污水处理厂中MBR工艺脱氮除磷效果研究

合集下载

污水处理厂中MBR工艺脱氮除磷效果研究

污水处理厂中MBR工艺脱氮除磷效果研究

污水处理厂中MBR工艺脱氮除磷效果研究膜生物反应器MBR主要是以高效膜分离技术代替了传统生物处理中的二沉池,将其膜分离技术和污水生物处理的技术进行结合,本文主要结合作者专业知识,简要的分析MBR 技术在市政污水处理厂脱氮除磷效果,以供借鉴。

1 MBR的性质MBR主要是将膜分离的技术和生物反应器进行结合。

由于膜高效固液分离的作用及强化生物处理的作用,所以它有其他生物处理技术难以比拟的优势。

下面将对其进行阐述。

第一,可以高效的进行固液的分离,分离的效果就远远好于传统沉淀池,出水水质的良好,出水悬浮物、浊度也就接近0,能够直接的回用,实现污水的资源化。

第二,膜高效截留的作用,实现反应器的水力停留时间(HRT)与污泥龄(SRT)完全的分离,使得运行的稳定性更好。

第三,反应器中微生物的浓度较高,耐冲击的负荷较强。

第四,污泥龄可以随意的控制,膜分离就使得污水大分子难以降解成分,在体积中有限生物反应器有着足够地停留的时间,有效的提升难降解有机物降解的效果。

反应器在高容积负荷、低污泥的负荷、长泥龄条件运行,进而实现了基本无剩余的污泥排放。

第五,结构的紧凑,占地面积相对较小,工艺设备的集中,能够进行一体化的自动化控制。

2 MBR生物脱氮处理的效果2.1 效果的分析按照硝化与反硝化是否在同一个反应器中发生,能够把MBR脱氮工艺分为了单一反应器间歇曝气MBR脱氮工艺、厌氧一好氧MBR脱氮工艺。

单一反应器的间歇曝气MBR脱氮工艺主要是采用了序批式反应器(SBR)的运行方式,经过限制曝气与半曝气的运行方式,在时间序列上实现了缺氧和好氧组合,而厌氧与好氧MBR脱氮技术就与传统厌氧-好氧脱氮的技术十分类似,前置反硝化缺氧运行下,含碳有机物去除、含氮有机物氧化、氨氮硝化在好氧的条件下运行。

SBR运行的方式MBR脱氮稳定性比传统的MBR脱氮效果更好。

在好氧的条件下,氨氮在经过了硝化作用后,转变硝态氮、亚硝态氮,废水中的总氮含量不会出现任何的变化,为有效的提升总氮去除效率,在MBR前增加设置了缺氧区、回流装置形成了厌氧--好氧的运行方式,总氮去除效率最高就达到了96%,在未增设的缺氧区与回流的装置下,总氮去除效率仅仅是60%,厌氧--好氧MBR中的厌氧反应器与好氧反应器对其氨氮去除效率分别是3 1%—43%和47%—64%,好氧反应器运行的状况对氨氮去除的效果影响是最大的,因为厌氧--好氧MBR之前就增设了缺氧池,为系统的反硝化创造出良好地条件,所以厌氧—好氧MBR脱氮工艺的脱氮效果就好一点,但是厌氧与好氧MBR脱氮工艺的流程相对较长,不能关切需要增加回流设备与能耗。

MBR系统对污水的处理效果研究

MBR系统对污水的处理效果研究
2.1.2氮素的去除率
生物脱氮是指污水中以有机氮、氨氮形式存在的氮被转化为氮气,从而减少水中氮素的含量。氨氮的去除主要在曝气池中进行,在A2O 工艺系统设计及运行中,起硝化作用的主要是硝化菌,可分为自养型硝化菌和异养型硝化菌两类,异养型硝化细菌仅占很少一部分,生物脱氮过程中起硝化作用的主要是自养型硝化细菌,它直接影响污水处理系统的硝化作用和生物脱氮效率,是污水生物脱氮的关键性因素[11],倒置A2OMBR系统对氨氮的去除效果如图3所示。
实验所用膜丝为自制高强度PVA亲水化改性复合膜,铸膜液体系由DMACPVDFLiClPVA按一定比例配置而成[8,9]。将此复合膜制成帘式组件应用于倒置A2OMBR体系中,考察MBR体系中膜对颗粒物的去除及膜性能的变化。复合膜基本参数如表1所示,膜组件及MBR主要运行参数见表2。
表1 复合膜的基本参数
图3 污水中氮素的去除效果
Fig.3 Nitrogen removal efficiency of wastewater
由图3可看出进水的氨氮在36.645.7mgL之间,平均值为41.14mgL,出水氨氮在0.06mgL0.94mgL之间,平均值分别0.32mgL,氨氮的去除效率在98%以上,系统在一个运行周期期间一直不排泥,致使污泥龄较长,高泥龄有利于世代时间长的硝化菌的大量繁殖,且反应器中的溶解氧充足,硝化菌不会因与异养菌争夺溶解氧而使硝化能力受限制,有利于硝化菌对氨氮的降解。当氨氮的进水浓度发生变化时,系统对氨氮的去除效果基本没有改变。试验期间出水总氮浓度为2.7~33mgL,TN的去除率为63%89%,波动较大。可能是由于反应器中的溶解氧较高,污泥回流到缺氧池,溶解氧偏高造成的。溶解氧较高时可以保证系统中硝化细菌的硝化条件,但使反硝化细菌受到了一定的抑制。因此控制反应器内溶解氧的水平,是膜生物反应器工艺实现生物脱氮的关键要素。

MBR在脱氮除磷方面的最新研究与进展

MBR在脱氮除磷方面的最新研究与进展

MBR在脱氮除磷方面的最新研究与进展近年来,膜生物反应器(MBR)由于处理效果好、占地面积少等优点日益受到污水处理界的关注。

目前MBR在国内外的研究发展很快,主要包括:一是生化处理和工艺运行参数的影响;二是膜成套技术的研制;三是膜分离影响因素。

尤其是在脱氮除磷研究和开发方面进展很快。

1 MBR不同工艺对氮的去除研究1.1 MBR工艺处理高浓度氨氮废水技术国内外对于含氨氮(NH4+-N )废水的处理方法主要采用生物脱氮处理法,国内外对低浓度含氨氮废水的研究已经比较成熟。

这段时间的研究主要集中在用MBR对高浓度氨氮废水处理方面。

由于MBR膜的完全截留作用使得膜生物反应器的水力停留时间和污泥停留时间可以完全分开,同时反应器维持很高的MLSS,使得反应器里硝化菌的大量积累有了可能,为处理高浓度氨氮废水创造了条件。

在缺氧/好氧MBR处理食品废水的试验中,在进水氨氮高达400-660 mg/L时,取得了91%的硝化效果。

而在利用浸没式MBR和传统活性污泥法处理高浓度氨氮废水的对比试验中发现,SRT为24 h时,进水氨氮为180 - 1300 mg/L,浸没式MBR中的氨氮几乎全部硝化,而传统活性污泥法氨氮的硝化率只有91%。

有人采用一体式浸没式MBR处理高浓度氨氮废水,研究结果表明,进水COD>100 mg/L,氨氮340 mg/L时,出水平均氨氮<3 mg/L,去除率>99%。

而李红岩等利用相同的膜生物反应器处理高浓度氨氮废水,在进水氨氮浓度逐渐增加到2000 mg/L;进水氨氮的容积负荷为2.0 kg/(m3/d)情况下,去除率依然达到了99%,而且系统比较稳定从各个研究结果来看,总体上MBR对去除高浓度氨氮废水的效果甚佳,且比较稳定。

1.2 MBR工艺脱氮技术在好氧生化池内氨氮转化为硝态氮和亚硝态氮只是氮的形态发生了变化,总氮的数量并没有减少。

为了提高总氮去除率,张西旺等在一体式MBR前增设缺氧区和回流装置,形成好氧/缺氧运行方式,获得了对高浓度氨氮下总氮很好的去除。

MBR组合工艺脱氮除磷研究进展

MBR组合工艺脱氮除磷研究进展

《环境生物技术论文》题目:MBR组合工艺脱氮除磷研究进展MBR组合工艺脱氮除磷研究进展摘要:常规MBR工艺处理城市生活污水尽管可以获得较低SS的出水,但对氮、磷的去除却很难达到愈来愈严格的排放要求,因此强化MBR工艺生物段的脱氮除磷功能成为目前研究的热点问题。

分析了MBR脱氮除磷的潜力,介绍了各种MBR组合工艺脱氮除磷的原理、特点及处理效果,探讨了MBR组合工艺脱氮除磷的研究方向,认为微生物学机理、强化内源反硝化及膜污染控制等是其研究重点。

关键词:膜生物反应器;组合工艺;脱氮除磷;强化内源反硝化氮、磷是导致水体富营养化的主要污染物,研究开发经济、高效的脱氮除磷工艺已成为目前城市污水处理及提标改造的研究热点。

在人们致力于探索高效而节能的水处理新技术中,膜分离技术代替二级生物处理工艺中的传统重力式沉淀池所构成的膜生物反应器(MBR)水处理工艺,具有生物处理和膜分离的双重特点,逐渐被重视并不断以各种组合形式应用于城市污水的脱氮除磷实践中。

1 MBR脱氮除磷潜力分析MBR工艺是将现代膜分离技术与生物处理技术有机结合起来的一种新型高效污水处理及回用工艺,因其特有的高污泥浓度和生物种群多样性的特征,在提高生物脱氮除磷效率方面具有较大潜力。

在MBR中,污泥停留时间(SRT)可以不依赖于水力停留时间(HRT)而单独加以控制,即可以通过膜的截留作用,在不增加池容的前提下延长SRT,可保证如硝化菌这类生长速度缓慢的微生物在系统中被完全保留,满足硝化菌的生长周期要求。

同时,通过DO控制和强化生物段的功能,在MBR中还发现存在反硝化除磷菌(DPB),在脱氮的同时也能有效除磷[1]。

此外,膜过滤取代了传统生物工艺中的二沉池,使反应器结构简单,占地面积小,还可获得高质量的出水并同用。

因此将生物脱氮除磷工艺与膜分离技术相结合,形成具有脱氮除磷功能的MBR具有广阔的应用前景。

2 MBR组合工艺的脱氮除磷效果MBR脱氮除磷工艺可以分为单一形式的MBR工艺和组合形式的MBR工艺两大类。

大MBR组合工艺解决脱氮除磷问题

大MBR组合工艺解决脱氮除磷问题

五大MBR 组合工艺解决脱氮除磷问题【格林大讲堂】几乎所有的传统脱氮除磷工艺都被应用到了MBRT艺中,如AO A2O SBR 等,这些传统工艺中遇到的技术问题同样会在MBR兑氮除磷工艺中出现。

A20及其变形强化工艺是众多应用在MBR兑氮除磷工艺中处理效果最为突出,运行管理最为方便,也是最稳定可靠的一类。

以下将介绍多种形式的MBR 脱氮除磷组合工艺。

武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。

18年来公司设计并施工了上百个交钥匙式的污水处理工程。

A20-MB工艺在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。

传统的生物脱氮工艺通常采用前置反硝化或后置反硝化来实现氮的去除,而设置了厌氧、缺氧和好氧反应器的A20工艺则可以实现同步除碳和脱氮除磷功能。

A20-MBR:艺中高浓度的MLSS独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A20工艺不同的影响,具有较好的脱氮除磷效率。

由A20工艺与膜分离技术结合而成的具有同步脱氮除磷功能的A20-MBR 工艺,可进一步拓展MBF的应用范畴。

A20/A-MBRT 艺A20/A-MBRE艺是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥和生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧和膜池。

A20/A-MBRE艺是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也是强化脱氮的MBR兑氮处磷工艺。

该工艺在普通A20工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷和脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN之后,再利用膜池的好氧曝气作用保障出水。

3A-MBF工艺该工艺的内部流程依次是第一缺氧池、厌氧池、第二缺氧池、好氧池和膜池,膜池混合液分别回流至第一缺氧池和第二缺氧池。

MBR工艺强化脱氮除磷处理滇池农业面源污水的调控方法及实际应用

MBR工艺强化脱氮除磷处理滇池农业面源污水的调控方法及实际应用

MBR工艺强化脱氮除磷处理滇池农业面源污水的调控方法及实际应用MBR工艺强化脱氮除磷处理滇池农业面源污水的调控方法及实际应用近年来,由于农业活动的发展和城市人口的增加,滇池面临着严重的农业面源污染问题。

特别是农业面源污水富含氮、磷等营养物质,对水体的富营养化和水生态系统的破坏造成了严重影响。

为了解决这一问题,研究人员们积极探索了一系列的调控方法,其中MBR工艺强化脱氮除磷处理滇池农业面源污水成为一种较为有效的方法,并取得了一定的实际应用。

MBR(Membrane Bioreactor)技术是一种结合了传统活性污泥法和微滤膜技术的污水处理技术。

该技术通过以微滤膜分离设备替代传统沉淀池,可实现高效的固液分离和脱除悬浮物、颗粒有机物等。

在MBR工艺中,通过微生物的作用,将污水中的有机物质等转化为有机物和二氧化碳。

同时,通过微滤膜的过滤作用,有效地去除了溶解性有机物、颗粒物和细菌等。

因此,MBR工艺不仅能够实现高效的有机物去除,还能够有效地解决滇池农业面源污水的脱氮除磷问题。

在滇池农业面源污水处理中,MBR工艺的调控方法主要包括以下几个方面:1. 污水前处理:在MBR工艺中,污水前处理的重要性不可忽视。

通过采取合适的前处理方法,如筛网、沉砂池等,可以有效地去除污水中的大颗粒物,降低对膜的污染风险,同时减少废水中悬浮物对微生物的抑制作用,提高后续处理过程的效果。

2. 水解酸化阶段的控制:在MBR工艺中,水解酸化阶段是有机物质降解的关键环节。

通过调控水解酸化阶段的操作参数,如温度、pH值等,可以促进有机物质的分解,提高脱氮除磷效果。

3. 曝气方式的优化:在MBR工艺中,曝气是氮素转化和磷素释放的重要环节。

研究表明,采用适当的曝气方式和曝气量,可以促进污水中氨氮的氧化和硝化作用,提高脱氮效果。

同时,合理控制曝气方式,可减少气泡对膜的冲刷,延长膜的使用寿命。

除了以上的调控方法,MBR工艺还可以通过选择合适的膜材料和膜组件,优化膜污染物的清洗方式,进一步提高脱氮除磷的效果。

MBR技术

MBR技术

MBR技术1.前言在水质富营养化日益严重的今天, 越来越多的国家和地区制定了严格的氮磷排放标准, 因此废水脱氮除磷工艺的开发日益受到关注。

膜生物反应器(MBR)工艺是将现代膜分离技术与传统生物处理技术有机结合起来的一种新型高效污水处理及回用工艺。

与传统的脱氮除磷工艺相比,MBR 的脱氮除磷工艺是最近才开始研究与发展的。

MBR 可以通过膜的截留作用, 使硝化菌长期停留在好氧池内, 在不增加池容的前提下延长了污泥龄, 满足了硝化菌的生长, 减少了硝化菌的流失。

同时,在MBR 中还发现存在反硝化除磷菌,在脱氮的同时也能有效地去除磷。

2.MBR脱氮除磷的原理以及工艺原理MBR是一种将污水的生物处理和膜过滤技术相结合的高效废水生物处理工艺。

它把膜分离技术和生物技术结合起来,采用膜组件取代常规二级生化处理工艺中二沉池、砂滤、消毒等单元;用超微滤膜对曝气池出水直接进行过滤。

工艺类型MBR工艺一般由膜组件和生物反应器两部分组成,根据各个单元自身的多样性,MBR 可分为多种类型。

(1)按照膜组件的位置的不同来划分可分为分离式MBR和一体式MBR。

✓分离式MBR:最早的MBR发展形式,也称为第一代MBR工艺。

工艺均采用错流式膜组件,采用加压方式,该技术比较成熟,运行稳定可靠,但需要较高的循环水量,造成较大的单位产水能耗。

✓一体式MBR第二代MBR 工艺,解决分离式MBR 能耗高的问题。

在一体式中,膜组件直接置入生物反应器内,曝气器就放在膜组件的下面,通过相应泵进行抽吸,得到过滤液。

由于曝气形成的剪切力和紊动,使固体难于积聚在膜表面,从而减少膜的堵塞和能耗。

这种反应器具有设备简单、占地空间小、整体性强、操作方便等,但易污染,出水不连续。

膜组件和膜材料常用于MBR 处理工艺中的是微滤膜和超滤膜按材质分,膜种类有无机膜和有机膜。

无机膜耐污染、寿命长,但生产成本较高,目前国内普遍采用有机膜。

目前,超滤膜的制膜材料多为聚矾超滤膜、氟化物、聚矾酞胺及醋酸纤维素等微滤膜多采用硝酸纤维滤膜、醋酸纤维素膜、聚酞胺滤膜、再生纤维滤膜等为制膜材料。

MBR脱氮除磷技术用于处理城市污水时侧重于生物除磷

MBR脱氮除磷技术用于处理城市污水时侧重于生物除磷

MBR脱氮除磷技术用于处理城市污水时侧重于生物除磷摘要对膜生物反应器中试装置中生物脱氮除磷的性能进行了为期210天的试验评估。

内循环的设定值是由之前已优化的参数决定的,这些参数是以ASM2D模型为基础来优化碳氮磷的同步去除。

生物脱氮除磷效率较高,从运行至今,COD 和N去除效率分别为92 ± 6%、89 ± 7%。

在试验过程中,P的去除率逐渐提高,最后可达到92%。

因好氧聚磷菌和反硝化聚磷菌活性的增加,在运行150天后两者聚磷的速率分别可达13.6mg P g-1VSS h-1、5.6 mg P g-1VSS h-1。

1. 引言MBR出水水质良好,有机物和悬浮物浓度低,几乎没有致病菌。

此外,MBR 的出水是一个很好的回用水源,因为在此之前通过高端的超滤膜对回用水进行前处理来保护反渗透膜。

除了能有效的去除有机物外,它还反映了MBR能高效脱氮,这是由于在MBR运行的一般操作条下提高了硝化细菌的保留时间和延长污泥停留时间,提供一个缺氧区进行反硝化。

相反,反应器中污泥停留时间高通常表示了生物对磷的去除率即对磷酸盐的去除率降低,从而导致磷酸盐形成新的细胞物质而被消耗掉。

然而,生物对磷的去除与对碳和氮的去除的主要的差异是运行条件不同,在MBR中提高生物浓度和缩短的污泥停留时间已得到了验证。

MBR中是因为有聚磷菌的繁殖才能够生物除磷。

在MBR中有利于聚磷菌的繁殖是因为聚磷菌在非聚磷菌饥饿时期表现出的竞争优势,这也是MBR中污泥负荷低的特点kgCOD(BOD)/(kg污泥.d)。

包括聚磷菌在内的细菌为了能在更长时间里保持较高活性就需要积累能量。

在污水处理中驯化能够扩大磷酸盐的存储能力的细菌被称为强化生物除磷(EBPR)。

聚磷菌要求在厌氧的条件下才能消耗有机物,如挥发性脂肪酸(VFAs),从储存的磷酸盐中释放磷。

在好氧条件下,聚磷菌吸收磷酸盐,而在缺氧条件下也存在反硝化聚磷菌吸收硝酸盐。

因此,在缺氧或好氧的条件下都存在磷的吸收,这就提高了磷的去除效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

污水处理厂中MBR工艺脱氮除磷效果研究
膜生物反应器MBR主要是以高效膜分离技术代替了传统生物处理中的二沉池,将其膜分离技术和污水生物处理的技术进行结合,本文主要结合作者专业知识,简要的分析MBR 技术在市政污水处理厂脱氮除磷效果,以供借鉴。

1 MBR的性质
MBR主要是将膜分离的技术和生物反应器进行结合。

由于膜高效固液分离的作用及强化生物处理的作用,所以它有其他生物处理技术难以比拟的优势。

下面将对其进行阐述。

第一,可以高效的进行固液的分离,分离的效果就远远好于传统沉淀池,出水水质的良好,出水悬浮物、浊度也就接近0,能够直接的回用,实现污水的资源化。

第二,膜高效截留的作用,实现反应器的水力停留时间(HRT)与污泥龄(SRT)完全的分离,使得运行的稳定性更好。

第三,反应器中微生物的浓度较高,耐冲击的负荷较强。

第四,污泥龄可以随意的控制,膜分离就使得污水大分子难以降解成分,在体积中有限生物反应器有着足够地停留的时间,有效的提升难降解有机物降解的效果。

反应器在高容积负荷、低污泥的负荷、长泥龄条件运行,进而实现了基本无剩余的污泥排放。

第五,结构的紧凑,占地面积相对较小,工艺设备的集中,能够进行一体化的自动化控制。

2 MBR生物脱氮处理的效果
2.1 效果的分析
按照硝化与反硝化是否在同一个反应器中发生,能够把MBR脱氮工艺分为了单一反应器间歇曝气MBR脱氮工艺、厌氧一好氧MBR脱氮工艺。

单一反应器的间歇曝气MBR脱氮工艺主要是采用了序批式反应器(SBR)的运行方式,经过限制曝气与半曝气的运行方式,在时间序列上实现了缺氧和好氧组合,而厌氧与好氧MB
R脱氮技术就与传统厌氧-好氧脱氮的技术十分类似,前置反硝化缺氧运行下,含碳有机物去除、含氮有机物氧化、氨氮硝化在好氧的条件下运行。

SBR运行的方式MBR脱氮稳定性比传统的MBR脱氮效果更好。

在好氧的条件下,氨氮在经过了硝化作用后,转变硝态氮、亚硝态氮,废水中的总氮含量不会出现任何的变化,为有效的提升总氮去除效率,在MBR前增加设置了缺氧区、回流装置形成了厌氧--好氧的运行方式,总氮去除效率最高就达到了96%,在未增设的缺氧区与回流的装置下,总氮去除效率仅仅是60%,厌氧--好氧MBR中的厌氧反应器与好氧反应器对其氨氮去除效率分别是3 1%—43%和47%—64%,好氧反应器运行的状况对氨氮去除的效果影响是最大的,因为厌氧--好氧MBR之前就增设了缺氧池,为系统的反硝化创造出良好地条件,所以厌氧—好氧MBR脱氮工艺的脱氮效果就好一点,但是厌氧与好氧MBR脱氮工艺的流程相对较长,不能关切需要增加回流设备与能耗。

SBR形式的MBR脱氮工艺间歇曝气可以有效的促使细菌胞外的聚合物降解,缓解了膜组件生物的污染,延长了膜组件使用的寿命,但是和处理能力相同的厌氧--好氧MBR脱氮技术相比,膜的面积就增加了不少。

诸多的研究人员,对MBR脱氧的工艺进行新的探索,在好氧MBR中加入了填料的载体,能够为硝化与反硝化创造更好地条件,其工艺氨氮与总氮平均的去除率分别是100%、93. 06%,填料的内部出现反硝化的杆菌,荧光假单胞菌等把硝酸盐还原成亚硝酸严、氮气,促进氨氮分解,是膜反应器填充料能够有效的提升脱氮效率。

基于MBR里的污泥絮体比较松散地特点,加入了粉末活性炭(PAC)能够有效的促进污泥絮体颗粒的增大,使得絮体的内部形成了缺氧区,避免反硝化发生、减缓膜污染,其去除的氨氮与亚硝酸盐去除的效率分别是95.50%、99.15%。

对硝化菌、氧化有机物异氧菌有着较强抑制的作用。

就保证亚硝化菌在活性污泥中主导的地位,实现亚硝化菌反硝化的功能,提升硝化过程脱氮效果而言,其过程节约DO约50%,节省碳源约80%。

2.2 得出的结论
第一,间歇式MBR在进水不曝气的过程中,反硝化所产生的碱能够有效补充硝化作用就碱消耗,使得其对氨、氮的去除的能力比传统的MBR更佳。

第二,间歇式的MBR提供出充分的缺氧环境,使得对总氮、总磷去除的效果也比传统的M BR好。

第三,在进水氮负荷、碳、氮的波动较大的时候,间歇式的MBR能够灵活的改变曝气的强度循环的周期,进出水比等的操作条件能够获取稳定可靠地脱氮性。

第四,间歇式运行强化了MBR脱氮除磷的性能。

3 MBR除磷处理效果分析
MBR除磷工艺与脱氮工艺基本相同,一般采用厌氧—好氧和SBR工艺,而且多数是和脱氮联用。

有关专家采用厌氧—好氧MBR工艺处理模拟生活污水,根据实验结果,该工艺氮、磷去除率分别为96%和70%。

据有关专家研究SBR--MBR工艺强化除磷效果,总磷(T P)去除率达96.4%,其中进水COD/TP是该工艺强化除磷的关键,在进水COD/TP
较高时,无需排泥就能达到强化除磷的目的。

传统的生物脱氮除磷理论认为,生物脱氮需经过硝化菌的好氧硝化、反硝化菌的厌氧反硝化来协同完成,而生物除磷过程是除磷菌的厌氧释磷、好氧超量吸磷、最终排放富磷污泥的过程。

通常认为,硝化氮的反硝化和磷释放都需要碳源,厌氧反硝化会消耗一部分碳源,影响聚磷菌(PAO)的磷释放,降低磷去除率。

但最近的研究发现,污泥中有反硝化聚磷菌(DPB)存在时,在厌氧条件下它可分解菌体内的多聚磷酸盐(Poly—P),吸收基质中的低分子有机酸并以PHB的形式贮存于菌体中;在缺氧环境下,DPB利用硝酸盐作电子受体氧化菌体内的PHB,产生的能量部分用于新菌体的合成,其余部分用来吸收基质中的磷酸盐并以聚磷(Poly—P)的形式贮存于菌体内,从而实现超量吸磷。

同时,一氧化氮被还原为氮气,在厌氧、缺氧交替运行条件下实现DPB的反硝化除磷效果。

DPB可最大程度地减少碳源的需求,为解决生物脱氮除磷工艺的碳源竞争问题提供了新的方法。

研究发现,通过创造厌氧、缺氧交替的环境可筛选DPB。

有机碳源可影响反硝化除磷效果,进水有机碳浓度较低时,反硝化除磷系统可利用反硝化除磷菌一碳两用的功能长期稳定运行,磷去除率为99.2%;缺氧区的碳源浓度越高,对缺氧吸磷的抑制作用就越大。

与传统的专性好氧聚磷菌除磷相比,DPB可分别节省约50%的COD和30%的氧消耗量,相应减少50%的剩余污泥量。

通过控制缺氧段硝酸盐浓度对DPB进行诱导,诱导前DPB占总聚磷菌的27.6l%,诱导后则高达78.6l%。

在序批式膜生物反应器工艺中经过厌氧—好氧和厌氧一缺氧—好氧两个阶段的富集,DPB占伞部聚磷菌的比例从19.4%升至69.6%;每周期缺氧段投加120 mg No-N时,SBMBR系统运行最为稳定,缺氧段氮和磷去除率分别为100%和84%,系统的磷去除率为96.1%。

结束语
总而言之,满足硝化和吸磷对氧需求的条件下,采用较低的DO浓度可减少混合液从好氧室到缺氧室携带的DO量,又可促成好氧区同步硝化反硝化作用的发生,从而减少回流系统携带的硝态氮量,降低厌氧区反硝化菌与聚磷菌对碳源的竞争,最终使得系统对TN和TP的去除效果优于其他DO浓度下的。

同时,采用较低的DO浓度还可以节能降耗。

在经过对比研究可发现.应用A20—MBR工艺处理常规市政污水.进行多级分流可以取得很好的处理效果,各项出水指标均超过国家一级A标准。

A20—MBR工艺可以在低溶解氧(0.5 mg/L)的条件下运行.且处理市政综合废水效果很好。

相关文档
最新文档