年高考第一轮复习数学.解斜三角形
高三数学一轮复习---解斜三角形(复习)公开课教案

解斜三角形(复习)公开课教案[教学目标]一:巩固对正弦、余弦、面积公式的掌握,并能熟练地运用公式解决问题。
二:培养学生分析、演绎和归纳的能力。
[教学重点]正弦、余弦、面积公式的应用。
[教学难点]选择适当的方法解斜三角形。
[教学过程]一:基本知识回顾:1.1、正弦定理及其变形;正弦定理:2sin sin sin a b cR A B C===(R 是三角形外接圆的半径) 变式一:sin 2a A R =、sin 2b B R =、sin 2cC R=变式二:sin :sin :sin A B C ::a b c =1.2、余弦定理及其变形;余弦定理:2222cos a b c bc A =+-,变式:222cos 2b c a A bc+-=2222cos b a c ac B =+-, 222cos 2a c b B ac+-=2222cos c a b ab C =+-。
222cos 2a b c C ab+-=1.3、面积公式二:例题分析:1、正弦定理(1)在△ABC 中,已知,则 sin B= ( ) (2)在△ABC 中,若a = 2 ,b =030A = , 则B 等于60︒或120︒111sin sin sin 222S ab C bc A ac B===4,303a b A ===︒2、余弦定理(1)在△ABC 中,满足 ,则A = 60°(2)已知△ABC 的周长为9,且4:2:3sin :sin :sin =C B A ,则cosC 的值为A .41-B .41C .32-D .32 3、三角形解的个数(1)在△ABC 中,已知 ,这个三角形解的情况是:( C )A.一解B.两解C.无解D.不能确定(2)△ABC 中,∠A ,∠B 的对边分别为a ,b ,且∠A=60°,4,6==b a ,那么满 足条件的△ABC( )A .有一个解B .有两个解C .无解D .不能确定4、判断三角形形状 (1)若cCb B a A cos cos sin ==则△ABC 为( ) A .等边三角形 B .等腰三角形C .有一个内角为30°的直角三角形D .有一个内角为30°的等腰三角形(2)关于x 的方程02cos cos cos 22=-⋅⋅-CB A x x 有一个根为1,则△ABC 一定是 A .等腰三角形 B .直角三角形 C .锐角三角形D .钝角三角形5、正余弦定理的实际应用(1)有一长为1公里的斜坡,它的倾斜角为20°,现要将倾斜角改为10°,则坡底要 伸长( ) A .1公里 B .sin10°公里 C .cos10°公里 D .cos20°公里 (2)10105/4/o C v v B AB o 某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后立即测出该渔船在方向角为北偏东45,距离海里的处,渔船沿着方位角为的方向以海里小时的速度向小岛靠拢,我海军艇舰立即以海里小时的速度前去营救。
数学高考复习名师精品教案:第43课时:第五章 平面向量-解斜三角形

数学高考复习名师精品教案第43课时:第五章 平面向量——解斜三角形课题:解斜三角形一.复习目标:1.理解并掌握正弦定理、余弦定理、面积公式;2.能正确运用正弦定理、余弦定理及关系式A B C π++=,解决三角形中的计算和证明问题.二.知识要点:1.三角形中角的关系是:A B C π++=;2.正弦定理是 ,余弦定理是 ;3.三角形面积公式为 .三.课前预习:1.在ABC ∆中,下列等式总能成立的是 ( )()A cos cos a C c A = ()B sin sin b C c A =()C sin sin ab C bc B = ()D sin sin a C c A =2.已知,,a b c 是ABC ∆三边的长,若满足等式()()a b c a b c ab +-++=,则角C 的大小为 ( )()A 060 ()B 090 ()C 0120 ()D 01503.在ABC ∆中,30B ∠=,AB =2AC =,则ABC ∆的面积为 .4.在ABC ∆中,已知6b =,10c =,30B = ,则解此三角形的结果有( )()A 无解 ()B 一解 ()C 两解 ()D 一解或两解5.在ABC ∆中,若ab c b a c b a 3))((=-+++且B A C cos sin 2sin =,则ABC ∆是 .四.例题分析:例1.已知圆内接四边形ABCD 的边长分别是2,6,4AB BC CD DA ====,求四边形ABCD 的面积.例2. 在ABC ∆中,sin sin sin a b B a B A +=-,且cos()cos 1cos 2A B C C -+=-, 试确定ABC ∆的形状.例3.在ABC ∆中,c b a ,,分别为角C B A ,,的对边,已知ABC c ∆=,27的面积为323,且tan tan tan A B A B +=⋅b a +的值.例4.圆O 的半径为R ,其内接ABC ∆的三边c b a ,,所对的角为C B A ,,,若222(sin sin )sin )R A C B b -=-,求ABC ∆面积的最大值.五.课后作业:1.在ABC ∆中,“A B =”是“sin sin A B =”的 ( )()A 充分不必要条件 ()B 必要不充分条件()C 充要条件 ()D 即不充分又不必要条件 DCBA2.三角形的两边之差为2,夹角的余弦为35,这个三角形的面积为14,那么这两边分别 ( )()A 3,5 ()B 4,6 ()C 6,8 ()D 5,7 3.在ABC ∆中,如果4sin 2cos 1,2sin 4cos A B B A +=+=则C ∠的大小为( )()A 030 ()B 0150 ()C 030或 0150 ()D 60 或01204.已知ABC ∆的两边长分别为2,3,其夹角的余弦为13,则其外接圆半径为 .5.在ABC ∆中,满足22(cos cos )()cos a b B c C b c A -=-,则三角形的形状是 .6.在ABC ∆中,60A = ,12,b S ∆==sin sin sin a b c A B C ++++= . 7.在ABC ∆中,已知||||2,AB AC == 且1AB AC ⋅= ,则这个三角形的BC 边的长为 .8.ABC ∆中,内角,,A B C 成等差数列,边长8,7a b ==,求cos C 及ABC ∆面积.9.ABC ∆中,角,,A B C 的对边,,a b c ,证明:222sin()sin a b A B c C--=.10.半圆O 的直径为2,A 为直径延长线上一点,2=OA ,B 为半圆上任意一点,以AB 为边向半圆外作正三角形ABC ,问B 在什么位置,四边形OACB 的面积最大?并求出最大面积。
高考数学一轮复习三角问题的题型与方法

三角问题的题型与方法1、三角函数的图像与性质(一)教学目的:把握图像的主要特征(顶点、零点、中心、对称轴、单调性、渐近线等);应当熟练掌握用“五点法”作图的基本原理以及快速、准确地作图。
重难点:利用三角函数的性质解决一些综合题目。
(二)典型例题:例1、已知函数21cos cos 12y x x x =+,该函数的图像可由sin ()y x x R =∈的图像经过怎样的平移和伸缩变换得到?解:21cos cos 122y x x x =++11cos 221224x x +=⋅++15cos 22444x x =++ 15sin(2)264x π=++∴将函数sin y x =的图像依次进行如下变换可得函数21cos cos 12y x x x =++的图像。
①把函数sin y x =的图像上各点纵坐标缩短到原来的12倍,而横坐标不变,可得到函数1sin 2y x =的图像。
②把得到的函数1sin 2y x =的图像上各点横坐标缩短到原来的12倍,而纵坐标不变,可得到函数1sin 22y x =的图像。
③把所得的函数1sin 22y x =的图像向左平移12π个单位,可得到函数1sin(2)26y x π=+的图像。
④再把得到的图像向上平移54个单位,就可得到函数15sin(2)264y x π=++的图像。
还可进行如下变换:①把函数sin y x =的图像向左平移6π,可得函数sin()6y x π=+的图像。
②把得到的函数sin()6y x π=+的图像上各点横坐标缩短到原来的12倍,而纵坐标不变,变可得到函数sin(2)6y x π=+的图像。
③把第②步得到的图像上各点纵坐标缩短到原来的12,而横坐标不变,即得到函数1sin(2)26y x π=+的图像。
④把第③步得到的图像向上平移54个单位长度,得到函数15sin(2)264y x π=++的图像。
例2、 )0k (x ksin3)x (f >π=图像上一个最大值点和一个相邻最小值点恰在圆222k y x =+上,求k 的值。
年高考第一轮复习数学解斜三角形

年高考第一轮复习数学解斜三角形It was last revised on January 2, 2021解斜三角形●知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即A a sin =B b sin =Ccsin . 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)2.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bc cos A ;① b 2=c 2+a 2-2ca cos B ;② c 2=a 2+b 2-2ab cos C .③在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 由此可知余弦定理是勾股定理的推广.由①②③可得cos A =bc a c b 2222-+;cos B =ca b a c 2222-+;cos C =abc b a 2222-+.利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.特别提示两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”.●点击双基1.(2002年上海)在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形解析:由2cos B sin A =sin C 得acb c a 222-+×a =c ,∴a =b .答案:C2.下列条件中,△ABC 是锐角三角形的是 +cos A =51B.AB ·>0 +tan B +tan C >0=3,c =33,B =30°解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角. 由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角. 由B b sin =C c sin ,得sin C =23,∴C =3π或3π2.答案:C3.(2004年全国Ⅳ,理11)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于A.231+ +3 C.232++3解析:∵a 、b 、c 成等差数列,∴2b =a +c .平方得a 2+c 2=4b 2-2ac .又△ABC 的面积为23,且∠B =30°,故由S △ABC =21ac sin B =21ac sin30°=41ac =23,得ac =6.∴a 2+c 2=4b 2-12.由余弦定理,得cos B =acb c a 2222-+=6212422⨯--b b =442-b =23,解得b 2=4+23.又b 为边长,∴b =1+3.答案:B4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______.解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc .∴bc a c b 2222-+=21.∴∠A =3π.答案:3π5.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.解析:若c 是最大边,则cos C >0.∴abc b a 2222-+>0,∴c <5.又c >b -a =1,∴1<c <5.答案:(1,5) ●典例剖析【例1】 △ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,如果a 2=b (b +c ),求证:A =2B .剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b (b +c )中,得sin 2A =sin B (sin B +sin C )⇒sin 2A -sin 2B =sin B sin C⇒22cos 1A --22cos 1B-=sin B sin (A +B )⇒21(cos2B -cos2A )=sin B sin (A +B ) ⇒sin (A +B )sin (A -B )=sin B sin (A +B ),因为A 、B 、C 为三角形的三内角,所以sin (A +B )≠0.所以sin (A -B )=sin B .所以只能有A -B =B ,即A =2B .评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论(1)该题若用余弦定理如何解决 解:利用余弦定理,由a 2=b(b +c),得cos A =bc a c b 2222-+=bc c b b c b 222)()(+-+=bb c 2-,cos2B =2cos 2B -1=2(ac b c a 2222-+)2-1=2222cc b b c c b )()(++-1=b b c 2-. 所以cos A =cos2B .因为A 、B 是△ABC 的内角,所以A =2B .(2)该题根据命题特征,能否构造一个符合条件的三角形,利用几何知识解决解:由题设a 2=b (b +c ),得c b a +=ab①,作出△ABC ,延长CA 到D ,使AD =AB =c ,连结BD .①式表示的即是DC BC =BCAC,所以△BCD ∽△AB C.所以∠1=∠D .又AB =AD ,可知∠2=∠D ,所以∠1=∠2. 因为∠BAC =∠2+∠D =2∠2=2∠1, 所以A =2B .评述:近几年的高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.【例2】 (2004年全国Ⅱ,17)已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51.(1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高.剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(2).(1)证明:∵sin (A +B )=53,sin (A -B )=51,∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即B A B A tan tan 1tan tan -+=-43.将tan A =2tan B 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB 边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力.【例3】 (2004年春季北京)在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 剖析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cBb sin 的值.解法一:∵a 、b 、c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc . 在△ABC 中,由余弦定理得cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°.在△ABC 中,由正弦定理得sin B =aAb sin ,∵b 2=ac ,∠A =60°,∴acb c B b ︒=60sin sin 2=sin60°=23. 解法二:在△ABC 中,由面积公式得21bc sin A =21ac sin B . ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B . ∴cBb sin =sin A =23.评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.●闯关训练 夯实基础1.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21;sin A >21⇒30°<A <150°⇒A >30°.答案:B2.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为° ° °°解析:作CE ⊥平面ABD 于E ,则∠CDE 是太阳光线与地面所成的角,即∠CDE =40°,延长DE 交直线AB 于F ,连结CF ,则∠CFD 是遮阳棚与地面所成的角,设为α.要使S △ABD 最大,只需DF 最大.在△CFD 中,︒40sin CF =)(α-︒140sin DF. ∴DF =︒-︒⋅40sin 140sin )(αCF .∵CF 为定值,∴当α=50°时,DF 最大. 答案:C3.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4π. 答案:45°4.在△ABC 中,若∠C =60°,则ca bc b a +++=_______. 解析:c a bc b a +++=))((c a c b bc b ac a +++++22 =222c bc ac ab bcac b a ++++++.(*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab . ∴a 2+b 2=ab +c 2. 代入(*)式得222c bc ac ab bc ac b a ++++++=1.答案:15.在△ABC 中,由已知条件解三角形,其中有两解的是 =20,A =45°,C =80° =30,c =28,B =60° =14,b =16,A =45°=12,c =15,A =120°解析:由a =14,b =16,A =45°及正弦定理,得16sin B =14sin A,所以sin B =724.因而B 有两值.答案:C 培养能力6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =BB Bcos sin 2sin 1++的取值范围.解:∵b 2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥21.∴0<B ≤3π,y =B B B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12π7,∴22<sin (B +4π)≤1.故1<y ≤2. 7.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2. (1)求∠C ;(2)求△ABC 面积的最大值.解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(224Ra -224Rc )=(a-b )Rb 2. 又∵R =2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c 2=ab .∴cos C =ab c b a 2222-+=21.又∵0°<C <180°,∴C =60°.(2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A ) =23sin A (sin120°cos A -cos120°sin A ) =3sin A cos A +3sin 2A =23sin2A -23sin2A cos2A +23 =3sin (2A -30°)+23. ∴当2A =120°,即A =60°时,S max =233. 8.在△ABC 中,BC =a ,顶点A 在平行于BC 且与BC 相距为a 的直线上滑动,求ACAB的取值范围. 解:令AB =kx ,AC =x (k >0,x >0),则总有sin B =kx a ,sin C =xa(图略),且由正弦定理得sin B =axsin A ,所以a 2=kx 2·sin B sin C =kx 2sin A ,由余弦定理,可得cos A =222222sin kx Akx x x k -+=21(k +k 1-sin A ),所以k +k1=sin A +2cos A ≤2221+=5.所以k 2-5k +1≤0,所以215-≤k ≤215+. 所以ACAB的取值范围为[215-,215+].探究创新9.某城市有一条公路,自西向东经过A 点到市中心O 点后转向东北方向OB ,现要修建一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,现要求市中心O 与AB 的距离为10 km ,问把A 、B 分别设在公路上离中心O 多远处才能使|AB |最短并求其最短距离.(不要求作近似计算)解:在△AOB 中,设OA =a ,OB =b .因为AO 为正西方向,OB 为东北方向,所以∠AOB =135°.则|AB |2=a 2+b 2-2ab cos135°=a 2+b 2+2ab ≥2ab +2ab =(2+2)ab ,当且仅当a =b 时,“=”成立.又O 到AB 的距离为10,设∠OAB =α,则∠OBA =45°-α.所以a =αsin 10,b =)(α-︒45sin 10, ab =αsin 10·)(α-︒45sin 10 =)(αα-︒⋅45sin sin 100 =)(αααsin 22cos 22sin 100- =)(αα2cos 1422sin 42100-- =2452sin 2400-︒+)(α≥22400-,当且仅当α=22°30′时,“=”成立.所以|AB |2≥2222400-+)(=400(2+1)2,当且仅当a =b ,α=22°30′时,“=”成立.所以当a =b =0322sin 10'︒=10)(222+时,|AB |最短,其最短距离为20(2+1),即当AB 分别在OA 、OB 上离O 点10)(222+ km 处,能使|AB |最短,最短距离为20(2-1).●思悟小结1.在△ABC 中,∵A +B +C =π,∴sin2B A +=cos 2C ,cos 2B A +=sin 2C ,tan 2B A +=cot 2C . 2.∠A 、∠B 、∠C 成等差数列的充分必要条件是∠B =60°.3.在非直角三角形中,tan A +tan B +tan C =tan A ·tan B ·tan C .4.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.并常用正弦(余弦)定理实施边角转化.5.用正(余)弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长.6.用向量的数量积求三角形内角时,需明确向量的夹角与三角形内角是相等还是互补.●教师下载中心教学点睛1.一方面要让学生体会向量方法在解三角形方面的应用,另一方面要让学生体会解三角形是重要的测量手段,通过数值计算进一步提高使用计算器的技能技巧和解决实际问题的能力.2.要加大以三角形为背景,以三角恒等变换公式、向量等为工具的小型综合题的训练.拓展题例【例1】 已知A 、B 、C 是△ABC 的三个内角,y =cot A +)(C B A A -+cos cos sin 2. (1)若任意交换两个角的位置,y 的值是否变化试证明你的结论.(2)求y 的最小值.解:(1)∵y =cot A +[][])()()(C B C B C B -++-+-cos πcos πsin 2 =cot A +)()()(C B C B C B -++-+cos cos sin 2 =cot A +CB C B C B sin sin sin cos cos sin + =cot A +cot B +cot C ,∴任意交换两个角的位置,y 的值不变化.(2)∵cos (B -C )≤1,∴y ≥cot A +A A cos 1sin 2+=2tan 22tan 12A A-+2tan 2A =21(cot 2A +3tan 2A )≥2cot 2tan 3A A ⋅=3. 故当A =B =C =3π时,y min =3. 评述:本题的第(1)问是一道结论开放型题,y 的表达式的表面不对称性显示了问题的有趣之处.第(2)问实际上是一道常见题:在△ABC 中,求证:cot A +cot B +cot C ≥3.【例2】 在△ABC 中,sin A =CB C B cos cos sin sin ++,判断这个三角形的形状. 分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定.采用后一种方法解答本题,就必须“化角为边”.解:应用正弦定理、余弦定理,可得a =abc b a ca b a c cb 22222222-++-++,所以b (a 2-b 2)+c (a 2-c 2)=bc (b +c ).所以(b +c )a 2=(b 3+c 3)+bc (b +c ).所以a 2=b 2-bc +c 2+bc .所以a 2=b 2+c 2.所以△ABC 是直角三角形.评述:恒等变形是学好数学的基本功,变形的方向是关键.若考虑三内角的关系,本题可以从已知条件推出cos A =0.。
【精品含答案】高考一轮复习5.4解斜三角形及应用举例基础训练题(理科)

2009届高考一轮复习5.4解斜三角形及应用举例基础训练题(理科)注意:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分100分,考试时间45分钟。
第Ⅰ卷(选择题部分 共36分)一、选择题(本大题共6小题,每小题6分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2007·重庆高考)在ABC ∆中,︒=︒==75C ,45A ,3AB ,则=BC ( )(A )33-(B )2 (C )2 (D )33+ 2. 在三角形ABC 中,三内角分别是A 、B 、C ,若B sin A cos 2C sin =,则此三角形ABC 一定是( )(A )直角三角形(B )正三角形 (C )等腰三角形(D )等腰直角三角形 3. 在ABC ∆中,已知︒=120C ,两边a 与b 是方程02x 3x 2=+-的两根,则边c 的值为( )(A )3 (B )7 (C )3 (D )74.(2008·资阳模拟)ABC ∆内角A ,B ,C 的对边分别为c ,b ,a ,向量)b a ,c a (OP -+=,)b ,a c (OQ -=,|OQ OP ||OQ OP |-=+,则角=C ( )(A )6π (B )3π (C )2π (D )32π 5. ABC ∆中,下列结论:①222c b a +>,则ABC ∆为钝角三角形;②bc c b a 222++=,则A 为︒60;③222c b a >+,则ABC ∆为锐角三角形;④若3:2:1C :B :A =,则3:2:1c :b :a =,其中正确的个数为( )(A )1 (B )2 (C )3 (D )46. 在200米高的山顶上,测得山下一塔顶和塔底的俯角分别为︒︒60,30,则塔高为( ) (A )3400米 (B )33400米 (C )33200米 (D )3200米 第Ⅱ卷(非选择题部分共64分) 二、填空题(本大题共3小题,每小题6分,共18分。
高考数学一轮复习正弦定理余弦定理及解三角形课件理

基础诊断 考点突破
课堂总结
解 (1)由题意可知 c=8-(a+b)=72.
由余弦定理得 cos C=a2+2ba2b-c2=22+2×5222×-52722
=-15.
(2)由 sin Acos2B2+sin Bcos2A2=2sin C 可得:
sin
1+cos A· 2
B+sin
1+cos B· 2
a2+b2-c2 2ab
基础诊断 考点突破
课堂总结
2.S△ABC=12absin C=12bcsin A=12acsin B=a4bRc=12(a+b+c)·r(r 是 三角形内切圆的半径),并可由此计算 R,r.
基础诊断 考点突破
课堂总结
• 3.实际问题中的常用角
• (1)仰角和俯角
• 在同一铅垂平面内的水平视线和目标视线
1-2419=2
7 7.
而∠AEB=23π-α,所以
cos∠AEB=cos23π-α=cos23πcos α+sin23πsin α
=-12cos
α+
3 2 sin
α
=-12·2 7 7+
3 21 2 ·7
=
7 14 .
基础诊断 考点突破
课堂总结
在
Rt△EAB
中,cos∠AEB=EBAE=B2E,故
课堂总结
5.(人教 A 必修 5P10B2 改编)在△ABC 中,acos A=bcos B, 则这个三角形的形状为________. 解析 由正弦定理,得 sin Acos A=sin Bcos B, 即 sin 2A=sin 2B,所以 2A=2B 或 2A=π-2B, 即 A=B 或 A+B=2π, 所以这个三角形为等腰三角形或直角三角形. 答案 等腰三角形或直角三角形
2012年高考第一轮总复习精品导学课件:5.5解斜三角形及其应用举例(第1课时)

A. 2
2
C. -2
B. 2 D. - 2
b a , c 2a C , A B , 2 4
SABC 1 1 2 1 a a b 1, c 2. 2 2 2
解:△ABC中,已知 sin A :sin B :sin C 1:1: 2
3 3 AB BC BC CA CA AB 2 1 cos 0 1 2 cos -2. 4 4
4
A<B= 4 故A= 6
a b 据正弦定理可得 = ,即 = , 2 2 sinA sinB sinA 解得sinA= . sin 1 4 又由于 a<2 b ,据大角对大边原则,即
, .
25
·高中总复习(第一轮)·理科数学 ·全国版
立足教育 开创未来
4.应用解三角形知识解决实际问题的步骤
利用正弦定理解三角形
1. (原创)在△ABC中,角A、B、C所对的边 分别为a、b、c,且a=1,c= 3 . (1)若C= ,则角A=_________; 6 3 (2)若A= ,则边b=_________. 2 或 1 6
点评:已知两边及其中一边的对角 解三角形时,注意对解的情况进行讨论, 讨论时一是根据所求的正弦值是否大于1, 二是根据两边的大小关系确定解的情况.
c 2
1 1 bc sin A ac sin B. 2 2
3 (2)由cosC= 4 且0<C<π, 得 sin C 1-cos2 C 7 , AB 4 BC
由正弦定理 sin C sin A , 得 由倍角公式得
BC sin C 14 所以cosA= 5 2 . sin A , 8 AB 8
2020版高考数学一轮总复习课件5.3 正弦、余弦定理及解三角形

2
;sin
A
2
B
=cos
C 2
;cos
A
2
B
=sin
C 2
.
2.三角形形状的判断方法
要判断三角形的形状,应围绕三角形的边角关系进行思考,依据已知条
件中的边角关系判断时,主要有以下两种途径:
(1)化角为边:利用正弦、余弦定理把已知条件转化为只含边的关系,通
过因式分解、配方等得出边的相应关系,从而判断三角形的形状.
ABC的外接圆半径为R.
(1)S= 1 ah(h为BC边上的高);
2
(2)S= 1 absin C= 1 acsin B= 1 bcsin A;
2
2
2
(3)S=2R2sin Asin Bsin C;
(4)S= abc ;
4R
(5)S=
p(
p
a)(
p
b)(
p
c)
p
1 2
(a
b
c)
.
考向基础 1.距离的测量
数学(浙江专用)
5.3 正弦、余弦定理及解三角形
考向基础 1.正、余弦定理
考点清单
考点一 正弦、余弦定理
2.解斜三角形的类型 (1)已知两角及一边,用正弦定理,有解时,只有一解. (2)已知两边及其中一边的对角,用正弦定理,有解时可分为几种情况.在 △ABC中,已知a、b和角A,解的情况如下:
55
∵B=2C,∴cos B=cos 2C=2cos2C-1=2× 4 -1= 3 ,
55
∴sin B= 4 .
5
∵A+B+C=π,∴sin A=sin(B+C)=sin Bcos C+cos Bsin C= 4 × 2 5 + 3× 5 =
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解斜三角形●知识梳理1.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即A a sin =B b sin =Ccsin . 利用正弦定理,可以解决以下两类有关三角形的问题. (1)已知两角和任一边,求其他两边和一角;(2)已知两边和其中一边的对角,求另一边的对角.(从而进一步求出其他的边和角)2.余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍,即a 2=b 2+c 2-2bc cos A ; ① b 2=c 2+a 2-2ca cos B ; ②c 2=a 2+b 2-2ab cos C .③在余弦定理中,令C =90°,这时cos C =0,所以c 2=a 2+b 2. 由此可知余弦定理是勾股定理的推广.由①②③可得cos A =bc a c b 2222-+;cos B =ca b a c 2222-+;cos C =abc b a 2222-+.利用余弦定理,可以解决以下两类有关三角形的问题: (1)已知三边,求三个角;(2)已知两边和它们的夹角,求第三边和其他两个角.特别提示两定理的形式、内容、证法及变形应用必须引起足够的重视,通过向量的数量积把三角形和三角函数联系起来,用向量方法证明两定理,突出了向量的工具性,是向量知识应用的实例.另外,解三角形问题可能出现一解、两解或无解的情况,这时应结合“三角形中大边对大角定理及几何作图来帮助理解”.●点击双基1.(2002年上海)在△ABC 中,若2cos B sin A =sin C ,则△ABC 的形状一定是 A.等腰直角三角形 B.直角三角形 C.等腰三角形D.等边三角形解析:由2cos B sin A =sin C 得acb c a 222-+×a =c ,∴a =b .答案:C2.下列条件中,△ABC 是锐角三角形的是 +cos A =51B.AB ·BC >0 +tan B +tan C >0=3,c =33,B =30°解析:由sin A +cos A =51 得2sin A cos A =-2524<0,∴A 为钝角. 由AB ·BC >0,得BA ·BC <0,∴cos 〈BA ,BC 〉<0.∴B 为钝角. 由tan A +tan B +tan C >0,得tan (A +B )·(1-tan A tan B )+tan C >0. ∴tan A tan B tan C >0,A 、B 、C 都为锐角. 由B b sin =C c sin ,得sin C =23,∴C =3π或3π2.答案:C3.(2004年全国Ⅳ,理11)△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,如果a 、b 、c 成等差数列,∠B =30°,△ABC 的面积为23,那么b 等于A.231+ +3C.232+ +3解析:∵a 、b 、c 成等差数列,∴2b =a +c .平方得a 2+c 2=4b 2-2ac .又△ABC 的面积为23,且∠B =30°,故由S △ABC =21ac sin B =21ac sin30°=41ac =23,得ac =6.∴a 2+c 2=4b 2-12.由余弦定理,得cos B =acb c a 2222-+=6212422⨯--b b =442-b =23,解得b 2=4+23.又b 为边长,∴b =1+3.答案:B4.已知(a +b +c )(b +c -a )=3bc ,则∠A =_______.解析:由已知得(b +c )2-a 2=3bc ,∴b 2+c 2-a 2=bc .∴bc a c b 2222-+=21.∴∠A =3π.答案:3π5.在锐角△ABC 中,边长a =1,b =2,则边长c 的取值范围是_______.解析:若c 是最大边,则cos C >0.∴abc b a 2222-+>0,∴c <5.又c >b -a =1,∴1<c <5.答案:(1,5) ●典例剖析【例1】 △ABC 的三个内角A 、B 、C 的对边分别是a 、b 、c ,如果a 2=b (b +c ),求证:A =2B .剖析:研究三角形问题一般有两种思路.一是边化角,二是角化边.证明:用正弦定理,a =2R sin A ,b =2R sin B ,c =2R sin C ,代入a 2=b (b +c )中,得sin 2A =sin B (sin B +sin C )⇒sin 2A -sin 2B =sin B sin C⇒22cos 1A --22cos 1B-=sin B sin (A +B ) ⇒21(cos2B -cos2A )=sin B sin (A +B ) ⇒sin (A +B )sin (A -B )=sin B sin (A +B ),因为A 、B 、C 为三角形的三内角,所以sin (A +B )≠0.所以sin (A -B )=sin B .所以只能有A -B =B ,即A =2B .评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论(1)该题若用余弦定理如何解决?解:利用余弦定理,由a 2=b (b +c ),得cos A =bc a c b 2222-+=bc c b b c b 222)()(+-+=bbc 2-,cos2B =2cos 2B -1=2(ac b c a 2222-+)2-1=2222c c b b c c b )()(++-1=b b c 2-.所以cos A =cos2B .因为A 、B 是△ABC 的内角,所以A =2B .(2)该题根据命题特征,能否构造一个符合条件的三角形,利用几何知识解决? 解:由题设a 2=b (b +c ),得c b a +=ab①,作出△ABC ,延长CA 到D ,使AD =AB =c ,连结BD .①式表示的即是DC BC =BCAC,所以△BCD ∽△AB C.所以∠1=∠D .又AB =AD ,可知∠2=∠D ,所以∠1=∠2. 因为∠BAC =∠2+∠D =2∠2=2∠1, 所以A =2B .评述:近几年的高考题中,涉及到三角形的题目,重点考查正弦、余弦定理,考查的侧重点还在于三角转换.这是命题者的初衷.【例2】 (2004年全国Ⅱ,17)已知锐角△ABC 中,sin (A +B )=53,sin (A -B )=51.(1)求证:tan A =2tan B ; (2)设AB =3,求AB 边上的高.剖析:有两角的和与差联想到两角和与差的正弦公式,结合图形,以(1)为铺垫,解决(2).(1)证明:∵sin (A +B )=53,sin (A -B )=51,∴⎪⎪⎩⎪⎪⎨⎧=-=+51sin cos cos sin 53sin cos cos sin B A B A B A B A B A B A B A tan tan 51sin cos 52cos sin ⇒⎪⎪⎩⎪⎪⎨⎧==⇒=2. ∴tan A =2tan B . (2)解:2π<A +B <π,∴sin (A +B )=53. ∴tan (A +B )=-43, 即B A B A tan tan 1tan tan -+=-43.将tan A =2tan B 代入上式整理得2tan 2B -4tan B -1=0,解得tan B =262±(负值舍去).得tan B =262+,∴tan A =2tan B =2+6. 设AB 边上的高为CD ,则AB =AD +DB =A CD tan +B CDtan =623+CD .由AB =3得CD =2+6,所以AB 边上的高为2+6.评述:本题主要考查三角函数概念,两角和与差的公式以及应用,分析和计算能力. 【例3】 (2004年春季北京)在△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边长,已知a 、b 、c 成等比数列,且a 2-c 2=ac -bc ,求∠A 的大小及cBb sin 的值. 剖析:因给出的是a 、b 、c 之间的等量关系,要求∠A ,需找∠A 与三边的关系,故可用余弦定理.由b 2=ac 可变形为c b 2=a ,再用正弦定理可求cBb sin 的值.解法一:∵a 、b 、c 成等比数列,∴b 2=ac . 又a 2-c 2=ac -bc ,∴b 2+c 2-a 2=bc . 在△ABC 中,由余弦定理得cos A =bc a c b 2222-+=bc bc 2=21,∴∠A =60°.在△ABC 中,由正弦定理得sin B =aAb sin ,∵b 2=ac ,∠A =60°,∴acb c B b ︒=60sin sin 2=sin60°=23. 解法二:在△ABC 中, 由面积公式得21bc sin A =21ac sin B . ∵b 2=ac ,∠A =60°,∴bc sin A =b 2sin B . ∴cBb sin =sin A =23.评述:解三角形时,找三边一角之间的关系常用余弦定理,找两边两角之间的关系常用正弦定理.●闯关训练 夯实基础1.(2004年浙江,8)在△ABC 中,“A >30°”是“sin A >21”的 A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件D.既不充分也不必要条件解析:在△ABC 中,A >30°⇒0<sin A <1sin A >21;sin A >21⇒30°<A <150°⇒A >30°.答案:B2.如图,△ABC 是简易遮阳棚,A 、B 是南北方向上两个定点,正东方向射出的太阳光线与地面成40°角,为了使遮阴影面ABD 面积最大,遮阳棚ABC 与地面所成的角为°°°°解析:作CE ⊥平面ABD 于E ,则∠CDE 是太阳光线与地面所成的角,即∠CDE =40°,延长DE 交直线AB 于F ,连结CF ,则∠CFD 是遮阳棚与地面所成的角,设为α.要使S △ABD 最大,只需DF 最大.在△CFD 中,︒40sin CF =)(α-︒140sin DF.∴DF =︒-︒⋅40sin 140sin )(αCF .∵CF 为定值,∴当α=50°时,DF 最大. 答案:C3.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,若三角形的面积S =41(a 2+b 2-c 2),则∠C 的度数是_______.解析:由S =41(a 2+b 2-c 2)得21ab sin C =41·2ab cos C .∴tan C =1.∴C =4π. 答案:45°4.在△ABC 中,若∠C =60°,则ca bc b a +++=_______. 解析:c a bc b a +++=))((c a c b bc b ac a +++++22 =222cbc ac ab bcac b a ++++++. (*)∵∠C =60°,∴a 2+b 2-c 2=2ab cos C =ab . ∴a 2+b 2=ab +c 2. 代入(*)式得222cbc ac ab bc ac b a ++++++=1.答案:15.在△ABC 中,由已知条件解三角形,其中有两解的是 =20,A =45°,C =80° =30,c =28,B =60° =14,b =16,A =45°=12,c =15,A =120°解析:由a =14,b =16,A =45°及正弦定理,得16sin B =14sin A,所以sin B =724.因而B 有两值.答案:C 培养能力6.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,依次成等比数列,求y =BB B cos sin 2sin 1++的取值范围.解:∵b 2=ac ,∴cos B =ac b c a 2222-+=ac ac c a 222-+=21(c a +a c )-21≥21.∴0<B ≤3π,y =B B B cos sin 2sin 1++=B B B B cos sin cos sin 2++)(=sin B +cos B =2sin (B +4π).∵4π<B +4π≤12π7,∴22<sin (B +4π)≤1.故1<y ≤2. 7.已知△ABC 中,22(sin 2A -sin 2C )=(a -b )sin B ,外接圆半径为2. (1)求∠C ;(2)求△ABC 面积的最大值.解:(1)由22(sin 2A -sin 2C )=(a -b )·sin B 得22(224R a -224R c )=(a -b )Rb 2. 又∵R =2,∴a 2-c 2=ab -b 2.∴a 2+b 2-c 2=ab .∴cos C =ab c b a 2222-+=21.又∵0°<C <180°,∴C =60°. (2)S =21ab sin C =21×23ab =23sin A sin B =23sin A sin (120°-A ) =23sin A (sin120°cos A -cos120°sin A ) =3sin A cos A +3sin 2A =23sin2A -23sin2A cos2A +23 =3sin (2A -30°)+23. ∴当2A =120°,即A =60°时,S max =233. 8.在△ABC 中,BC =a ,顶点A 在平行于BC 且与BC 相距为a 的直线上滑动,求ACAB的取值范围.解:令AB =kx ,AC =x (k >0,x >0),则总有sin B =kx a ,sin C =xa(图略),且由正弦定理得sin B =axsin A ,所以a 2=kx 2·sin B sin C =kx 2sin A ,由余弦定理,可得cos A =222222sin kx Akx x x k -+=21(k +k 1-sin A ),所以k +k1=sin A +2cos A ≤2221+=5.所以k 2-5k +1≤0,所以215-≤k ≤215+. 所以ACAB的取值范围为[215-,215+].探究创新9.某城市有一条公路,自西向东经过A 点到市中心O 点后转向东北方向OB ,现要修建一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,现要求市中心O 与AB 的距离为10 km ,问把A 、B 分别设在公路上离中心O 多远处才能使|AB |最短?并求其最短距离.(不要求作近似计算)解:在△AOB 中,设OA =a ,OB =b .因为AO 为正西方向,OB 为东北方向,所以∠AOB =135°.则|AB |2=a 2+b 2-2ab cos135°=a 2+b 2+2ab ≥2ab +2ab =(2+2)ab ,当且仅当a =b 时,“=”成立.又O 到AB 的距离为10,设∠OAB =α,则∠OBA =45°-α.所以a =αsin 10,b =)(α-︒45sin 10,ab =αsin 10·)(α-︒45sin 10=)(αα-︒⋅45sin sin 100=)(αααsin 22cos 22sin 100-=)(αα2cos 1422sin 42100--=2452sin 2400-︒+)(α≥22400-,当且仅当α=22°30′时,“=”成立.所以|AB |2≥2222400-+)(=400(2+1)2,当且仅当a =b ,α=22°30′时,“=”成立. 所以当a =b =0322sin 10'︒=10)(222+时,|AB |最短,其最短距离为20(2+1),即当AB 分别在OA 、OB 上离O 点10)(222+ km 处,能使|AB |最短,最短距离为20(2-1).●思悟小结1.在△ABC 中,∵A +B +C =π,∴sin2B A +=cos 2C ,cos 2B A +=sin 2C ,tan 2B A +=cot 2C. 2.∠A 、∠B 、∠C 成等差数列的充分必要条件是∠B =60°. 3.在非直角三角形中,tan A +tan B +tan C =tan A ·tan B ·tan C .4.根据所给条件确定三角形的形状,主要有两种途径:①化边为角;②化角为边.并常用正弦(余弦)定理实施边角转化.5.用正(余)弦定理解三角形问题可适当应用向量的数量积求三角形内角与应用向量的模求三角形的边长.6.用向量的数量积求三角形内角时,需明确向量的夹角与三角形内角是相等还是互补.●教师下载中心 教学点睛1.一方面要让学生体会向量方法在解三角形方面的应用,另一方面要让学生体会解三角形是重要的测量手段,通过数值计算进一步提高使用计算器的技能技巧和解决实际问题的能力.2.要加大以三角形为背景,以三角恒等变换公式、向量等为工具的小型综合题的训练.拓展题例【例1】 已知A 、B 、C 是△ABC 的三个内角,y =cot A +)(C B A A -+cos cos sin 2. (1)若任意交换两个角的位置,y 的值是否变化?试证明你的结论.(2)求y 的最小值.解:(1)∵y =cot A +[][])()()(C B C B C B -++-+-cos πcos πsin 2 =cot A +)()()(C B C B C B -++-+cos cos sin 2 =cot A +CB C B C B sin sin sin cos cos sin + =cot A +cot B +cot C ,∴任意交换两个角的位置,y 的值不变化.(2)∵cos (B -C )≤1,∴y ≥cot A +A A cos 1sin 2+=2tan 22tan 12A A-+2tan 2A =21(cot 2A +3tan 2A )≥2cot 2tan 3A A ⋅=3. 故当A =B =C =3π时,y min =3. 评述:本题的第(1)问是一道结论开放型题,y 的表达式的表面不对称性显示了问题的有趣之处.第(2)问实际上是一道常见题:在△ABC 中,求证:cot A +cot B +cot C ≥3.【例2】 在△ABC 中,sin A =CB C B cos cos sin sin ++,判断这个三角形的形状. 分析:判断一个三角形的形状,可由三个内角的关系确定,亦可由三边的关系确定.采用后一种方法解答本题,就必须“化角为边”.解:应用正弦定理、余弦定理,可得a =abc b a ca b a c cb 22222222-++-++,所以b (a 2-b 2)+c (a 2-c 2)=bc (b +c ).所以(b +c )a 2=(b 3+c 3)+bc (b +c ).所以a 2=b 2-bc +c 2+bc .所以a 2=b 2+c 2.所以△ABC 是直角三角形.评述:恒等变形是学好数学的基本功,变形的方向是关键.若考虑三内角的关系,本题可以从已知条件推出cos A=0.。