《圆柱的体积》课件.ppt
合集下载
圆柱体积PPT课件xiod

积越大。
(× )
4分米 10分米
0.8米
求各圆柱的 体积。
0.5分米
圆柱形水桶内所盛水的体积,就 叫做这个圆柱形容器的容积。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
一、复习旧知
请你说一说如何计算 能不能将圆柱转化成我 圆柱的体积怎样计 你会计算上面这些图形的 长方体、正方体的体 算呢? 们学过的立体图形,计 体积吗? 积? 算出它的体积呢?
乙
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
乙
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
乙
图1 :
h=h
甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
谢 谢
做一做
(2)、一个圆柱行罐头盒的 内底面半径是5厘米,高15厘 米。它的容积是多少? 3.14×5×15
2
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( ×) (2)圆柱体的高越长,它的体积越大。( ×) (3)圆柱体的体积与长方体的体积相等。(× )
真 棒!
高
长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h
长
v 正 =a
V=s底 h
3
圆柱体积的大小与哪些条件有关?
(× )
4分米 10分米
0.8米
求各圆柱的 体积。
0.5分米
圆柱形水桶内所盛水的体积,就 叫做这个圆柱形容器的容积。
做一做
(1)一根圆柱形木料,底面积为75平方 厘米,长90厘米,它的体积是多少?
75×90=6750(立方厘米)
答:它的体积是6750立方厘米。
一、复习旧知
请你说一说如何计算 能不能将圆柱转化成我 圆柱的体积怎样计 你会计算上面这些图形的 长方体、正方体的体 算呢? 们学过的立体图形,计 体积吗? 积? 算出它的体积呢?
乙
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
乙
图1 :
h=h 甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
乙
图1 :
h=h
甲
讨论题: 1、甲圆柱与乙圆柱谁的体积大? 2、它们的什么条件是相同的? 3、圆柱的体积大小与什么有关?
谢 谢
做一做
(2)、一个圆柱行罐头盒的 内底面半径是5厘米,高15厘 米。它的容积是多少? 3.14×5×15
2
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。( ×) (2)圆柱体的高越长,它的体积越大。( ×) (3)圆柱体的体积与长方体的体积相等。(× )
真 棒!
高
长 宽 棱长
长方体的体积=长×宽×高
正方体的体积=棱长×棱长×棱长
v =a b h
长
v 正 =a
V=s底 h
3
圆柱体积的大小与哪些条件有关?
圆柱的体积ppt课件

鼓励参与
老师对参与挑战和互动的 同学表示肯定和鼓励,激 发更多学生积极参与课堂 互动。
06
知识拓展:相关公式推导 过程
圆柱表面积公式推导
圆柱侧面积
圆柱的侧面积等于底圆的周长乘 以高,即 $S_{侧} = 2\pi rh$。
圆柱底面积
圆柱的底面积等于圆的面积,即 $S_{底} = \pi r^{2}$。
优秀学生作品欣赏
作品1
该同学的作品内容丰富、条理清晰,公式推 导和实例计算均准确无误,同时注重课件美 观性,整体效果非常好。
作品2
该同学的作品在公式推导方面非常详细,每 一个步骤都有解释和说明,便于理解和记忆 。同时,该同学还加入了一些实际应用的例 子,使课件更加生动有趣。
05
互动环节:现场挑战题目
现场出题并邀请学生解答
01
02
03
邀请学生上台
选择1-2名学生上台参与挑战,确保学生 自愿参与。
现场出题
学生解答
给出一个与圆柱体积相关的实际问题,如 计算某个圆柱形容器的体积等。
要求上台的学生现场进行解答,可以使用 公式或口算,鼓励多种方法解答。
分享解题思路和方法
01
02
03
学生分享
邀请上台解答问题的学生 分享他们的解题思路和方 法,以及遇到的问题和困 难。
VS
注意事项
注意侧面积公式中的$\pi$和公式中的 $\pi$是同一个数值,避免在计算中出现 错误。
例题三:综合问题,涉及多个参数
解题思路
需先根据题目所给条件列出方程或方程组,解出未知量后再代入圆柱体积公式求解体积。
注意事项
多个参数之间可能有关联,需仔细审题并理清各参数之间的关系。
圆柱体积ppt课件

圆柱体体积在物理中的应用
01
02
03
流体动力学
在流体动力学中,圆柱体 的体积可用于计算流体在 管道中的流量和阻力。
声学
在声学中,圆柱体的体积 可用于计算声音的传播和 衰减。
热力学
在热力学中,圆柱体的体 积可用于计算物体的热量 传递和热容。
03
圆柱体积的特性
圆柱体的高与体积的关系
总结词:正比关系
解释
其中,I表示圆柱体的转动惯量, m表示圆柱体的质量,r表示圆柱 底面半径。该公式用于计算圆柱 体的转动惯量。
应用
在物理和工程领域中,圆柱体的 转动惯量公式被广泛应用于计算 各种实际问题,如旋转机械的稳 定性、物体的运动状态变化等。
THANKS
少阻力。
03
柱子
建筑物中的柱子通常是圆柱形 ,用于支撑建筑物的重量并传
递载荷。
圆柱体体积在数学中的应用
03
几何学
代数
微积分
圆柱体的体积是几何学中一个重要的概念 ,用于计算圆柱体的体积和表面积。
在代数中,圆柱体的体积可用于解决一些 数学问题,例如求取物体的重量、密度等 。
微积分中,圆柱体的体积可用于计算物体 的质量、动量等物理量。
不同形状的圆柱体体积比较
01
总结词
02
详细描述
相同体积的圆柱体底面积相等
对于具有相同体积的不同形状的圆柱体,其底面积相等。这是因为圆 柱体的体积公式为V=πr²h,其中r为底面半径,h为高。当体积相等 时,底面半径的平方与高度成反比,因此底面积相等。
04
圆柱体积的求解方法
直接代入公式求解
总结词
直接代入公式求解是一种简单、快速的方法,适用于各种类型的圆柱体。
圆柱的体积教学课件—【精品课件】

小红说:水桶做成圆柱形的提起来方便。 小亮说:水桶做成圆柱形,盖封住把它放倒可以滚动,装 卸方便。
小明的爷爷马上说,我给大家出个题目,大家解决这几 个问题后一定会明白的。
1.做一个长和宽都是3分米,高是4.78分米的盒子(有盖)需 要多少铁皮?容积是多少?
2、做一个长和宽都是3分米,高是4.78分米的盒子(有盖) 需要多少铁皮?容积是多少?
V= πr²h
,
三、课堂小结
知道S和h: V=Sh 知道r和h: V=πr2×h
知道d和h: V=π( d )2 h 2
知道C和h: V=π(C÷π÷2)2×h
四、拓展练习
水桶为什么要做成圆柱形? 星期天,有几位同学在小明家玩,小明要浇花,拿了一只
水桶去提水,大家纷纷帮小明打水,不知谁说了一句:“水桶 为什么要做成圆柱形的?”大家七嘴八舌说开了,各说各有理, 谁也不让谁。
把大小圆柱分别放入下面2个完全一样的水池中:
放入圆柱后,这个水池 的水位比较高,所以这 个圆柱的体积比前一个 圆柱的体积大。
Байду номын сангаас
我们会计算长方体和正方体的体积,圆柱的体积怎样计算呢? 能不能将圆柱转化成我们学过的立体图形,计算出它的体积呢?
5
把圆柱的底面平均分的份数越多,拼成的立体图形越接近 长方体。
圆柱的体积教学课件—【精品课件】
第 3 单元 圆柱与圆锥
圆柱的体积
一、情境导入
放入石头后发生了什么?
水位变高了
你能用一句话说说什 么是圆柱的体积吗?
圆柱所占空间的大小就是圆柱的体积
二、探索新知
哪个圆柱的体积大?
我的体积大。
要比较两个圆柱的体 积,你有什么好办法?
可以将圆柱放进水中,比较哪个水面升得高。
小明的爷爷马上说,我给大家出个题目,大家解决这几 个问题后一定会明白的。
1.做一个长和宽都是3分米,高是4.78分米的盒子(有盖)需 要多少铁皮?容积是多少?
2、做一个长和宽都是3分米,高是4.78分米的盒子(有盖) 需要多少铁皮?容积是多少?
V= πr²h
,
三、课堂小结
知道S和h: V=Sh 知道r和h: V=πr2×h
知道d和h: V=π( d )2 h 2
知道C和h: V=π(C÷π÷2)2×h
四、拓展练习
水桶为什么要做成圆柱形? 星期天,有几位同学在小明家玩,小明要浇花,拿了一只
水桶去提水,大家纷纷帮小明打水,不知谁说了一句:“水桶 为什么要做成圆柱形的?”大家七嘴八舌说开了,各说各有理, 谁也不让谁。
把大小圆柱分别放入下面2个完全一样的水池中:
放入圆柱后,这个水池 的水位比较高,所以这 个圆柱的体积比前一个 圆柱的体积大。
Байду номын сангаас
我们会计算长方体和正方体的体积,圆柱的体积怎样计算呢? 能不能将圆柱转化成我们学过的立体图形,计算出它的体积呢?
5
把圆柱的底面平均分的份数越多,拼成的立体图形越接近 长方体。
圆柱的体积教学课件—【精品课件】
第 3 单元 圆柱与圆锥
圆柱的体积
一、情境导入
放入石头后发生了什么?
水位变高了
你能用一句话说说什 么是圆柱的体积吗?
圆柱所占空间的大小就是圆柱的体积
二、探索新知
哪个圆柱的体积大?
我的体积大。
要比较两个圆柱的体 积,你有什么好办法?
可以将圆柱放进水中,比较哪个水面升得高。
圆柱的体积ppt课件

利用长方体的体积公式推导
总结词:类比思想
详细描述:我们知道长方体的体积公式为长 ×宽×高。将圆柱体视为一个长方体,其中
是一个长方体的体积,其中长、宽和高分别 为圆的周长、半径和高。通过这种方法,我
们可以推导出圆柱体的体积公式。
圆柱体积和球体积的计算公式 虽然不同,但它们之间可以通 过一定的变换联系起来。
02
圆柱体积的计算方法
通过底面积和高计算
总结词
这种方法是计算圆柱体积最常用 的方法。
详细描述
通过测量圆柱的底面积(πr²)和 高,然后使用公式“底面积 x 高 ”计算得出圆柱体积。
通过侧面积的一半和高计算
总结词
这种方法可以用来验证圆柱体积的计 算结果。
03
圆柱体积的应用场景
在几何学中的应用
圆柱体的体积公式是V=πr²h,其中π表示圆周率,r表示底面圆的半径,h表示圆 柱的高。这个公式可以用来计算圆柱的体积,也可以用来解决一些与圆柱有关的 几何问题。
例如,在求解圆柱的表面积时,就需要先求出圆柱的体积。此外,圆柱体积的应 用还涉及到一些其他的几何问题,比如求解圆柱的截面面积等等。
详细描述
2. 体积的变形问题,如将圆柱进 行切割、拼接等操作后的体积计 算。
总结词:能够解决一些较为复杂 的体积计算问题,如组合体体积 计算、体积的变形等。
1. 组合体体积的计算问题,包括 同底等高和不等高组合体的体积 计算。
3. 进阶习题演练,包括这些较为 复杂的问题。
高手习题演练
01
02
总结词:能够解决一些 非常复杂的体积计算问 题,如立体几何中的体 积计算、多维空间的体 积计算等。
03
圆柱体积与其他几何形状的联系
人教版六年级数学下册《圆柱的体积》课件

的值。 3. 求方程的解的过程叫解方程。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。
(三)列方程解决问题 1、审题,弄清题意; 2、找出等量关系; 3、设出未知数,根据等量关系列出方程; 4、解方程,写出答句; 5、检验。
讨论
(1)已知圆的半径和高: V=∏r2h (2)已知圆的直径和高: V=∏(d2)2h
(3)已知圆的周长和高: V=∏(C÷d÷2 )2h
努 力 吧 !
判断正误,对的画“√”,错误的画“×”。
1. 圆柱体的底面积越大,它的体积越大。(×) 2. 圆柱体的高越长,它的体积越大。(×) 3.圆柱体的体积与长方体的体积相等。(×) 4.圆柱体的底面直径和高可以相等。(√ )
列方程解决下面的问题。
(1)果品商店购进20箱苹果。购进苹果的箱数
是橘子箱数的 4 。商店购进了多少箱橘子?
5
解:设商店购进了x箱橘子。
橘子箱数× 4 =苹果箱数
45x=20 5 x=20÷
x=25
4 5
答:商店购进了25箱橘子。
(2)妙想和乐乐一共收集了128枚邮票,妙
想收集的邮票数是乐乐的3倍。妙想、乐乐各
注意:
①在含有字母的式子里,数和字母中间的乘 号可以写作“•”,也可以省略不写。
②省略乘号时,应当把数写在字母的前面。 ③数与数之间的乘号不能省略。加号、减号、 除号都不能省略。
解下面的方程,并说一说你是怎么解的。
9x-1.8=5.4 解:
9x-1.8+1.8=5.4+1.8 9x=7.2
9x÷9=7.2÷9 x=0.8
a乘以4.5可以怎样写?s乘以h可以怎样写?
a 4.5或4.5a
s h或sh
用含有字母的式子表示下面的数量 1、一只青蛙每天吃a只害虫,100天吃掉(100a) 只害虫。
《圆柱体的体积计算》PPT

冀教版六年级数学下册第三单元
圆柱体的体积计算
1、经历同桌合作,测量、计算圆柱物 体体积的过程。
2、会测量圆柱物体的有关数据,能根 据圆柱的高及直径或周长计算圆柱的体 积。
3、能找到解决问题的有效方法,能表 达解决问题的大致过程和结果。
同桌合作,测量自己准备的茶叶筒的 有关数据,计算出它的体积。
1.一个易拉罐(如下图),它的体积
找一找,哪些物体的形状是圆柱?
在生活中,你还见过哪些形状是 圆柱的物体?
圆柱的特点:
观察一个罐头盒。
指出它的底面、 侧面和高。
把下面罐头盒沿着它的一条高 剪开,再展开,看看商标是什么形 状。
1.长方形的长和宽分别与罐头盒的 什么有关系?
2.长方形的面积和罐头盒的侧面积 有什么关系?
怎样计算罐头盒的侧面积?
1.某工厂生产了侧面的商标纸,你 认为哪张纸比较适合?
2.求右面罐头盒商 标纸的面积。(接 缝处忽略不计) (单位:厘米)
3.求下面各圆柱的侧面积。
(1)d=8cm h=6cm
(2)r=3m h=1.5m
在自己家里找几个圆柱形的物体,测 量它们的直径和高,计算出它们的体积和 表面积。
冀教版六年级数学下册第三单元
圆柱和圆柱的侧面积
1、知识目标:理解圆柱体侧面积和表面积的含义。 2、能力目标:通过操作独立推导并掌握求圆柱的 侧面积的方法,并能运用到实际中解决问题。 3、情感目标:体验成功与失败的收获,体会合作 的愉悦。
是多少立方厘米? PPT模板:素材: PPT背景:图表: PPT下载:教程: 资料下载:范文下载: 试卷下载:教案下载: PPT论坛:课件: 语文课件:数学课件: 英语课件:美术课件: 科学课件:物理课件: 化学课件:生物课件: 地理课件:历史课件:
圆柱体的体积计算
1、经历同桌合作,测量、计算圆柱物 体体积的过程。
2、会测量圆柱物体的有关数据,能根 据圆柱的高及直径或周长计算圆柱的体 积。
3、能找到解决问题的有效方法,能表 达解决问题的大致过程和结果。
同桌合作,测量自己准备的茶叶筒的 有关数据,计算出它的体积。
1.一个易拉罐(如下图),它的体积
找一找,哪些物体的形状是圆柱?
在生活中,你还见过哪些形状是 圆柱的物体?
圆柱的特点:
观察一个罐头盒。
指出它的底面、 侧面和高。
把下面罐头盒沿着它的一条高 剪开,再展开,看看商标是什么形 状。
1.长方形的长和宽分别与罐头盒的 什么有关系?
2.长方形的面积和罐头盒的侧面积 有什么关系?
怎样计算罐头盒的侧面积?
1.某工厂生产了侧面的商标纸,你 认为哪张纸比较适合?
2.求右面罐头盒商 标纸的面积。(接 缝处忽略不计) (单位:厘米)
3.求下面各圆柱的侧面积。
(1)d=8cm h=6cm
(2)r=3m h=1.5m
在自己家里找几个圆柱形的物体,测 量它们的直径和高,计算出它们的体积和 表面积。
冀教版六年级数学下册第三单元
圆柱和圆柱的侧面积
1、知识目标:理解圆柱体侧面积和表面积的含义。 2、能力目标:通过操作独立推导并掌握求圆柱的 侧面积的方法,并能运用到实际中解决问题。 3、情感目标:体验成功与失败的收获,体会合作 的愉悦。
是多少立方厘米? PPT模板:素材: PPT背景:图表: PPT下载:教程: 资料下载:范文下载: 试卷下载:教案下载: PPT论坛:课件: 语文课件:数学课件: 英语课件:美术课件: 科学课件:物理课件: 化学课件:生物课件: 地理课件:历史课件:
《圆柱的体积》讲解PPT课件

16
3、一个圆柱形粮囤,从里面量得底面半径是 1.5m,高2m。如果每立方米玉米约重750kg, 这个粮囤能装多少吨玉米?
3.14×1.5×1.5×2=14.13(m³)
14.13×750=10597.5(kg) 10597.5kg= 10.5975吨
答:这个粮囤能装10.5975吨玉米。
2021
圆柱的体积圆柱的体积书洋中心小学长方体的体积长方体的体积高高正方体的体积正方体的体积高高棱棱长长高高宽宽高高宽宽棱棱长长棱棱长长棱棱长长长正方体的体积长正方体的体积底面积底面积高高观察
圆柱的体积
书洋中心小学 沈飘渊
圆的面积公式推导过程:
圆的面积公式推导过程:
S=π r 2
r
πr
S=πr ×r =π r 2
如果能把底面转化成长、正方形就好了。
2021
5
小组合作要求: 1、把圆柱体拼凑成学过的立体图形。
我把圆柱体拼凑成了
。
2、观察、比较:圆柱体和长方体
我发现:圆柱体拼凑成长方体 变了, 没变。
所以:
的体积=
的体积
3、摸一摸、比一比、量一量
圆柱体的底面积相当于长方体的
。
圆柱体的高相当于长方体的
。
4、因为:长方体的体积= 底面积 × 高
(1)圆柱体的底面积越大,它的体积越大。(× )
(2)圆柱体的高越长,它的体积越大。( × )
(3)圆柱体的体积等于长方体的体积。( ×)
2、计算下面各圆柱的体积。(单位:cm)
5
8
12 8
4
2021
15
1.5米=150厘米
20×150=3000(立方厘米)
1
17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学数学第十二册
数
学
商洛市商州区大赵峪龙山小学
王瑜
创设情境
猜测
1、猜一猜,怎样求圆柱的体积呢 (1)底面积×高 (2)底面周长×高
验证猜测
老师为每个小组准备了一套 学具,请同学们按自己想的 方法验证一下
演示课件 推导总结公式
底面积
高
高
长方体体积=底面积×高 圆柱体积=底面积×高
1、
2、
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。(×) (2)圆柱体的高越长,它的体积越大。(×) (3)圆柱体的体积与长方体的体积相等。(×) (4)圆柱体的底面直径和高可以相等。(√ )
4分米
求各圆柱的 体积。
10h
解决课前提出的问题
底面积:3.14×(12÷2 )2 =113.04(平方厘米) 体 积:113.04×20=2260.8(立方厘米) 容 积:2260.8立方厘米=2260.8毫升 答:这种包装盒的容积是2260.8毫升。
做 一 做
3.14 ×32×10 3.14×(8÷ 2)2×8
努 力 吧 !
数
学
商洛市商州区大赵峪龙山小学
王瑜
创设情境
猜测
1、猜一猜,怎样求圆柱的体积呢 (1)底面积×高 (2)底面周长×高
验证猜测
老师为每个小组准备了一套 学具,请同学们按自己想的 方法验证一下
演示课件 推导总结公式
底面积
高
高
长方体体积=底面积×高 圆柱体积=底面积×高
1、
2、
判断正误,对的画“√”,错误的画“×”。
(1)圆柱体的底面积越大,它的体积越大。(×) (2)圆柱体的高越长,它的体积越大。(×) (3)圆柱体的体积与长方体的体积相等。(×) (4)圆柱体的底面直径和高可以相等。(√ )
4分米
求各圆柱的 体积。
10h
解决课前提出的问题
底面积:3.14×(12÷2 )2 =113.04(平方厘米) 体 积:113.04×20=2260.8(立方厘米) 容 积:2260.8立方厘米=2260.8毫升 答:这种包装盒的容积是2260.8毫升。
做 一 做
3.14 ×32×10 3.14×(8÷ 2)2×8
努 力 吧 !