概率论课件-随机变量及其分布

合集下载

概率论课件第二章

概率论课件第二章
第二章 随机变量及其分布 §2.1 随机变量
例1. 抛硬币试验中S {H,T}, 样本点H与T不是数量。
例2. 测试灯泡寿命试验, S={e}={t|t≥0},样本点本身 是数量。
定义 : 设随机试验E的样本空间是S,若 X : S R为单值实范数,则称X为随机变量 (random variable, 简记为r.v.) 。

2. 特例: (1,) 是参数为的指数分布. (=1) 3. 伽玛函数的性质: (i) (+1)= ();
1 (iii)( ) . 2
(ii) 对于正整数n, (n+1)=n!;
§5. 随机变量的函数的分布
一、 X为离散型r.v. 例1.设X具有以下的分布律,求Y=(X-1)2分布律: X -1 0 1 2 pk 0.2 0.3 0.1 0.4
(二) 贝努利试验
(二项分布)
定 义 : 设 试 验E只 有 两 个 可 能 结 果 A与 A , 且 P( A ) p ( 0 p 1), 将 试 验E独 立 重 复 地 进 行 n次 , 这 样 的 试 验 称 为 贝 努 利 试 验.
设X是n重贝努利试验中事件A发生的次数, 则X 是一个随机变量, 于是
§4. 连续型随机变量及其概率密度
F(x) , 存在非负函 1.定义 : 对于r.v.X的分布函数 数f(x) , 使对于任意的实数 x, 有
则称X为连续型r.v.f(x)称为X概率密度函数, 简称概率密度. 连续型r.v.的分布函数是连续函数.
F(x ) f(t)dt

x
2.概率密度 f(x)的性质:
25
标准正态分布的上分位点:
设X ~ N(0,1), 若z 满足条件

《概率论与数理统计》课件-第2章随机变量及其分布 (1)

《概率论与数理统计》课件-第2章随机变量及其分布 (1)
则称X服从参数为λ的泊松分布, 记为 X ~ P() .
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
泊松分布的应用
“稠密性”问题(一段时间内,电话交换中心接到的呼叫次 数,公共汽车车站候车的乘客数,售票窗口买票的人数, 原子放射的粒子数,保险公司在一定时期内被索赔的次 数等)都服从泊松分布.
随机变量的分布函数
1.定义: 设X为一随机变量, x为任意实数, 称函数 F(x)=P{X≤x}为X的分布函数.
注: ① F(x)是一普通函数, 其定义域为 ,; ② F x的值为事件X x的概率; ③ F x可以完全地描述随机变量取值的规律性.
例如: Pa X b PX b PX a
连续型随机变量及概率密度函数
1.定义: 设X ~ F(x), 若存在一个非负可积的函数 f (x),
使 x R, 有
F ( x)
PX
x
x
f
(t)dt
,
则称X为连续型随机变量, f (x) 称为X的概率密度函数或
分布密度函数.
2.几何意义:
HAINAN UNIVERSITY
概率论与数理统计
第二五章 基随本机极变限量定及理其分布
二、随机变量的概念
定义: 设试验E的样本空间为 , 若对于每个样本
点 , 均有一个实数 X ()与之对应, 这样就得
到一个定义在 上的单值函数 X X () , 称X为随
机变量.
X
样本空间
实数
注: ① 随机变量是一个定义在样本空间上的实函数, 它取值的随机性是由样本点的随机性引起的;
x 1
x0
0 x x
不是 (不满足规范性)

概率论与数理统计课件第2章

概率论与数理统计课件第2章

X0
1
pk 03.5
0.25
4
625
0.0625
X的分布函数为
2 0.125
0
x0
0.5
0 x1
F
(
x)
0.75 0.875
1 x 2 2 x3
0.9375 3 x 4
Байду номын сангаас
1
x4
0.0
分布函数 是累计概率
例3 有人对随机变量X的分布列表述如下:
X -1
0 12 3
P
a 0.16
a2 2a 0.3
第2章 随机变量及其分布
2.1 随机变量及其分布函数 2.2 离散型随机变量及其分布律 2.3 几种常见的离散型分布 2.4 连续型随机变量及其密度函数 2.5 正态分布 2.6 随机变量函数及其分布
2.1 随机变量及其分布函数
一、随机变量 二、随机变量的分布函数
信息管理学院 徐晔
一、随机变量

包含出现1点
包含出现1,2点
包含出现1,2,3点
包含出现1,2,3,4 点 包含出现1,2,3,4,5 点包含出现1,2,3,4,5,6 点
分布函数的性质
F(x) P(X x), ( x )
(1) F x 在 , 上是一个不减函数 ,
即对 x1 , x2 , 且 x1 x2 ,都有 F x1 F x2 ;
样本点
1, 4, 5 2, 3, 4 2, 3, 5 2, 4, 5 3, 4, 5
黑球数 X
1 2 2 1 1
由上表可以看出,该随机试验的每一个结果都对应
着变量 X 的一个确定的取值,因此变量 X 是样本空
间Ω上的函数:

概率论与数理统计课件:随机变量及其分布

概率论与数理统计课件:随机变量及其分布

随机变量及其分布
首页 返回 退出
§2.2 离散型随机变量及其分布律
定义 设离散型随机变量 X 所有可能取的值为xk , k = 1, 2,
X 取各个可能值的概率,即事件{ X xk } 的概率,为
P{ X xk } pk , k 1, 2, .
称此为离散型随机变量 X 的分布律.
随机变量及其分布
首页 返回 退出
定义2.1 设随机试验E, 其样本空间S, 若对样本
空间每一个样本点e, 都有唯一一个实数X(e)与之对
应,那么就把这个定义域为S的单值实值函数X=X(e),
称为随机变量。
随机变量通常用大写字母X,Y,Z 或希腊字母 ξ,η等表示.
而表示随机变量所取的值时,一般采用小写字母x,y,z等.
量方面,如,投掷一枚均匀骰子,我们观察出现的点
数。
记X=“出现的点数”
则X的可能取1, 2, …, 6中任一个数,可见X是变量;
又X取那个值不能事先确定,故此X的取值又带有随机
性.
有了随机变量,有关事件的表示也方便了,如
{X=2}, {X≤2}, ……
随机变量及其分布
首页 返回 退出
这样的例子还有很多. 又如,研究手机的使用寿命
或写成
随机变量及其分布
5
P( X k )
6
k 1
1
, k 1, 2,
6
首页 返回 退出
常见离散型随机变量
(一)“0-1”分布
设随机变量 X 只可能取 0 和1 两个值,它的分布律

k
P X k p(
1 p)1k k 0,1
(0 p 1)

海南大学《概率论与数理统计》课件 第四章 随机变量及其分布

海南大学《概率论与数理统计》课件 第四章 随机变量及其分布
例如:X 0 取出的n个产品中没有次品;
X 3 取出的n个产品中至多有3个次品;
X 3 取出的n个产品中有超过3个的次品.
8
关于随机变量的补充说明
• 引入随机变量之后, 可以更方便地表示事件。 • 随机变量的确定不仅与样本空间有关, 也与试验
的研究目的有关。 • 随机变量满足函数的单值对应关系。 • 随机变量不仅有取值的不同, 取到这些值的概率
②正则性: p( xi ) 1 . i 1
这两条性质也是随机变量分布列的充要条件。
由概率的意义和随机变量的完备性容易证明。
25
二、离散型随机变量的分布函数
由分布列可以写出其分布函数 F ( x) P( xi ) xi x
它的图形是有限(或无穷)级数的阶梯函数〔右连续 〕
F(x)
1
0
x
26
27
X的分布列为
X1 2 3 P 0.6 0.3 0.1
X的分布函数为
0, x 1; 0.6, 1 x 2; F ( x) 0.9, 2 x 3; 1 , x 3.
注意:由分布列求分布函数是概率累加的过程.
并且,总有: 当x xmin时,F ( x) 0; 当x xmax时,F ( x) 1.
解 (1) 根据分布函数的性质可知
F() 1, F() 0
依题意可得
18
F() A π B 1 2
F() A π B 0 2
联立上面两个方程可以解得 A 1,B 1 2π
(2) 随机变量 X 落在(-1,1)内的概率可以表示为
P{1 X 1} F (1 0) F (1)
P{a X b} F(b 0) F(a 0);
P{a X b} F(b 0) F(a).

概率论课件:第二章随机变量及其概率分布

概率论课件:第二章随机变量及其概率分布

π 3π ⎞ ⎛ π 0 ⎟ 22.设随机变量 X 的分布律为 ⎜ 2 2 ⎟ ,求 Y 的分布律: ⎜ ⎝ 0.3 0.2 0.4 0.1 ⎠
(1) Y = ( 2 X − π ) ;
2
(2) Y = cos( 2 X − π ). ⎧2 x , 0 < x < 1 f ( x) = ⎨ ⎩0 , 其它
它意味着第 i 次( i ≥ k )成功,且 i − 1 次试验中成功 k − 1 次,设这两个事件分别为A1 ,A2,
则A = A 1 A 2 , 且P(A) = P(A 1 A 2 ) = P(A 1 )P(A 2 )(A 1与A 2 独立 ), 而 P(A 1 ) = p,
1 k −1 1 k −1 i − k P( A2 ) = Cik−− ⋅ q i −1−( k −1) = Cik−− q . 1 p 1 ⋅ p
, ( 2,6),
, (6,1),
例如(6,1) , (6,6)} .这里,
8
5 36
9
4 36
10
3 36
11
2 36
12
1 36
PK
1 36
2 36
3 36
4 36
5 36
6 36
概率 P{X = k }, k = 0,1,2,3.
2、分析: 显然 X 服从离散型概率分布,而且 X 的可能取值为 0,1,2,3.问题归结为求
∴ X 的分布律为:
P{X = 0} = P ( A1 ) = 1 / 2; P{X = 1} = P ( A1 A2 ) = 1 / 2 2 ; P{X = 2} = P ( A1 A2 A3 ) = 1 / 2 3 ;
X Pi

《概率论》课件

《概率论》课件

物理学
描述粒子在气体或液体中的运动状态。
金融学
用于股票价格和收益率的分析。
隐马尔科夫模型
定义
隐马尔科夫模型是一种特殊的马尔科夫模型 ,其中观测状态与隐藏状态有关,而隐藏状 态之间相互独立。
应用
语音识别、手写识别、生物信息学等领域。
05
大数定律与中心极限定理
大数定律及其应用
大数定律
在独立重复试验中,当试验次数趋于无穷时,事件发 生的频率趋于该事件发生的概率。
《概率论》ppt课 件
目录
• 概率论简介 • 概率的基本性质 • 随机变量及其分布 • 随机过程与马尔科夫链 • 大数定律与中心极限定理 • 贝叶斯统计推断
01
概率论简介
概率论的定义
概率论
研究随机现象的数学学科,通过数学模型和公式 来描述随机事件、随机变量和随机过程。
随机变量
表示随机现象的数值变量,其取值具有随机性。
THANKS
感谢观看
计算机科学
概率论在计算机科学中用于算法设计和数据 挖掘等领域。
02
概率的基本性质
概率的公理化定义
概率的公理化定义是概率论的基础,它规定了概率的几个基本性质,包括非负性 、规范性、可加性和有限可加性。
非负性指的是任何事件的概率都不小于0;规范性指的是必然事件的概率为1;可 加性指的是两个独立事件的概率等于它们各自概率的和;有限可加性指的是任意 有限个两两独立的事件的概率等于这些事件概率的和。
应用
在统计学中,大数定律用于估计样本的统计量和参数 ,如平均值、方差等。
中心极限定理及其应用
中心极限定理
无论随机变量的分布是什么,当样本量足够大时,样 本均值的分布近似正态分布。

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

概率论与数理统计-第二章-随机变量及其分布函数ppt课件

表格: X
x1 x2
pk
p1 p2
概率分布图:
1P
xn
pn
0.5
x4 x3
x1
x2
X
.
由概率的性质易知离散型随机变量的分布列
pk
满足下列特征性质:
k 1
① pk 0(k 1,2,) [非负性]

pk 1 [规范性]用于确定待定参数
k 1
③ F( x) P( X x) P(X xi ). xi x
1. 2
.
【例2】设随机变量X的分布函数为
aex b, x 0
F(x)
0,
x0
解: 因为 F(x) 在 x=0 点右连续
求: 常数 a 和 b。
所以 lim F ( x) lim (ae x b) a b 0
x0
x0
又因为 F () lim (ae x b) b 1 x
1、两点分布 或(0 - 1)分布
two-point distribution
定义1 设离散型随机变量X的分布列为
X0 1 pk 1 p p
其中 0<p<1
则称 X 服从(0 - 1)分布,记作 X ~(0 - 1)分布
F(x)
(0 - 1)分布的分布函数
0 , x0 F ( x) 1 p, 0 x 1
X = “三次试验中 A 发生的次数”,
{ X 2} A1A2 A3 A1A2 A3 A1A2 A3 P{X 2} P(A1A2 A3 A1A2 A3 A1A2 A3 )
P(A1A2 A3 ) P(A1A2 A3 ) P(A1A2A3 ) P(A1)P(A2)P(A3) P(A1)P(A2)P(A3) P(A1)P(A2 )P(A3 ) C32 p2(1 p)32
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

即每次试验结果 互不影响
19
独立重复地抛n次硬币,每次只有两个可能的 结果:正面,反面,
P出现正面 1 2
将一颗骰子抛n次,设A={得到1点},则每次
试验只有两个结果:A, A,
P A 1 6
从52张牌中有放回地取n次,设A={取到红
牌},则每次只有两个结果: A, A,
P A 1 2
如果是不放回抽样呢?
P( X 2) P( A1A2 A3) (1 p)2 p ;
P( X 3) P( A1A2 A 3) (1 p)3 ;
10
X0
1
2
3
p p p(1-p) (1-p)2p (1-p)3
11
例:若随机变量X的概率分布律为
P( X k ) c k ,k 0,1, 2, , 0
检查产品的质量是否合格,对新生婴儿 的性别进行登记,检验种子是否发芽以 及前面多次讨论过的“抛硬币”试验都 可以用(0-1)分布的随机变量来描述 。
17
一个随机试验,设A是一随机事件,且
P(A)=p,(0<p<1).若仅考虑事件A发生与否,
定义一个服从参数为p的0-1分布的随机变
量:
X
1,
0,
21
设A在n重贝努利试验中发生X次,则
P( X k) Cnk pk (1 p)nk,k 0,1,,n
并称X服从参数为p的二项分布,记
X ~ B(n,p)
n
注:1 ( p q)n Cnk pk qnk 其中q 1 p k 0
22
推导:以n=3为例,设Ai={ 第i次A发生 }
P( X 0) P( A1A 2 A3) (1 p)3
它的分布律还可以写为
P( X k) pk (1 p)1k , k 0, 1.
15
对于一个随机试验,如果它的样本空间只
包含两个元素,即 S {e1 , e2} ,我们总能
在S上定义一个服从(0-1)分布的随机
变量。
0, X X (e) 1,
当e e1, 当e e2.
来描述这个随机试验的结果。
3
定 义 : 设 随 机 试 验 的 样 本 空 间 为 S e , 若
X X (e) 为定义在样本空间 S 上的实值单值函数, 则称 X X (e) 为随机变量。
一般采用大写英文字母 X ,Y , Z 来表示随机变量
引入随机变量的目的是用来描述随机现象
4
一 般 的 , 若 I是 一 个 实 数 集 合 ,{ X I }记
二项分布随机变量概率分布律
24
例:有一大批产品,其验收方案如下: 先作第一次检验,从中任取10件,经检 验无次品接受这批产品,次品数大于2 拒收;否则作第二次检验,从中任取5 件,仅当5件中无次品便接受这批产品, 设产品的次品率为p.求这批产品能被 接受的概率.
解:设A={接受该批产品}。 设X为第一次抽得 的次品数,Y为第2次抽得的次品数.
k!
求常数c.
12
解:
1 P{X k}
k 0
k
c
ce
k0 k !
c e
几个重要的离散型随机变量
一、0-1分布
若X的分布律为:
X 01 p qp
随机变量只可能 取0、1 两个值
(p+q=1,p>0,q>0)
则称X服从参数为p的0-1分布,或两点分布.
记为
X ~ 0 1( p) 或 B(1, p)
则X~B(10,p),Y~B(5,p),且{X=i}与{Y=j}独立。
P( A) P(X 0) P(1 X 2且Y=0)
P(X 0) P(1 X 2) P(Y 0)
P(X 0) (P(X 1) P(X 2)) P(Y 0)
(1 p)10 [10 p(1 p)9 45 p2 (1 p)8] (1 p)5
P{X 1} P{X 0} P{X 1} 1/ 2
X 01
2
3
p
1/8 3/8 3/8 1/8
6
§2 离散型随机变量及其分布
定义:取值至多可数的随机变量为离散
型的随机变量。概率分布(分布律)为
X x1
pk p1
x2 …
xi

p2 …
pi

pi 0, pi 1 i 1
7
概率分布
写出所有可能取值 写出取每个可能取值相应的概率
若A发生, 若 A 不 发 生 (即A发 生 ).
来描述这个随机试验的结果。只有两个
可能结果的试验,称为Bernoulli试验。
二、二项分布
n重贝努利试验:设试验E只有两个可能的 结果:A与A ,p(A)=p,0<p<1,将E独立地重 复进行n次,则称这一串重复的独立试验为 n重贝努利试验。
在相同条件下 重复进行
第二章 随机变量及其分布
随机变量 离散型随机变量 概率分布函数 连续型随机变量 随机变量的函数
1
§1 随机变量
常见的两类试验结果:
示数的——降雨量; 候车人数; 发生交通事故的次数…
示性的——明天天气(晴,云…); 化验结果(阳性,阴性)…
中心问题:将试验结果数量化
s e
x
X=X(e)--为S上的 单值函数,X为实数
则{X I}为事件{e : X (e) I}
常见的两类随机变量
离散型的 连续型的
例:掷硬币3次,出现正面的次数记为X.
样本点e TTT TTH THT HTT HHT HTH THH HHH X(e)的值 0 1 1 1 2 2 2 3
P{X 0} P{TTT} 1/ 8
P{X 1} P{TTH,THT, HTT} 3 / 8
P( X 1) P( A1A 2 A3 A1A 2 A3 A1A 2 A3 ) C31 p1(1 p)31
P( X 2) P( A1A 2 A3 A1A 2 A3 A1A 2 A3 ) C32 p 2 (1 p)32
P( X 3) P( A1A 2 A3 ) p3
一般 P( X0,1, 2, , n
例:某人骑自行车从学校到火车站, 一路上要经过3个独立的交通灯,设各 灯工作独立,且设各灯为红灯的概率 为p,0<p<1,以X表示首次停车时所通 过的交通灯数,求X的概率分布律。
解:设Ai={第i个灯为红灯},则P(Ai)=p, i=1,2,3 且A1,A2,A3相互独立。
P( X 0) P( A1) p ; P( X 1) P( A1A2 ) (1 p) p ;
相关文档
最新文档