第八章脂类代谢 (2)
生物化学 第08章 脂代谢(共68张PPT)

合成一分子软脂酸的总反应式
4、脂肪酸的延伸反应
NADPH
5、脂肪酸的去饱和反应
4. 饱和脂肪酸的从头合成与β-氧化的比较
区别要点
从头合成
β-氧化
细胞内进行部位
胞液
酰基载体
ACP-SH
二碳单位参与或断裂形式 丙二酸单酰ACP
电子供体或受体
NADPH+H+
-羟酰基中间物的立体构型不同
D型
对HCO3-和柠檬酸的需求 所需酶
甘油
R1COOH R2COOH R3COOH
脂肪酸
场所: 细胞质内(主要是脂肪组织) 关键酶:脂肪酶(限速酶) 调控: 激素 功能: 水解产物可进一步氧化分解
二、甘油的氧化分解与转化
CH 2OH ATP ADP CH 2OH NAD + NADH+H +
CHOH
CHOH
甘油激酶
CH 2OH (肝 、 肾 、 肠 ) CH 2O
α–lipoprotein (high density 脂酰-CoA的跨线粒体内膜的转运
第十章
FAD+2ATP+3H20
(2)脂酰CoA转运入线粒体
脂类的脂消类化代、谢吸收、 CH3(CH2)nCOOH
(hormone-sensitive lipase , HSL) 这对于某些生活在干燥缺水环境的生物十分重要,像骆驼已将β-氧化作为获取水的一种特殊手段。
5~10 50~70 10~15 10~15
20~25 10 40~50 5
45~50 20 20~22 30
生理功能
转运外源性 TG
转运内源性 TG 转运 Ch 转运PL、Ch
第二节 第十章
脂类代谢

第八章脂类代谢内容提要(学习要求?):本章阐述生物体内的脂类物质、脂肪代谢及类脂代谢。
通过本章学习,熟悉生物体内脂质的组成、结构、分类和功能;重点掌握脂肪的合成代谢和分解代谢,了解生物体内脂肪与糖相互转化的途径和意义;掌握胆固醇合成代谢途径的调节和胆固醇的代谢转变;了解类脂代谢、脂类物质的运输与血浆脂蛋白。
脂类(lipids)是脂肪(甘油三酯)和类脂的统称。
它们在结构上有很大差别,共同特点是不溶于水,而溶于氯仿、乙醚、苯等非极性有机溶剂。
用这类溶剂可将脂类物质从细胞和组织中萃取出来。
脂类是生物体的重要组成成分,按生物学功能可将其分为贮存脂质(storage lipid)、结构脂质(structural lipid)和活性脂质(active lipid)。
贮脂主要是脂肪,结构脂质和活性脂质都属于类脂。
脂肪是生物体贮存的重要能源物质,1g脂肪彻底氧化可产生约39KJ的热量,是相同重量糖或蛋白质氧化所产热量的2.3倍。
结构脂质主要是磷脂,它是生物膜的骨架成分。
活性脂质在生物体内具有重要的生理活性,如类固醇激素有重要的代谢调节作用;糖脂是细胞识别的物质基础之一;一些磷脂在细胞信号转导过程中能够产生第二信使等。
由此可见,生物体内的脂类在新陈代谢、信息传递及代谢调控等生命活动中具有重要作用。
第一节生物体内的脂质一、脂类的组成和分类脂类主要由碳、氢、氧三种元素组成,某些脂类化合物还含有少量氮、磷和硫。
大多数脂类化合物是由脂肪酸和醇形成的酯及其衍生物,其中的脂肪酸多为长链一元羧酸,其中的醇则包括甘油、鞘氨醇、固醇和高级一元醇。
生物体内的脂类据其化学组成与结构通常分为单纯脂类、结合脂类、衍生脂类。
(一) 脂肪酸(fatty acid,FA)脂肪酸是脂类化合物的主要组成成分,一般由一条长的线性烃链(疏水尾)和一个末端羧基(亲水头)组成。
天然脂肪酸骨架的碳原子数多为偶数,通常为C4~C36。
动植物中分布最广泛的脂肪酸是硬脂酸、软脂酸和油酸。
第八章 脂类代谢习题

第八章脂类代谢一、名词解释1.脂肪酸的β—氧化:脂脂肪酸在一系列酶的催化下,在ɑ、β碳原子间断裂,β-碳原子被氧化成羧基,生成乙酰CoA和比原先少两个碳的脂酰CoA的过程;2.必需脂肪酸:人或动物正常生长发育羧必需的,而自身又不能合成,只有从食物中获得,的脂肪酸,通常指:亚油酸、亚麻酸和花生四烯酸;3.-氧化及其它代谢产生的乙酰CoA,在一般细胞中可进入三羧酸循环进行氧化分解,但在肝脏细胞中,其氧化则不很完全,出现一些氧化的中-羟丁酸和丙酮,它们称为酮体。
肝脏生成的酮体可在肝外组织被利用;4.血脂:血浆中所含的之类统称为血脂,包括甘油三酯、磷脂、胆固醇、胆固醇酯、游离脂肪酸等;5.外源性脂类:6.内源性脂类:7. 脂肪酸α-氧化:α-氧化作用在哺乳动物的脑组织和神经细胞的微粒体中进行,由微粒体氧化酶系催化,使游离的长链脂肪酸在α-碳原子上的氢被氧化成羟基,生成α-羟脂酸。
长链的α-羟脂酸是脑组织中脑苷脂的重要成分,α-羟脂酸可以进一步氧化脱羧,形成少一个碳原子的脂肪酸;8. 脂肪酸ω-氧化:动物体内十二碳以下的短链脂肪酸,在肝微粒氧化酶系催化下,通过碳链甲基端碳原子(ω﹣碳原子)上的氢被氧化成羟基,生成ω﹣羟脂酸、ω﹣醛脂酸等中间产物,再进一步氧化为α,ω﹣二羧酸;9. 柠檬酸-丙酮酸循环:线粒体内乙酰辅酶A与草酰乙酸缩合柠檬酸然后经内膜上的三羧酸载体运至胞液中,在柠檬酸裂解酶催化下需消耗ATP将柠檬酸裂解回草酰乙酸和乙酰辅酶A,后者可利用脂肪酸合成,而草酰乙酸经还原后在苹果酸脱氢酶的催化下生成苹果酸,苹果酸又在苹果酸酶的催化下变成丙酮酸,丙酮酸经内膜载体运回线粒体,在丙酮酸羧化酶作用下重新生成草酰乙酸;10. 简单脂质:由脂肪酸与醇(甘油醇、一元醇)所形成的脂,分为脂、油、蜡;11. 复合脂质:除脂肪酸和醇外,尚有其他非脂分子的成分(如胆碱、乙醇胺、糖等),按非脂部分可分为磷脂和糖脂,鞘磷脂和鞘糖脂统称为鞘脂。
脂肪的分解代谢解读

四. Fatty acid breakdown--oxidation pathway 肉碱(也叫肉毒碱,Carnitine)的结构如下:
乙酰CoA
• 1mol软脂酸和油酸完全氧化成二氧化碳和 水,需要经历哪几个阶段,可净生成多少 mol的ATP?
乙酰CoA
四. Fatty acid breakdown--oxidation pathway
1分子软脂酸彻底氧化
生成ATP的分子数
一次活化作用 7轮-氧化作用 8分子乙酰CoA的氧化
总计
-2 +5×7 = +35 +12×8 = +96
+129
在油料种子萌发时乙醛酸体中通过-氧化产生的乙 酰CoA一般不用作产能形成ATP,而是通过乙醛酸循环 (见后)转变成琥珀酸,再经糖的异生作用转化成糖。
生成的,二羧酸可从 两端进行b氧化作用而 降解。
六.脂肪酸的-氧化途径
动物体内的十二碳以下的脂肪酸常常通过-氧化途径 进行降解。
植物体内的在-端具有含氧基团(羟基、醛基或羧基) 的脂肪酸大多也是通过-氧化作用生成的,这些脂肪酸常 常是角质层或细胞壁的组成成分。
在-氧化过程中 ,每进行一轮,使1分子FAD还原成 FADH2、1分子NAD+还原成NADH,两者经呼吸链可 分别生成2分子和3分子ATP,因此每轮-氧化作用可生 成5分子ATP。
-氧化作用的产物乙酰CoA可通过三羧酸循环而彻底氧 化成CO2和水,同时每分子乙酰CoA可生成12分子ATP。
四. Fatty acid breakdown--oxidation pathway 2.偶数碳饱和脂肪酸的氧化
1.脂肪酸-氧化的过程 (3) β-氧化的历程
对于长链脂肪酸,需要经过多次-氧化作用,每 次降解下一个二碳单位,直至成为二碳(当脂肪酸含 偶数碳时)或三碳(当脂肪酸含奇数碳时)的脂酰 CoA。
第八章脂类代谢.ppt

HA3CGl(uCHsi2d)ne-CchaCinH2caCrboSxCyolAextracts a proton from the
a-carbon ofOtHhe substrate, facilitating transfer of 2 e
with H+ (a hydride) from the b position to FAD.
+
激素敏感脂肪酶
2.脂肪动员过程中的基本变化 激素+膜受体→腺苷酸环化酶↑→
cAMP↑→ 蛋 白 激 酶 A↑→ 激 素 敏 感 脂 肪 酶(HSL,甘油三酯酶)↑→甘油三酯 分解↑
3.脂肪动员的基本过程
甘油三酯 1)↓激素敏感脂肪酶
脂肪酸+甘油二酯 2)↓甘油二酯酶
脂肪酸+甘油一酯 3)↓甘油一酯酶
CH2 OH ATP ADP
CH2 OH
NAD+
H+ + NADH
CH2
OH
HO CH CH2 OH
HO CH
1
2
CH2 O PO3
CO CH2 O
PO3
glycerol
glycerol-3-P
dihydroxyacetone-P
Glycerol, arising from hydrolysis of triacylglycerols, is converted to the Glycolysis intermediate dihydroxyacetone phosphate, by reactions catalyzed by:
2.脂类物质的生理功用
① 供能贮能。
② 构成生物膜。
③ 协助脂溶性维生素的吸收,提供必需 脂肪酸。 l必需脂肪酸是指机体需要,但自身不能 合成,必须要靠食物提供的一些多烯脂肪 酸。 ④ 保护和保温作用。
脂类化学及脂代谢 2

琥珀酰辅酶A
30
甲基丙二酸单酰辅酶A变位酶
Co+3 -- > Co+2 31
32
自由基重排机理
33
过氧化物酶体的β-氧化 作用:氧化支链的脂肪酸和长链
脂肪酸(>22C) 过氧化物酶体硫解酶活性不高, 往往小脂肪酸会被移出
34
过氧化物酶体氧化机理
酮体的代谢Ketone Body Pathway 酮体包括:
乙酰乙酸(30%)
β-羟丁酸(70%)
丙酮(微量)
⌘ 酮体在肝脏生成,脂肪酸氧化不完全,生成的中间产物。 ⌘ 酮体的生成依据体内乙酰辅酶A的水平来调节。 ⌘ 意义:能够透过血脑屏障,供能肌肉和脑组织;
长期饥饿和糖供给不足时供能
40
酮体之间的转化:
16
Glu FAD
17
18
非洲荔枝
19
2. 水合加成 Hydration (HOH)
⌘ 顺式加成, ⌘ 注意是L型的中间体与后面合成的相对比
20
3.再氧化成酮 Oxidation (NAD+)
羟脂酰辅酶A脱氢酶 4. 硫解断裂 Cleavage (CoASH)
硫解酶
21
β-氧化总结
22
脂肪酸氧化总结
CO2
TAC
H2O
3
甘油的代谢
甘油激酶
3-磷酸甘油
磷酸甘油脱氢酶 (线粒体)
磷酸二羟丙酮
3-磷酸甘油醛
甘油氧化供能在脂肪氧化供能中所占的比例很小
肌肉和脂肪组织的甘油激酶活性很低,所以基本上甘油是在肝脏中代谢,
结果是生成CO2,H2O,或者进入糖异生途径。
生物化学习题-第八章:脂质代谢

第八章脂质代谢一、知识要点(一)脂肪的生物功能:脂类是一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂的物质。
通常按不同的组成将脂类分为五类,即(1)单纯脂、(2)复合脂、(3)萜类、类固醇及其衍生物、(4)衍生脂类以及(5)结合脂类。
脂类物质具有重要的生物功能。
脂肪是生物体的能量提供者。
脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。
脂类物质也可为动物机体提供必需脂肪酸和脂溶性维生素。
某些萜类及类固醇类物质,如维生素A、D、E、K、胆酸及固醇类激素,都具有营养、代谢及调节的功能。
有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。
脂类作为细胞的表面物质,与细胞识别、种特异性和组织免疫等生理过程关系密切。
(二)脂肪的降解在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。
甘油经过磷酸化及脱氢反应,转变成磷酸二羟丙酮,进入糖代谢途径。
脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。
脂酰CoA在线粒体内膜上的肉毒碱-脂酰CoA转移酶系统的帮助下进入线粒体基质,经β-氧化降解成乙酰CoA,再通过三羧酸循环彻底氧化。
β-氧化过程包括脱氢、水合、再脱氢和硫解这四个步骤,每进行一次β-氧化,可以生成1分子FADH2、1分子NADH+H+、1分子乙酰CoA以及1分子比原先少两个碳原子的脂酰CoA。
此外,某些组织细胞中还存在α-氧化生成α−羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。
萌发的油料种子和某些微生物拥有乙醛酸循环途径。
可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,作为糖异生和其它生物合成代谢的碳源。
乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶,前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者则催化乙醛酸与乙酰CoA缩合生成苹果酸。
(三)脂肪的生物合成脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。
08-脂类代谢

8CH3CO~SCoA+7FADH2+7NADH+7H+
26
脂酸氧化的能量生成 —— 以16碳软脂酸的氧化为例 活 化:消耗2个高能磷酸键
β 氧 化: 每轮循环
四个重复步骤:脱氢、水化、再脱氢、硫解
产物:1分子乙酰CoA 1分子少两个碳原子的脂酰CoA 1分子NADH+H+ 1分子FADH2
27
7 轮循环产物:8分子乙酰CoA 7分子NADH+H+
(肝)
CO2+H2O +ATP
(肝外)
酮体 (ketone bodies)
10
一、甘油三酯的分解代谢
(一)脂肪的动员
脂肪组织中储存的甘油三酯在脂肪酶 的催化下逐步水解为游离脂肪酸和甘 油,并释放入血,以供其它组织氧化 利用的过程称为脂肪的动员。
甘油三酯脂肪酶 甘油二酯脂肪酶 甘油一酯脂肪酶
甘油三酯
β-羟丁酸 脱氢酶
= = = = = =
32
2. 酮体的利用
OH CH3CHCH2COOH
D(-)-β -羟丁酸
NAD+ NADH+H+
琥珀酰CoA转硫酶 (心、肾、脑及骨 骼肌的线粒体)
CoASH+ATP
O O CH3CCH2COH
乙酰乙酸
PPi+AMP
O O CH3CCH2CSCoA (乙酰乙酰CoA)
(磷脂、胆固醇(酯)等)
6
二、脂类的主要生理功能
(一) 储能与供能
(二)维持正常生物膜的结构与功能
(三) 转变成多种重要的生理活性物质
(四)保护内脏和防止体温散失 (五)必需脂肪酸的来源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
HO RCH2C C C SCoA H2O
OH
O
RCH2 CH CH C SCoA
H
烯 脂 酰 CoA水 合 酶
2020/6/17
12
(3)脱氢 L-β-羟脂酰CoA在L-β-羟脂酰CoA脱氢 酶催化下,脱去β碳原子与羟基上的氢原子生成β酮脂酰CoA,该反应的辅酶为NAD+。
OH
O 烯脂酰CoA脱氢酶 O
亚油酸 18碳脂肪酸,含两个不饱和键; 亚麻酸 18碳脂肪酸,含三个不饱和键; 花生四烯酸 20碳脂肪酸,含四个不饱和键; (2)生物活性物质
激素、胆固醇、维生素等。
2020/6/17
4
生物体结构物质
(1)作为细胞膜的主要成分 几乎细胞所含的 磷脂都集中在生物膜中,是生物膜结构的基本组 成成分。
2020/6/17
17
(2)酮体的分解
肝脏是生成酮体的器官,但不能使酮体进 一步氧化分解,而是采用酮体的形式将乙 酰CoA经血液运送到肝外组织,作为它们 的能源,尤其是肾、心肌、脑等组织中主 要以酮体为燃料分子。在这些细胞中,酮 体进一步分解成乙酰CoA参加三羧酸循环。
2020/6/17
18
A. 乙酰乙酸在肌肉线粒体中经3-酮脂酰CoA转移 酶催化,能被琥珀酰CoA活化成乙酰乙酰CoA。
B. 乙酰乙酰CoA被β氧化酶系中的硫解酶裂解成 乙酰CoA进入三羧酸循环。
2020/6/17
16
(1)酮体的生成
A. 2分子的乙酰CoA在肝脏线粒体乙酰乙酰CoA 硫解酶的作用下,缩合成乙酰乙酰CoA,并释放1 分子的CoASH。
B. 乙酰乙酰CoA与另一分子乙酰CoA缩合成羟甲 基戊二酸单酰CoA(HMG CoA),并释放1分子 CoASH。
C. HMG CoA在HMG CoA裂解酶催化下裂解生 成乙酰乙酸和乙酰CoA。乙酰乙酸在线粒体内膜 β-羟丁酸脱氢酶作用下,被还原成β-羟丁酸。部 分乙酰乙酸可在酶催化下脱羧而成为丙酮。
2020/6/17
9
穿膜(脂酰CoA进入线粒体)
脂肪酸活化在细胞液中进行,而催化脂肪酸 氧化的酶系是在线粒体基质内,因此活化的 脂酰CoA必须进入线粒体内才能代谢。
2020/6/17
10
脂肪酸的β氧化
长链脂酰CoA的β氧化是在线粒体脂肪酸 氧化酶系作用下进行的,每次氧化断去二 碳单位的乙酰CoA,再经TCA循环完全氧化 成二氧化碳和水,并释放大量能量。偶数 碳原子的脂肪酸β氧化最终全部生成乙酰 CoA。
O
RCH2 CH CH C SCoA
RCH2 C CH C SCoA
NAD+ NADH + H+
(4)硫解 在β-酮脂酰CoA硫解酶催化下,β-酮脂 酰CoA与CoA作用,硫解产生 1分子乙酰CoA和 比原来少两个碳原子的脂酰CoA。
O RCH2 C
O CH C
硫解酶 SCoA
CoASH
O RCH2C
2020/6/17
2
2. 分类
脂肪酸
饱和脂肪酸 不饱和脂肪酸
脂肪 类脂
脂 脂肪
油
蜡
磷脂
甘油磷脂
卵磷脂 脑磷脂
鞘氨醇磷脂
糖脂
异戊二烯酯
甾醇 萜类
2020/6/17
3
3. 脂类的功能
贮藏物质/能量物质 脂肪是机体内代谢燃料的贮 存形式,它在体内氧化可释放大量能量以供机体 利用。
提供给机体必需脂成分 (1)必需脂肪酸
(2)保护作用 脂肪组织较为柔软,存在于各 重要的器官组织之间,使器官之间减少摩擦,对 器官起保护作用。
用作药物
卵磷脂、脑磷脂可用于肝病、神经衰弱及动脉粥 样硬化的治疗等。
2020/6/17
5
二、脂肪的分解代谢
2020/6/17
6
1.脂肪的水解 乳化 脂肪的消化主要在肠中进行,胰液
和胆汁经胰肪酸,但大部分脂肪仅局部 水解成甘油一酯,甘油一酯进一步由另一 种脂酶水解成甘油和脂肪酸。
脂酰CoA的β氧化反应过程如下:
2020/6/17
11
(1)脱氢 脂酰CoA经脂酰CoA脱氢酶催化,在其 α和β碳原子上脱氢,生成△2反烯脂酰CoA,该脱 氢反应的辅基为FAD。
O
脂酰CoA脱氢酶
HO
RCH2CH2CH2C SCoA
RCH2C C C SCoA
FAD FADH2
H
(2)加水(水合反应) △2反烯脂酰CoA在△2反 烯脂酰CoA水合酶催化下,在双键上加水生成Lβ-羟脂酰CoA。
O SCoA + CH3C
SCoA
2020/6/17
13
总结:
脂肪酸β氧化最终的产物为乙酰CoA、NADH和 FADH2。假如碳原子数为Cn的脂肪酸进行β氧化, 则需要作(n/2-1)次循环才能完全分解为n/2 个乙酰CoA,产生n/2个NADH和n/2个FADH2; 生成的乙酰CoA通过TCA循环彻底氧化成二氧化 碳和水并释放能量,而NADH和FADH2则通过呼 吸链传递电子生成ATP。
甘油三酯 脂酶甘油二酯 脂酶甘油一酯 甘油 脂肪酸
2020/6/17
7
甘油的分解
2020/6/17
8
2. 脂肪酸的氧化分解(β-氧化)
脂肪酸的活化——脂酰CoA的生成
长链脂肪酸氧化前必须进行活化,活化在 线粒体外进行。内质网和线粒体外膜上的 脂酰CoA合成酶在ATP、CoASH、Mg2+存 在条件下,催化脂肪酸活化,生成脂酰 CoA。
2020/6/17
14
3. 脂肪酸的其它氧化分解方式
奇数碳原子脂肪酸的分解 ① 羧化 ② 脱羧
脂肪酸的α-氧化 脂肪酸的-ω氧化 不饱和脂肪酸的分解
2020/6/17
15
4. 乙酰CoA的去路
进入TCA循环最终氧化生成二氧化碳和水 以及大量的ATP。
生成酮体参与代谢(动物体内)
脂肪酸β氧化产生的乙酰CoA,在肌肉细 胞中可进入TCA循环进行彻底氧化分解; 但在肝脏及肾脏细胞中还有另外一条去路, 即形成乙酰乙酸、D-β-羟丁酸和丙酮,这 三者统称为酮体。
第八章 脂类代谢
• 脂类概述 • 脂肪的分解代谢 • 脂肪的生物合成
2020/6/17
1
一、脂类概述
1. 概念 脂类是脂肪、类脂及其衍生物的总称,它是由
脂肪酸与醇作用生成的,是动物和植物体的重要 组成成分。脂类是广泛存在于自然界的一大类物 质,它们的化学组成、结构、理化性质以及生物 功能存在着很大的差异,但它们都有一个共同的 特性,即不易溶于水,而易溶于乙醇,乙醚等非 极性有机溶剂。