初中数学建模的思想
谈谈初中数学建模思想

谈谈初中数学建模思想随着数学教育界中数学建模理念地不断深化,提高数学建模教学势在必行。
通过数学建模能力的培养,既能使学生可以从熟悉的情境中引入数学问题,拉近数学与生活、生产的联系,激发学生学习数学的兴趣,又能培养学生的数学应用意识;既能使学生掌握学习数学的方法又能培养学生的创新意识以及分析和解决实际问题的能力,使“人人学有价值的数学”。
这正是新课程改革和数学教育的目的。
数学课程标准指出:数学模型可以有效地描述自然现象和社会现象,数学课程应体现“问题情境——建立数学模型——理解、应用与拓展”,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感、态度与价值观等多方面得到进步和发展.对复杂的实际问题进行分析,发现其中的可以用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型.数学建模就是将某一领域或部门的某一实际问题,通过一定的假设找出这个问题的数学模型,求出模型的解,并对它进行验证的全过程.从广义来说,数学建模伴随着数学学习的全过程.数学概念、数学法则、数学方法的学习与应用都属于数学建模的范畴.一、初中数学建模教学常见的几种模型1.建立“方程(组)”模型现实生活中广泛存在着数量之间的相等关系,“方程(组)”模型是研究现实世界数量关系的最基本的数学模型,它可以帮助人们从数量关系的角度更正确、清晰的认识、描述和把握现实世界。
诸如纳税问题、分期付款、打折销售、增长率、储蓄利息、工程问题、行程问题、浓度配比等问题,常可以抽象成“方程(组)”模型,通过列方程(组)加以解决。
例:学校准备在图书馆后面的场地边上建一个面积为50平方米的长方形自行车棚,一边利用图书馆的后墙,并利用已有的总长为25米的铁围栏,请你设计,如何搭建比较合理?[简析]:设与墙面垂直的边长为x米,可得方程x(25-2x)=50。
解方程可得答案。
2、不等式模型现实世界中不等关系是普遍存在的,许多现实问题很难确定(有时也不需要确定)具体的数值。
建模思想在初中数学教学中的运用

建模思想在初中数学教学中的运用建模思想是指将现实生活中的问题抽象化,选择合适的数学模型进行分析和求解的思维方法。
随着时代的发展,建模已经成为数学教学的一种重要手段,尤其在初中数学的教学中,建模思想更是被广泛应用。
本文将从初中数学的几个方面来探讨建模思想在教学中的运用。
一、数学模型与实际问题的联系数学建模需要对实际问题进行抽象化和简化,并将其转化为数学语言。
在初中数学教学中,我们可以选取一些和学生紧密关联的问题,或者是学生平时生活中易于接触的问题来进行建模。
通过这种方式,可以让学生对数学建模的概念和应用进行初步了解,提高他们的兴趣和积极性。
与此同时,还可以帮助学生对实际问题的认识和理解进一步加深。
例如,学生刚刚接触到二次函数的概念,我们可以让他们从实际中找到一些具有二次函数特征的问题,如抛物线运动、塔尖高度等问题。
通过这些问题的探究,不仅使学生对二次函数的定义和图像特征有了更深入的理解,而且也让学生认识到二次函数是实际生活中某些问题的数学模型,这样能够增加学生对数学的兴趣。
二、建模思想与教材内容的结合数学建模思想不仅要针对实际问题进行处理,还需要将其和教材内容相结合,使之成为教学的一部分。
建模思想可以贯穿于教材的各个知识点中,让学生从整体上认识和理解数学知识的构成与作用,提高学生综合运用知识的能力。
例如,在初一学习等比数列时,可以引入与等比数列相关的问题来进行建模,如利润的增长、人口增长率、光强的减弱等。
这样通过建模,可以帮助学生将所学知识应用到实际问题中,同时也可以加深学生对等比数列的理解和掌握。
在初二学习函数时,可以引入与函数有关的问题来进行建模,如路程和时间的关系、投掷问题、股票收益等。
这样可以将数学与实际问题相结合,让学生更多地了解函数的特征和应用,加深学生对函数的理解和掌握。
三、建模思想与推理能力的培养数学建模思想除了可以增加学生的兴趣,还能提高学生的推理能力。
建模思想能够让学生通过分析、推理和解决实际问题的过程,增强他们的逻辑思维能力和解决问题的能力。
谈中学数学建模思想方法

谈中学数学建模思想方法
伴随着社会的快速发展,社会对数学素养的要求也越来越高,对数学的兴趣也越来越浓厚。
在此背景下,中学数学的教学应更加注意“融合、创新”,以建模思想和方法为核心,使数学课堂活跃起来,让学生充分体验到数学的魅力。
建模是一种将客观实际问题表达成数学模型,从而运用数学知识进行分析和解决问题的一种重要方法。
它不仅能够让学生更好地理解实际问题,而且让学生在学习数学的过程中更加懂得如何使用数学方法解决实际问题。
中学数学建模思想可以分为三步:
第一步,要求学生根据实际情况,识别问题的关键因素,分析问题的特征,明确问题的分析目标。
这一步是数学建模思想的关键,只有找对了问题的关键,设计出的模型才能够体现问题本身,并且能够得到有效的分析结果。
第二步,根据问题本身的特点,设计出一个有效的数学模型。
设计时要考虑模型的准确性和可靠性。
第三步,建立数学模型后,要分析模型的特性,验证模型的正确性,寻求符合实际的最优解。
另外,在数学建模的过程中,老师可以采取一些团队合作的形式,让学生进行分工合作,从而激发学生的创新思维,培养学生的实践能力。
建立数学模型,解决实际问题,增强学生的数学能力与分析解决
问题的能力,是中学数学建模思想发展的最终目标。
只有在这样一个环境下,学生能够真正体会到数学的魅力,同时激发学生的创新思维和探究精神。
只有这样,才能够打破传统的的教育模式,让学生有所发挥,全面发展自身的能力。
因此,中学数学教育中应该注重培养学生数学建模思想。
数学课堂要创新,要使用新奇的教学方法,使课堂变得活跃起来,让学生有意识地去思考,探究,体验到数学课堂的乐趣。
浅议初中数学教学中怎样培养学生的建模思想

浅议初中数学教学中怎样培养学生的建模思想随着时代的发展和科技的进步,人们越来越注重培养学生的创新能力和实践能力。
作为一门重要的科学学科,数学在培养学生创新思维和实践能力方面具有独特的作用。
而数学建模作为数学探索和实践的一种方法,正受到教育界的广泛关注和重视。
本文旨在浅谈初中数学教学中如何培养学生的建模思想。
一、什么是数学建模数学建模是指运用数学方法模拟、揭示和解决实际问题的过程,通过建立数学模型,对问题进行定性、定量的描述和分析,然后基于模型进行预测、优化和决策等。
数学建模可以使学生从数学的抽象概念和理论中走向实际,培养学生的应用思维和解决问题的能力,具有综合性、应用性和探究性。
二、培养学生的建模思想的必要性1.培养创新思维数学建模需要学生运用数学知识和思想进行问题分析和解决。
通过建模,学生需要进行问题的拆解、思路的构建、模型的建立和推演等一系列创新思维的过程,培养学生的创新意识和创新能力。
2.发展实践能力数学建模是将数学知识应用到实际问题中的过程。
通过建模,学生需要进行实证分析、收集数据、进行模型验证等实践活动,培养学生实际问题解决的能力。
3.提升问题解决能力数学建模是解决实际问题的一种方式。
通过建模,学生需要从问题中获取关键信息、确定方法和步骤、进行推理和验证等一系列问题解决的过程,提升学生的问题解决能力和逻辑思维能力。
三、初中数学教学中培养学生的建模思想的方法1.增设数学建模课程在初中数学教学中增设数学建模课程,通过真实的问题情境,引导学生学习和掌握数学理论知识,并应用到实际问题中。
教师可以根据学生的年龄特点,设计一系列的数学建模任务,引导学生思考、提问、解答和评价,培养学生的建模意识。
2.引导学生参与数学建模竞赛组织学生参加数学建模竞赛,能够激发学生的学习兴趣和求知欲,增强学生的实践能力和解决问题的能力。
学生在竞赛中能够锻炼自己的能力,与他人交流和学习,培养合作精神和团队意识。
3.注重问题情境的设计教师在课堂教学中注重问题情境的设计,通过真实的情境让学生感受问题的存在和解决的意义。
建模思想在初中数学教学中的运用

建模思想在初中数学教学中的运用随着信息技术的普及和数学建模竞赛的推广,数学建模作为一种重要的数学方法和思想逐渐受到了广大教育工作者的重视。
初中阶段是学生数学基础知识和学科兴趣形成的关键时期,因此在初中数学教学中运用建模思想,开展相关的数学建模活动具有重要的现实意义。
一、初中数学教学中建模思想的意义1.培养学生的实际问题解决能力数学建模是一种能够培养学生实际问题解决能力的有效方式。
通过引导学生提取和抽象现实中的问题,进行数学模型的建立与求解,培养学生的问题解决思维能力和创新意识,提高他们解决实际问题的能力。
2.培养学生的数学思维和方法数学建模要求学生从问题出发,运用所学的数学知识和方法,探索解决问题的途径和手段。
这种过程能够激发学生的数学思维,培养他们运用数学知识解决实际问题的方法。
3.增强学生的数学学习兴趣数学建模的活动形式丰富多样,内容与学生生活和实际问题密切相关。
这不仅能够增加学生的数学学习动力,还能够使他们更加深入地理解数学知识的应用,从而提高对数学的兴趣和学习积极性。
二、初中数学教学中建模思想的运用方法1.教师角色的转变传统的教学模式中,教师主要扮演着知识的传授者和学习内容的规划者。
而在数学建模中,教师需要更多地担任引导者和组织者的角色,引导学生从问题中引发思考,并设置合适的学习环境和学习任务,促进他们主动学习和自主思考。
2.开展实际问题的引入教师可以通过生活中或教材外的实际问题引入数学学习,让学生通过解决实际问题的方式感受到数学的实用性和魅力。
例如,可以通过讨论家居装修费用、交通拥堵等问题,引出数学中的线性方程、比例关系等内容。
3.进行数学模型的构建与求解在引入实际问题后,教师可以指导学生根据问题的需求,提取重要的信息,并进行数学模型的构建。
通过引导学生分析问题、建立模型,选择合适的解法,解决问题,提高学生解决实际问题的能力。
4.引导学生进行数学建模竞赛数学建模竞赛是培养学生实际问题解决能力和数学思维的重要途径。
数学建模思想在初中数学教学中的应用

数学建模思想在初中数学教学中的应用数学建模是将数学知识和技能应用于实际问题的过程,其重点是解决实际问题,而不是限于某个单一的理论或技巧。
在初中数学教学中,数学建模的思想对学生的数学素养和综合能力的提升有着重要的意义。
数学建模的基本过程数学建模由问题的建立、问题的分析、数学模型的建立、数学模型的求解、在原问题上的应用五个过程组成:1. 问题的建立问题的建立是将实际问题转化为数学语言描述的过程,目的是明确解决的问题,并为问题的研究提供基础。
2. 问题的分析问题的分析是对建立好的问题进行分析,了解问题背景,确定问题的相关因素,明确解决问题的目标。
3. 数学模型的建立数学模型的建立是将问题转化为数学模型的过程,数学模型是实际问题的抽象表示,包括数学公式、符号、变量等元素的组合。
4. 数学模型的求解数学模型的求解是对数学模型进行求解的过程,这一过程重要的是选取合适的数学方法,并利用计算机进行数值计算。
5. 在原问题上的应用在原问题上的应用是将求解好的数学模型反过来应用于原问题的过程,其结果是对于原问题得到了更深刻的认识和理解。
数学建模在初中数学教学中的应用1. 提高学生数学学科素养数学建模是将所学数学理论和技巧应用于现实问题的过程,这种应用不仅是对所学知识和技能的综合运用,也是对所学知识和技能的深度掌握和理解。
数学建模的过程能够培养学生的创新意识,增强解决实际问题的能力,提高学生数学学科素养。
2. 促进跨学科交叉应用数学建模是一种跨学科应用,所建立的模型几乎涉及到所有学科,如物理、化学、生物等。
在初中数学教学中,可以将数学建模思想引入到不同学科中,促进学科之间的交叉应用,提高学生综合能力。
3. 拓宽学生思维方式数学建模可以拓宽学生的思维方式,使其不仅了解基础的数学知识和技能,还能够从问题本身出发,思考问题的本质,寻求解决问题的方法。
这种思维方式不仅对数学学科有益,也对其他学科有着重要的启示意义。
4. 培养学生创新意识数学建模是一种创新的过程,需要学生从问题本身出发,寻找解决问题的方法。
中学数学教学中的数学建模思想

中学数学教学中的数学建模思想数学建模是数学与客观实际相联系的纽带,中学数学建模教育一方面是为了引导中学生进行简化与替代现实世界中许多复杂现象的研究,另一方面是指导学生借助模型的性质解决实际问题,特别是有关与中学数学联系密切的实际问题,而活动的开展正是以培养学生的数学能力为核心!数学建模是一个系统的过程,它要利用许多技巧以及翻译解释、分析和综合等高度的认知活动.建模活动包括以下四个主要过程:(1) 问题分析过程:了解问题的实际背景材料,分析并找出问题的本质;(2) 假设化简过程:选出影响研究对象的主要因素,忽略次要因素,这样既简化了问题以便进行数学描述,又抓住了问题的本质;(3) 建模求解过程:根据分析建立相应的数学模型,并用数学方法或计算机程序对模型进行求解;(4) 验证修改过程:检验模型是否符合实际,并对它做出解释.最后将它应用于实际生产、生活中,产生社会效益或经济效益.从下面问题的求解,可以了解数学建模的全过程.1、对课本中出现的应用题,可以改变设问方式,变换题设条件,互换条件结论,综合拓广类比成新的应用题.例1 (高中代数上册)建筑一个容积为8000立方米,深为6米的长方体蓄水池,池壁每平方米的造价是a元,池底每平方米的造价为2a元,把总造价y元表示为底的一边长为x米的函数,并指出函数的定义域.此题背景是与我们生活密切相关的工程造价问题,学生对此不会陌生,应该对每一个同学有一定的吸引力.问题是学生如何把这一应用题抽象化为数学模型.难能可贵的是考虑到是高一新生,课本对这一难度降低,预先设出变量x、y,并指出把总价y表示为底的一边长为x 的函数,对学生的思路有提示作用,同时题目要求指出函数的定义域,这一点多很多学生容易忽视,而对函数问题来说又是必不可少的条件.这一题目用来训练学生利用函数的知识点建模是具有代表性的.该题虽然不算复杂,但是却有相当的综合性,内涵丰富.利用它可以改编出很多有较高思维价值的题目.改编题一、(1993年高考数学试题) 建造一个容积为8m³,深为2m的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为多少元?答案:1760元.改编题二、欲建一个容积为定值的无盖圆柱水池(ⅰ)水池尺寸如何选取才能使所用材料最省?(ⅱ)若池底材料成本为30元/米²,池壁材料成本为20元/米²,问怎样的尺寸使水池的造价最低?分析:问题(ⅰ)和问题(ⅱ)是例1的姊妹题,其思想方法相同.(1)中的“所用材料”可以理解为水池的全面积S,根据公式可得S=f(r,h)= πr²+2πh的表达式,其中r为底面半径,h为池高.由容积为定值,可以转换消元为一元函数,再求最值.2、对课本中的纯数学问题,可以依照科学性,现实性,新颖性,趣味性,可行性等原则,编拟出有实际背景或有一定应用价值的应用问题.例2 (高中代数下册)已知a,b,m属于正实数,且a 如此纯数学问题:我们还可以增加它的背景,让它生活化.背景一:某班有b个人,a个西瓜,其中人数比西瓜个数多,当b个人正要将a个西瓜分来吃时,忽然来了m个人带来了m个西瓜要求入伙,共同分瓜吃,试问这b个人平均每人分吃的西瓜比以前多了还是少了?简析:原来每个人吃 ( <1)个瓜,而m个人带来m个瓜虽然每个人可以吃一个,但和b个人合伙,m个人吃少了但b个人有增加,故将此不等式称作为“分瓜不等式”既活跃了气氛,又引入了数学模型,将原来枯燥的数学式子生活化了,和学生的距离拉近了,增加了学生用数学的意识.为了构建数学模型,要求学生对有关数学知识充分理解,有时还涉及其他自然科学知识;要求学生具备敏锐的洞察力,良好的想象力以及灵感和顿悟,较强的抽象思维和创新意识;要求学生具备较强知识应用能力和实践能力.因此,建模能力反映每位学生面对世界,关爱社会的程度,反映他征服困难,改造世界的能力.另外,随着科学技术的进步,计算机的广泛应用,计算能力的日益提高,数学计算工具正在更新,如符号微积分、矩阵运算、微分方程求解等,都可以借助有图象的高功能计算器.这为数学建模求解创造了条件,不但保证了数学建模的实际应用,也对数学建模课程的广泛普及提供了条件.。
数学建模思想在初中数学教学中的应用初探

数学建模思想在初中数学教学中的应用初探引言数学建模是指运用数学方法和技巧解决实际问题的过程。
它是将掌握的数学知识与解决实际问题紧密结合的体现。
本文将探讨如何将数学建模思想运用到初中数学教学中,从而提高学生的数学素养,培养他们解决实际问题的能力。
一、初中数学教学中的数学建模思想1.将数学知识与实际问题联系起来数学知识的学习离不开实际问题的联系。
数学建模思想要求我们从实际出发,具体问题具体分析,把数学知识运用到实际中去解决问题。
这对数学教学充分利用了学生的实际经验和需要,提高了数学教学的兴趣和效果。
2. 强调数学思维的灵活性在数学建模中,要求我们充分运用数学思维,采用不同的方法和思路解决问题。
在教学中,也应强调数学思维的灵活性,鼓励学生采用不同的思路解决问题,培养他们的创新精神和思考能力。
3.强调数学与现实问题的联系数学建模是将数学知识与实际问题结合的体现。
这与现实问题联系紧密,从而提高了学生对现实问题的关注和理解。
在教学中,应注重培养学生对实际问题的兴趣和研究能力,使他们能够将所学的数学知识应用到实际生活中去。
二、案例分析初中教学中的数学建模思想可以通过案例来具体体现。
以下是一组针对初中数学教学中的数学建模思想的案例:1.案例一王老师要给班级举办一个“数学综合应用”竞赛,让学生从中学习如何将所学的数学知识与实际问题相结合。
他的要求是:每个同学要自己设计一道数学应用题目,题目要涉及到实际生活中的问题,并且要解答这个问题所必需的数学知识。
这个例子的目的是让学生通过设计数学应用题,锻炼他们的创新思维,促进他们对数学与实际问题的联系的理解和应用。
2.案例二小学生们在生活中玩的弹珠游戏现在也受到了初中生的喜爱。
这样的游戏仪器一般由弹臂、发射器、弹球和目标点组成。
弹球从发射器发射出去,经过反射后落在目标点上,每个目标点都有不同的分数。
玩家可以根据目标点的分数加总得到总得分。
请你从数学的角度来分析弹球的轨迹及得分的计算方法,并给出你的解题思路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学建模思想
数学建模属于一门应用数学,学习这门课要求我们学会如何将实际问题经过分析、简化转化为一个数学问题,然后用适当的数学方法去解决。
数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。
为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。
使用数学语言描述的事物就称为数学模型。
数学建模的过程
1)模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息。
用数学语言来描述问题。
(2) 模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。
(3) 模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构。
(尽量用简单的数学工具)(4) 模型求解:利用获取的数据资料,对模型的所有参数做出计算(估计)。
(5) 模型分析:对所得的结果进行数学上的分析。
(6) 模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。
如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。
如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。
(7) 模型应用:应用方式因问题的性质和建模的目的而异。
数学建模的意义是:
1、培养创新意识和创造能力
2、训练快速获取信息和资料的能力
3、锻炼快速了解和掌握新知识的技能
4、培养团队合作意识和团队合作精神。