,判定二次函数的顶点坐标、开口方向、对称轴方 程,二次函数的实际应用,题型多样,涉及了选择题、填空题与 解答题.
2.命题的热点为二次函数解析式的求法、二次函数的实 际应用,二次函数与一次函数、反比例函数的综合应用.
【自主解答】选B.利用公式法求出y=x2-2x-3的顶点坐标是(1, -4),因此y=x2+bx+c的顶点坐标是(-1,-1),即y=x2+bx+c的解 析式为y=(x+1)2-1,即y=x2+2x,因此 b=2,c=0.
1.(2010·安徽中考)若二次函数y=x2+bx+5配方后为 y=(x-2)2+k,则b、k的值分别为( ) (A)0,5 (B)0,1 (C)-4,5 (D)-4,1 【解析】选D.y=(x-2)2+k=x2-4x+4+k=x2+bx+5,则b=-4,4+k=5. 解得k=1.
则该二次函数的解析式为_____.
a b c 0
a 1
【解析】根据题意,得 a b c 2, 解得 b 1 ,
c 2
c 2
所以二次函数的解析式为y=x2+x-2.
答案:y=x2+x-2
6.(2011·江津中考)已知双曲线 y k 与抛物线y=ax2+bx+c交于
∵y=-10x+500, k=-10<0, ∴y随x的增大而减小. ∴当x=32时,y最小=180. ∵当进价一定时,销售量越小,成本越小, ∴20×180=3 600(元). 答:想要每月获得的利润不低于2 000元,每月的成本最少为 3 600元.
7.(2010·甘肃中考)向空中发射一枚炮弹,经x秒后的高度为
单位再向下平移3个单位,所得图象的解析式为y=x2-2x-3,则
b、c的值为( )
(A)b=2,c=2
(B)b=2,c=0
(C)b=-2,c=-1
(D)b=-3,c=2
【思路点拨】根据已知条件求出平移后的顶点坐标,从而可
以确定抛物线y=x2+bx+c的顶点坐标,因此可以写出抛物线的
顶点式,展开后可以确定b、c的值.
【解析】选D.因为y=2x2-12x+16=2(x-3)2-2,所以绕它的顶点 (3,-2)旋转180°后,所得抛物线的解析式为y=-2(x-3)2-2= -2x2+12x-20,故选D.
5.(2010·天津中考)已知二次函数y=ax2+bx+c(a≠0)中自变 量x和函数值y的部分对应值如下表:
a 1
c 3
解得 b 4.
c 3
所以抛物线的函数关系式为y=x2-4x+3.
(2)把D( 7 ,m)代入函数关系式y=x2-4x+3中,得
2
m (7)2 4 7 3 5.
2
24
所以
S
ABD

1 2
3 1
5 4

5. 4
4.(2010·桂林中考)将抛物线y=2x2-12x+16绕它的顶点旋转 180°,所得抛物线的解析式是( ) (A)y=-2x2-12x+16 (B)y=-2x2+12x-16 (C)y=-2x2+12x-19 (D)y=-2x2+12x-20
33
(2)描点画图
S
ABC

1 2
1
6 5
1 2
11 1 6 4 2
= 35 1 12
22
=5.
二次函数的实际应用
1.在解决二次函数的实际应用问题时,要认真理解题意,将实 际问题转化为纯数学问题,运用所学数学知识进行解答,在解 答过程中要考虑问题的合理性. 2.对所求出问题的数学结果进行解释与检验,使其符合实际问 题的要求.
【自主解答】(1)由题意,得w= (x-20)·y =(x-20)·(-10x+500) =-10x2+700x-10 000 x b 35.
2a
答:当销售单价定为35元时,每月可获得最大利润. (2)由题意,得:-10x2+700x-10 000=2 000 解这个方程得x1=30,x2 =40. 答:李明想要每月获得2 000元的利润,销售单价应定为30元 或40元.
【解析】建立如图所示的坐标系, 设抛物线的关系式为y=ax2+c,
3. 二次函数的实际应用问题多数都与最大值、最小值有关, 这就要求熟练掌握用配方法和公式法求二次函数最大值、最 小值的方法,同时一定要注意自变量的取值范围.
【例3】(2010·青岛中考)某市政府大力扶持大学生创业.李 明在政府的扶持下投资销售一种进价为每件20元的护眼台灯. 销售过程中发现,每月销售量y(件)与销售单价x(元)之间的 关系可近似的看作一次函数:y=-10x+500. (1)设李明每月获得利润为w(元),当销售单价定为多少元时, 每月可获得最大利润? (2)如果李明想要每月获得2 000元的利润,那么销售单价应 定为多少元?
x
A(2,3)、B(m,2)、C(-3,n)三点. (1)求双曲线与抛物线的解析式; (2)在平面直角坐标系中描出点A、 点B、点C,并求出△ABC的面积.
【解析】(1)把点A(2,3)代入 y k 得:k=6,
x
∴双曲线的解析式为 y 6 .
x
把B(m,2)、C(-3,n)分别代入 y 6 得m=3,n=-2.
元一次方程组,解方程组得a、b、c的值,代入y=ax2+bx+c得
抛物线的函数关系式.
(2)把D( 7 ,m)代入(1)中求得的二次函数关系式求得m的值.根
2
据三角形的面积等于底乘以高除以2求得△ABD的面积.
a b c 0
【自主解答】(1)由题意可知 9a 3b c 0,
对称、y轴对称的函数解析式时,应先把原函数的解析式化成
y=a(x-h)2+k(a≠0)的形式,然后考虑所求图象的顶点坐标、
开口方向.
3.抛物线平移前后的形状不变,开口方向、大小不变,抛物线 平移前后遵循“左加右减,上加下减”的规律.
【例1】(2010·兰州中考)抛物线y=x2+bx+c图象向右平移2个
【例2】(2010·楚雄中考)已知:如图,抛物线y=ax2+bx+c与
x轴相交于两点A(1,0),B(3,0),与y轴相交于点C(0,3).
(1)求抛物线的函数关系式;
(2)若点D( 7 ,m)是抛物线y=ax2+bx+c上一点,请求出m的值,
2
并求出此时△ABD的面积.
【思路点拨】(1)把A、B、C三点的坐标代入y=ax2+bx+c得三
x
象是( )
【解析】选B.由二次函数图象可知,a<0,c>0, b 0,
2a
∴b<0.a<0,说明反比例函数图象在二、四象限,b<0,说明正
比例函数图象经过二、四象限,所以选B.
二次函数解析式的确定
求二次函数解析式的一般思路:(1)当已知抛物线上任意三点 时,通常设一般式y=ax2+bx+c;当已知抛物线的顶点坐标(h,k) 和抛物线上的另一点时,通常设为顶点式:y=a(x-h)2+k;当已 知抛物线与x轴的交点坐标(x1,0),(x2,0)时,通常设为双根式 y=a(x-x1)(x-x2).(2)已知顶点坐标、对称轴、最大值或最小 值,求二次函数的解析式时,一般用它的顶点式.(3)能用顶 点式、双根式求解析式的题目,一定能用一般式求解,最后结 果通常化为二次函数的一般式.
(2)令(1)中w=2 000得方程,解方程得结论; (3)求每月的最少成本,一种方法是根据成本=进价×销售量 列出成本与销售单价的函数关系式,由函数的增减性求解,另 一种方法是在已知“当进价一定时,销售量越小,成本越 小”,保证每月获得的利润不低于2 000元的情况下,先求出每 月销售量的最小值,从而求出李明每月成本最少值.
二次函数的图象与性质
1.二次函数y=ax2+bx+c(a≠0)可以通过配方得
到: y

a(x

b 2a
)2

4ac 4a
b2 ,其中抛物线的顶点为
相关文档
最新文档