三轴实验报告

三轴实验报告
三轴实验报告

三轴实验实验报告

课程试验土力学

授课老师陈立宏(教授)学生姓名王硕

学号 15125885

专业岩土工程

目录

1.试验目的 (1)

2.仪器设备 (1)

3.试样制备步骤 (1)

4.试样的安装和固结 (2)

5.数据处理 (2)

6.注意事项 (3)

7.总结 (3)

1.试验目的

(1).三轴压缩试验室测定图的抗剪强度的一种方法,它通过用3~4个圆柱形试样,分别在不同的恒定周围压力下,施加轴向压力,进行剪切直至破坏;然后根据摩尔-强度理论,求得土的抗剪强度参数。

(2).本试验分为不固结不排水剪(UU );固结不排水剪(CU 或CU )和固结排水剪(CD )等3种试验类型。本次试验采用的是固结不排水剪(CU )。

2.仪器设备

本次实验采用全自动应变控制式三轴仪:有反压力控制系统,周围压力控制系统,压力室,孔隙压力测量系统,数据采集系统,试验机等。

3.试样制备步骤

(1).本次试验所用土属于粉粘土,采用击实法对扰动土进行试样制备,试样直径39.1mm ,试样高度80mm 。选取一定数量的代表性土样,经碾碎、过筛,测定风干含水率,按要求的含水率算出所需加水量。

(2).将需加的水量喷洒到土料上拌匀,稍静置后装入塑料袋,然后置于密闭容器内24小时,使含水率均匀。取出土料复测其含水率。

(3).击样筒的内径应与试样直径相同。击锤的直径宜小雨试样直径,也允许采用与试样直径相同的击锤。击样筒在使用前应洗擦干净。

(4).根据要求的干密度,称取所需土质量。按试样高度分层击实,本次试验为粉粘土,分4层击实。各层土料质量相等。每层击实至要求高度后,将表面刨毛,然后再加第2层土料。如此继续进行,直至击完最后一层,并将击样筒中的试样取出放入饱和器中。

试验要求干密度为1.6g/cm 3,试样的含水率为15%饱和器容积为96cm 3,所以所需湿土质量为:

(1)(10.15) 1.696176.64m w v ρ=+=+??=(g)

分4层击实,则每层质量为44.16g 。

4.试样的安装和固结

(1).开孔隙压力阀及量管阀,使压力室底座充水排气,并关阀。将透水板滑入压力室底座上。然后放上滤纸和试样,试样上端亦放一湿滤纸及透水板。

(2).将橡皮膜套在承膜筒内,两端翻出筒外,从吸气孔吸气,使膜紧贴承膜筒内壁,然后套在试样外,放气翻起橡皮膜的两端,取出承膜筒。用橡皮圈将橡皮膜下端扎紧在压力室底座上。

(3).用软刷子自下向上轻轻按抚试样,以排除试样与橡皮膜之间的气泡。可开启空隙压力阀及量管阀,使水徐徐流入试样与橡皮膜之间,以排除夹气,然后关闭。

(4).开排水管阀,使水从试样帽徐徐流出以排除管路中的气泡,并将试样帽置于试样顶端。排除顶端气泡,将橡皮膜扎紧在试样帽上。

(5).装上压力室罩,开排气孔,向压力水充水,水从排气孔溢出时,立刻停止注水,并关闭排气孔。

(6).关体变管阀及孔隙压力阀,开周围压力阀,施加所需的周围压力。周围压力大小应与工程实际荷载相适应,并尽可能使最大周围压力与土体的最大实际荷载大致相等。也可按100、200、300施加。

(7).打开主机和电脑,通过主机给调压筒和反压力调压筒充水,一般反压力调压筒调到30000-40000便可。围压调压筒可注水到60000。

(8).在打开土工试验数据采集系统,选择好试验参数,然后点击开始试验,试验则进入饱和度判断状态,当饱和度达95%以上时自动进入固结状态,当试样固结度达95%时自动再进入剪切状态。

(9).剪切出现峰值后,或达到相应的应变,试验便自动结束。卸除压力,在进行下一围压下的试验。

5.数据处理

在进行试验数据处理时,主要是通过试验直接测得的数据,包括位移、钢环读数,孔隙压力和体应变,和相关的计算公式算出轴向应变,面积的校正值,偏应力等参量。然后根据得出偏应力和已知的有效围压得出p和q,最后根据相关公式可以计算出内粘聚力c和内摩擦角的值分别为5.336和29.56。具体的计算公式和步骤参考了《土力学基础实验教程》这本书,计算工程在相关的Excel表格中体现出来了!

6.注意事项

(1)制样时,每层击实后一定要将表面刨毛,这样有利于土样的整体完整,在试验过程中也可减少出现断样的情况;

(2)每个土样制好后一定要脱模,然后装入另一个饱和器;

(3)抽气饱和时,时间要足够,且蒸馏水一定要淹没饱和器,否则可能会出现土样达不到饱和度的要求;

(4)拆样时,要注意饱和器的三片铁片只能上下移动,不能垂直于土样轴线前后移动;

(5)装样时,排气要充分且不能让土样断裂,同时要注意各个阀门的开闭状态是否正确,否则很可能照成孔隙压力与轴向应变关系曲线不正确。

(6)试验完成后,要注意还原实验室的清洁卫生,以方便后面的同学进行试验,完成好后期工作,并整理试验报告。

7.总结

在整个实验过程中,陈老师给予我们细致而耐心的指导。每一个实验步骤都详细指导,亲自示范,让每个学生都能够自己动手,非常感谢陈老师!陈老师为人随和热情,治学严谨细心。通过本次试验,我对三轴试验的试验过程有了进一步的认识,相信通过本次试验,对我们今后的学习、工作都会有所帮助。

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

译码器实验报告

译码器实验报告 一、实验目的 1、掌握中规模集成译码器的逻辑功能和使用方法 2、熟悉数码管的使用 二、实验原理 译码器是一个多输入、多输出的组合逻辑电路。它的作用是把给定的代码进行“翻译”,变成相应的状态,使输出通道中相应的一路有信号输出。译码器在数字系统中有广泛的用途,不仅用于代码的转换、终端的数字显示,还用于数据分配,存贮器寻址和组合控制信号等。不同的功能可选用不同种类的译码器。 译码器可分为通用译码器和显示译码器两大类。前者又分为变量译码器和代码变换译码器。 变量译码器(又称二进制译码器),用以表示输入变量的状态,如2线-4线、3线-8线和4线-16线译码器。若有n个输入变量,则有2n个不同的组合状态,就有2n个输出端供其使用。而每一个输出所

代表的函数对应于n个输入变量的最小项。 三、实验设备与器件 1.+5V直流电源 2.单次脉冲源 3.逻辑电平开关 4.74LS138 四、实验内容及步骤 1.74LS138译码器逻辑功能测试 将译码器使能端STA、STB、STC与地址端A2、A1、A0分别接到逻辑电平开关输入口,八个输出端Y7…Y0依次连接在十六位逻辑电平显示上,拨动逻辑电平开关,逐项测试74LS138的逻辑功能。2.实验箱电源连接正确,电路自查确定无误后,电路验证还是不正确的情况下进行下面的排错检查:

1)检查芯片的电源和地的电平是否正确。 2)芯片的使能端连接的电平正确。 3)从逻辑电平开关输入信号是否正确。 4)从输出端按逻辑功能状态往前一步一步排查。 3.两片3线-8线译码器74LS138扩展为4线-16线译码器 用两片74LS138组合成一个四线-十六线译码器进行实验,并分析逻辑功能。

动三轴实验步骤(带拉伸帽)

动三轴基本操作步骤 一、仪器介绍 基本配置: (1)驱动装置:2/5/10HZ;5/10/20/40KN (2)压力室 (3)水下荷重传感器 (4)DCS数字控制系统 颜色/通道传感器固定DTI 增益(DTI 传感器满量程) ?黑色(Ch 0) - 荷重传感器x333.33 (30mV) ?棕色(Ch 1) - 轴向霍尔效应传感器1 x10 (1000mV) ?红色(Ch 2) - 轴向霍尔效应传感器2 x10 (1000mV) ?橙色(Ch 3) - 径向霍尔效应传感器x10 (1000mV) ?黄色(Ch 4) - 孔隙水压力1 x100 (100mV) ?绿色(Ch 5) - 孔隙水压力2 x100 (100mV) ?灰色(Ch 6) - 备用A/D 通道1 x1 (10000mV) ?白色(Ch 7) - 备用A/D 通道2 x1 (10000mV)

(5)围压和反压控制器 控制器基本操作主要是充水、排水和施加目标压力。其操作可以通过软件控制,也可采用智能键盘操作。控制器打开电源之后,按命令键CMD ,会出现上图所示的快捷菜单,点击相应按键即可操作。 Tareget Pressure=7:设置目标压力,按“7”之后按照提示输入目标压力值并按绿色确认键开始加载; Fast Fill=6:快速填充,按“6”之后控制器将开始吸水; Fast Empty=3:快速排空,按“3”之后控制器将开始排水; (6)平衡锤:平衡锤的主要功能就是在加载过程中保持围压的恒定。 平衡锤配置图

二、安装试样 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控 制器中水装满2/3且无气泡,在排控制器水时将控制器管路这端抬升以便气泡充分被排除; 2.排气泡:通过控制器排除顶帽、底座以及设备管路中的气泡; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,试样两端 都需要垫放浸湿的透水石和滤纸,安装试样尽量采用三半模以减小对试样的扰动,安装顶帽之前用软毛刷轻轻刷橡皮膜以排除橡皮膜与土样之间的气泡,两端用O型圈或者橡皮筋扎紧; 4.安装喇叭口:将喇叭口内壁涂一层硅脂,切记不可涂太多,将平口那端安装 到试样帽上; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力 室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 点击左侧Object Diisplay,出现右侧的的硬件显示窗口。 点击力传感器上部的眼睛,然后点击Advanced选项,单击右下角Set Zero 清零。

三轴实验报告精编版

三轴试验报告 课程高等土力学 授课老师冷伍明等 指导老师彭老师 学生姓名刘玮 学号 114811134 专业隧道工程

目录 1.试验目的 (1) 2.仪器设备 (1) 3.试样制备步骤 (1) 4.试样的安装和固结 (2) 5.数据处理(邓肯—张模型8大参数的确定) (2) 6.注意事项 (9) 7.总结 (10)

1.试验目的 (1).三轴压缩试验室测定图的抗剪强度的一种方法,它通过用3~4个圆柱形试样,分别在不同的恒定周围压力下,施加轴向压力,进行剪切直至破坏;然后根据摩尔-强度理论,求得土的抗剪强度参数;同时还可求出邓肯-张模型的其它6个参数。 (2).本试验分为不固结不排水剪(UU);固结不排水剪(CU或CU)和固结排水剪(CD)等3种试验类型。本次试验采用的是固结排水剪(CD)。 2.仪器设备 本次实验采用全自动应变控制式三轴仪:有反压力控制系统,周围压力控制系统,压力室,孔隙压力测量系统,数据采集系统,试验机等。 3.试样制备步骤 (1).本次试验所用土属于粉粘土,采用击实法对扰动土进行试样制备,试样直径39.1mm,试样高度80mm。选取一定数量的代表性土样,经碾碎、过筛,测定风干含水率,按要求的含水率算出所需加水量。 (2).将需加的水量喷洒到土料上拌匀,稍静置后装入塑料袋,然后置于密闭容器内24小时,使含水率均匀。取出土料复测其含水率。 (3).击样筒的内径应与试样直径相同。击锤的直径宜小雨试样直径,也允许采用与试样直径相同的击锤。击样筒在使用前应洗擦干净。 (4).根据要求的干密度,称取所需土质量。按试样高度分层击实,本次试验为粉粘土,分5层击实。各层土料质量相等。每层击实至要求高度后,将表面刨毛,然后再加第2层土料。如此继续进行,直至击完最后一层,并将击样筒中的试样取出放入饱和器中。 表1 含水率记录表 试验要求干密度为1.7g/cm3,饱和器容积为96cm3,所以所需湿土质量为: + ? = + mρ(g) w =v 1(= ? ) 188 8. 7.1 96 ) .0 1( 1575 分5层击实,则每层质量为37.76g。 (5).试样饱和:采用抽气饱和,将装有试样的饱和器置于无水的抽气缸内,进行抽气,当真空度接近当地1个大气压后,应继续抽气1个小时。抽气完成后徐徐注入清水,并保持真空度稳定。待饱和器完全被水淹没即停止抽气,并释放

编码器和译码器实验报告

译码器、编码器及其应用 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器和编码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,74LS20,74LS138。 三、实验内容 (1) 74LS138译码器逻辑功能的测试。将74LS138输出??接数字实验箱LED 管,地址输入接实验箱开关,使能端接固定电平(或GND)。电路图如Figure 1所示: Figure 2 ??????????????时,任意拨动开关,观察LED显示状态,记录观察结果。 ??????????????时,按二进制顺序拨动开关,观察LED显示状态,并与功能表对照,记录观察结果。 用Multisim进行仿真,电路如Figure 3所示。将结果与上面实验结果对照。

Figure 4 (2) 利用3-8译码器74LS138和与非门74LS20实现函数: ?? 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: ?? ?? A ? ??????????? ???? 按Figure 5所示的电路连接。并用Multisim进行仿真,将结果对比。 Figure 6

(3) 用两片74LS138组成4-16线译码器。 因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。 而输入端只有 A、、三个,故要另用使能端进行片选使两片138译码器 进行分时工作。而实验台上的小灯泡不够用,故只用一个灯泡,而用连接灯泡的导线测试?,在各端子上移动即可。在multisim中仿真电路连接如Figure 7所示(实验台上的电路没有接下面的两个8灯LED): Figure 8 四、实验结果 (1) 74LS138译码器逻辑功能的测试。 当输入 A时,应该是输出低电平,故应该第一个小灯亮。实际用实验台测试时,LE0灯显示如Figure 9所示。当输入 A时,应该是输出低电平,故理论上应该第二个小灯亮。实际用实验台测试时,LE0灯显示如Figure 6所示。 Figure 10

土动力学动三轴液化试验报告

泥质粉砂岩液化动三轴试验报告 一 实验器材 振动三轴仪(包括控制部分,加载部分),泥质粉砂岩,托盘天平,游标卡尺,击实仪,真空泵等。 二 实验原理 当土体同时受到纵向和横向荷载作用时,土层中土单元应力状态可看为如下图一所示的简化。异向荷载被看为由自下而上的剪切波引起的,是一种幅值,频率不断变化的不规则运动。当在振动三轴仪上模拟这种应力状态时,将不规则振动简化为等效常幅有限循环次数的振动,即在试件上模拟两种应力状态,有效覆盖压力引起的静应力0γσ和00K γσ,均匀循环剪应力为hv τ。 图一 水平土层土单元应力状态 试件本身应在密度,饱和度和结构等方面尽可能模拟现场土层的实际状况。除取原状土做实验外,在实验室内也须准备重塑试件。考虑荷载作用过程时间短暂,产生的超孔压来不及消失,所以实验室在不排水条件下进行的试验。 为实现上述模拟,本实验采用不排水循环载荷三轴试验来实现上述模拟。假如在试件上先施加各项均等固结压力0σ,后在垂直方向施加2d σ± 循环载荷的同时,横向也施加2 d σ 的荷载,如下图二所示,试件45度斜面上的应力状态与图一相似,其初始法向应力为0σ,初始剪应力为零,与前单元水平面承受的0γσ相当,双向循荷载2 d σ作用并不该变45度倾斜面上的法向应力0σ值,而只产生循环剪应力2 d d στ= ,相当于图一中右图的受力情况, 即图二中第(1)栏所示在三轴试验中为了模拟所要求的应力状态。 σ0 τσ

显然,双向振动三轴仪能方便地实现这种应力状态。而在饱和不排水情况下,单项振动的三轴试验通过空压修正也能获得同样的应力状态。此时,施加的应力状态如同图二中(4)栏所示,只在垂直方向施加动荷载d σ±,当轴向增加d σ时,设想各向均等压力减少 2 d σ,所构成的等效应力状态恰好与所要求的相同;于此相似,轴向减少d σ时应当增加各向均等压力 2 d σ,由于是饱和不排水的,各向均等压力的变化只能引起试件中空隙水压力的相应变化,对有效应力,也即对试件的强度和变形并无影响。换句话说,可以获得与双向振动三轴仪试验完全相同的强度和变形值。对单项振动三轴试验中的实测孔压值进行修正即可获得双向振动时的相应孔压值,轴向加d σ时的修正值为 2d σ,减d σ时修正值为2 d σ -。但是,实际上很少作这种修正,因人们关心的主要是强度和变形值。 不难看出,只是在三轴试件45度斜面上才大体模拟了现场应力状态。实际上还存在若干重要的区别,例如现场土层静测压力系数0k 一般取0.4(随土的性质而变),最大和最小主应力方向分别为垂直和水平方向,振动时主应力方向的摆动不超过40度等,但在振动三轴试验中,试样的0k 等于1,主应力方向不断作90度变换。因此,在应用此试验结果于现场时,必须考虑这种差别而做相应的修正,此外,完全可以不拘泥于上述应力状态的模拟,而把单项振动液化试验只看做是在这种特定状态下的一种液化过程,进而着重研究这种液化过程与其他条件下液化过程的异同。 图二 轴实验中土单元应力状态的模拟 三 试验条件

哈夫曼编码译码器实验报告免费

哈夫曼编码译码器实验报告(免费)

————————————————————————————————作者:————————————————————————————————日期:

问题解析与解题方法 问题分析: 设计一个哈夫曼编码、译码系统。对一个ASCII编码的文本文件中的字符进行哈夫曼编码,生成编码文件;反过来,可将编码文件译码还原为一个文本文件。 (1)从文件中读入任意一篇英文短文(文件为ASCII编码,扩展名为txt); (2)统计并输出不同字符在文章中出现的频率(空格、换行、标点等也按字符处理);(3)根据字符频率构造哈夫曼树,并给出每个字符的哈夫曼编码; (4)将文本文件利用哈夫曼树进行编码,存储成压缩文件(编码文件后缀名.huf)(5)用哈夫曼编码来存储文件,并和输入文本文件大小进行比较,计算文件压缩率;(6)进行译码,将huf文件译码为ASCII编码的txt文件,与原txt文件进行比较。 根据上述过程可以知道该编码译码器的关键在于字符统计和哈夫曼树的创建以及解码。 哈夫曼树的理论创建过程如下: 一、构成初始集合 对给定的n个权值{W1,W2,W3,...,Wi,...,Wn}构成n棵二叉树的初始集合 F={T1,T2,T3,...,Ti,...,Tn},其中每棵二叉树Ti中只有一个权值为Wi的根结 点,它的左右子树均为空。 二、选取左右子树 在F中选取两棵根结点权值最小的树作为新构造的二叉树的左右子树,新二 叉树的根结点的权值为其左右子树的根结点的权值之和。 三、删除左右子树 从F中删除这两棵树,并把这棵新的二叉树同样以升序排列加入到集合F中。 四、重复二和三两步, 重复二和三两步,直到集合F中只有一棵二叉树为止。 因此,有如下分析: 1.我们需要一个功能函数对ASCII码的初始化并需要一个数组来保存它们; 2.定义代表森林的数组,在创建哈夫曼树的过程当中保存被选中的字符,即给定报文 中出现的字符,模拟哈夫曼树选取和删除左右子树的过程; 3.自底而上地创建哈夫曼树,保存根的地址和每个叶节点的地址,即字符的地址,然 后自底而上检索,首尾对换调整为哈夫曼树实现哈弗曼编码; 4.从哈弗曼编码文件当中读入字符,根据当前字符为0或者1的状况访问左子树或者 右孩子,实现解码; 5.使用文件读写操作哈夫曼编码和解码结果的写入; 解题方法: 结构体、数组、类的定义: 1.定义结构体类型的signode 作为哈夫曼树的节点,定义结构体类型的hufnode 作为

三轴实验-1讲解

土工试验 Wi ndows视窗版 [程序控制(全自动)三轴仪〗 使用说明书 十二年不断研究改进的技术成果 集300家试验室应用的点滴经验 Windows 平台增强系统应用功能 南京智龙科技开发有限公司 2005年3月南京

3.3 三轴试验(含无侧限抗压强度试验) 三轴试验采样程序用于常规三轴(uu、cu、c D试验、无侧限压缩试验的数据采集,亦支持个试样多级加载三轴试验的数据采集。本节还介绍使用程序控制三轴仪(全自动三轴仪)的过程控制和数据采集。 同一土样的各试样试验的v土样编号〉输入必须一致。 3.3.1 使用常规三轴仪三轴试验的采样过程,参见“三轴试验数据采集程序流程示意图”。

程序流程示意图 程序控制下的试验是使用全自动三轴仪进行的。 3.3.1.1 试验参数、动态显示、操作指令 ⑴ 试验参数的设置 轴向应变一一试验终点的最大应变,是控制采样设置的条件。程序的设置是,应力如出现峰值将再经 3%的应变结束采样;否则按设置的应变结束采样。对于一个试样多级加载试验,应是各级应变量累加值。 加荷级数一一程序区别是否做一个试样多级加载试验的参数。正常试验设1,大于1的数表示是多级 加载。一个试样最多可设6级。 三轴试验数据采集 打开三轴米样视窗 输入试验参数 无侧限压缩试验设围压为零其余同 UU 试验) 检查或作饱和处理 一 指令:放弃试验(通道恢复空闲) y —?I 指令:开始试验 设置压力参数 设置主机速率 >记录初始孔压与量管读数 ?轴压前仪器调试 输入固结排水量 多级剪? 线过零点? 多级剪? 指令:开始剪切 * 指令:倒车后退 ____ n 数据存盘 现异常 试验终点? 多级剪? 结束试验? 压力稳定 指令:开始剪切 数据存盘* 指令:放弃试验 1 通道恢复空闲H 系统待命 +试验结束关机 设置自控参数 加围压 *排水固结、测孔压 读数、关排水阀 n 指令:结束固结 设置轴向应变 指令:开始剪切 y n d= 加下级围压 y 加密采样 指令:修正零点或应变■^n 选定终点控制标准 d=3mm 1 T 辛采集数据文件 y y < 试验? 一*指令:暂停剪切 y n 停机转入次级试验 忆设定步长采样匚 n 加下一级围压 排除故障 继续试验?

动三轴试验操作步骤

动三轴试验操作步骤 1 开机 1.1 开电脑 1.2 开控制器(黑色机箱中红色按钮),打开控制程序,在参数选项中选择“动态试验”;将调整部分改为变形、位移控制,如已经为此种状态,则改为负荷、围压控制,然后再改回(以防开油源时侧向活塞突然升高,水喷出)。 1.3 预热15~30分钟。 1.4 开油源,按“启动”按钮,10秒后按下“高压”按钮,然后缓慢调节调压阀(油源)至5~6Mpa(可根据需要调更高),开冷却水。 2 安装试样 说明:试样必须饱和。试样饱和按照试验规程可以有多种方法,一般选用真空饱和,具体试验步骤见试验规程。如试验需要,可再进行反压饱和或者水头饱和。 2.1 控制区,调整轴向及侧向为变形、缸位置控制;拖动轴向及侧向平均值调整,使其居于最左或最低以便装样; 开上下孔压阀排除管路中气体 进行负荷、围压、上孔压、下孔压清零,变形不清零。 2.2 将饱和好的试样套好橡皮膜,两端分别放滤纸、透水石,然后将两端的橡皮膜翻转。微开下孔压阀,使试样安装底座有一层水膜,将试样平推放在底座上,翻下下端橡皮膜,缠2-3 条橡皮条,每条3-4 圈(橡皮条先缠在底座上)。 2.3 升底座,确认轴向控制方式为变形控制,缓缓拉动轴向调整,右移,约-30mm左右,看试样是否与上底座接触,快要接触时,鼠标点轴向调整,使缓缓上升,接触时负荷具体值与土样软硬程度 相关。 2.4 翻上端橡皮膜,微开下孔压阀,向试样中缓缓注入水,以赶出试样与橡皮膜之间的气泡,可使用刷子轻轻驱赶,当无气泡时,可抽出下孔压体变管中的水,然后关下孔压阀。 2.5 盖压力室,依次拧紧6个螺丝,打开压力室右侧的进出水开关。向压力室注水,当压力室注满水时(上部排气阀出水)关闭进水阀和压力室右侧的进出水开关。拧紧排气阀。清理顶盖多余的水。 3 设置参数 3.1 调用固结参数 菜单区选择设置,选择固结方案,一般为围压、固结比、加载时间和固结时间,修改口令为 213t,修改后另存在原目录下,再次调用。 菜单区选择设置,选择试验方案,一般为频率、次数、动态轴力等,选择静、动态试验,修改口令为213t,修改后另存在原目录下,再次调用。 3.2 打开固结方案,打开试验方案(否则默认为上次所用固结方案,试验方案),新建文件夹,选择目录,输入文件名,如不输入,则默认为当前日期时间。 3.3,系统参数可设置单位,保护等,采样间隔可根据试验要求设置,一般为2~20ms,可选择是否记录孔压耗散。系统参数,一般不更改; 3.4 设置原始数据,包括密度、含水率、干密度等基本的指标; 3.5 根据提示,安装主机背后的小变形传感器,接触良好,数据显示区小变形为-3mm左右,(若土样较软,加载时土样的变形较大,不易控制,有可能超量程),确认轴向为变形控制。可在侧向位置控制下缓慢加围压至10KPa 左右,侧向转为围压控制。 {3.6-3.7加压,固结操作替代方法:轴向保持位移控制不变,侧向转为围压控制,设定围压加载目标及加载速度。

实验三---译码器及其应用实验报告

实验三译码器及其应用 一、实验目的 (1) 掌握中规模集成译码器的逻辑功能和使用方法; (2) 熟悉掌握集成译码器的应用; (3) 掌握集成译码器的扩展方法。 二、实验设备 数字电路实验箱,电脑一台,74LS20,74LS138。 三、实验内容 (1)利用3-8译码器74LS138和与非门74LS20实现函数: 四输入与非门74LS20的管脚图如下: 对函数表达式进行化简: 按Figure 1所示的电路连接。并用Multisim进行仿真,将结果对比。

Figure 1 (2) 用两片74LS138组成4-16线译码器。 因为要用两片3-8实现4-16译码器,输出端子数目刚好够用。 导线测试,在各端子上移动即可。在multisim中仿真电路连接如Figure 2所示(实 验台上的电路没有接下面的两个8灯LED): Figure 2 四、实验结果 (1) 利用3-8译码器74LS138和与非门74LS20实现函数。

输入,由可知,小灯应该亮。测试结果如Figure 1所示。输入,分析知小灯应该灭,测试结果如Figure 2所示。输入 ,分析知小灯应该亮,测试结果如Figure 3所示。 Figure 4 Figure 5

Figure 6 同理测试,得到结果列为下面的真值表: A B C Y 0 0 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 与所要实现的逻辑功能相一致。 (2) 用两片74LS138组成4-16线译码器。 进行测试,得到的结果列为真值表如下: G1 A B C 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

数字电子线路实验报告_译码器及其应用

数电实验报告 实验三译码器及其应用 一、实验目的 1、掌握译码器的测试方法。 2、了解中规模集成译码器的功能,管脚分布,掌握其逻辑功能。 3、掌握用译码器构成组合电路的方法。 4、学习译码器的扩展。 二、实验仪器 1、数字逻辑电路实验板 1块 2、74HC138 3-8线译码器 2片 3、74HC20 双4输入与非门 1片 三、实验原理 1、中规模集成译码器74HC138 74HC138是集成3线-8线译码器,在数字系统中应用比较广泛。图3-1是其引脚排列。 其中 A2 、A1 、A0 为地址输入端, 0Y~ 7Y为译码输出端,S1、2S、3S为使能端。74HC138真值表如下: 74HC138引脚图为:

74HC138工作原理为:当S1=1,S2+S3=0时,电路完成译码功能,输出低电平有效。其中: 2、译码器应用 因为74HC138 三-八线译码器的输出包括了三变量数字信号的全部八种组合,每一个输 出端表示一个最小项,因此可以利用八条输出线组合构成三变量的任意组合电路。 四、实验内容 1、译码器74HC138 逻辑功能测试 (1)控制端功能测试 测试电路如图:

按上表所示条件输入开关状态。观察并记录译码器输出状态。 LED指示灯亮为0,灯不亮为1。 (2)逻辑功能测试 将译码器使能端S1、2S、3S及地址端A2、A1、A0 分别接至逻辑电平开关输出口,八个 输出端Y7 Y0依次连接在逻辑电平显示器的八个输入口上,拨动逻辑电平开关,按下表逐项测试74HC138的逻辑功能。 2、用74HC138实现逻辑函数 Y=AB+BC+CA 如果设A2=A,A1=B,A0=C,则函数Y的逻辑图如上所示。用74HC138和74HC20各一块在实验箱上连接下图线路。并将测试结果下面的记录表中。

非饱和试验步骤-动三轴

非饱和土试验步骤 1.控制器充排水:试验之前先将控制器中的水排出一部分然后再吸水,确保控制器中水装满2/3且无气泡; 2.饱和陶土板::施加不超过50kPa的反压,打开孔压传感器端阀门,排出管路和底座内部的气泡,然后关闭阀门,当发现陶土板上表面完全被水覆盖表明陶土板基本饱和; 3.安装试样:安装试样时小心土颗粒,特别是砂子掉入压力时内部,安装试样尽量采用三半模以减小对试样的扰动; 4.内压力室和参照管注水:试样装好之后安装内压力室,将差压传感器的两根管道分别与内压力室和参照管相连,给内压力室和参照管注水,打开湿湿差压传感器上部的堵头,排出管路中的气泡,气泡排完后保证参照管水位大约在2/3位置,内压力室水位在细管中间位置; 5.安装外压力室:安装压力室之前确保轴向力传感器处于最上位置,安放压力室时观察拉伸帽是否压住试样,螺栓需要对称拧紧; 6.荷重传感器清零:通过软件对力传感器清零; 7.调接触:调节荷重传感器位置,观察荷重传感器读数,当读数达到0.005左右时锁紧轴向加载杆; 8.压力室充水:打开压力室顶部排气孔的堵头,打开进水阀门给压力室注水,装满之后关闭进水阀门和排气孔的堵头; 9.加压检查:通过电脑施加20kPa围压,观察压力室是否漏水,观察孔压传感器读数是否迅速上升到与围压值相等,如果相等则橡皮膜破裂; 10.吸力平衡:吸力平衡阶段主要的目的是给试样施加一个基质吸力让试样由饱 和状态变成非饱和状态。为了保护设备并让试样与压力杆接触,在设置压力时应该遵循一个原则:轴向压力>径向压力>孔隙气压>反压; 11.等吸力固结:等吸力固结也采用应力控制模块。等吸力固结时反压和孔隙气 压保持不变,同步增大围压和轴向压力,过观察反压体积是否稳定来判断固结是否完成; 12.等吸力剪切:剪切包括应力控制和应变控制。剪切过程一定要比较缓慢避免

三轴压缩实验(DOC)

实验四 三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

译码器实验报告

译码器实验报告 译码器(decoder)是一类多输入多输出组合逻辑电路器件,其可以分为:变量译码和显示译码两类。变量译码器一般是一种较少输入变为较多输出的器件,常见的有n线-2^n线译码和8421BCD 码译码两类;显示译码器用来将二进制数转换成对应的七段码,一般其可分为驱动LED和驱动LCD两类。 译码器是一种具有“翻译”功能的逻辑电路,这种电路能将输入二进制代码的各种状态,按照其原意翻译成对应的输出信号。有一些译码器设有一个和多个使能控制输入端,又成为片选端,用来控制允许译码或禁止译码。 在图1中,74138是一种3线—8线译码器,三个输入端CBA共有8种状态组合(000—111),可译出8个输出信号Y0—Y7。这种译码器设有三个使能输入端,当G2A与G2B均为0,且G1为1时,译码器处于工作状态,输出低电平。当译码器被禁止时,输出高电平。 图2时检测74ls138译码器时间波形的电路,使用的虚拟仪器为数字信号发生器和逻辑分析仪。数字信号发生器在一个周期内按顺序送出两组000—111的方波信号。

图3表明如何将两片3线—8线译码器连接成4线—16线译码器。其中第二片74138的使能端G1和第一片的使能端G2A接成D输入端。当D=0时,第一片74138工作,对0000—0111的输入信号进行译码输出。当D=1时,第二片74138工作,对1000—1111的输入信号进行译码输出。 在图4中,7442为二—十进制译码器,具有4个输入端和10个输出端。输入信号采用8421BCD码,二进制数0000—1001与十进制数0—9对应。当输入超过这个范围是无效,10个输出端均为高电平。7442电路没有使能端,因此只要输入在规定范围内,就会有一个输出端为低电平。 图5位BCD—七段显示译码器电路,LED数码管将显示与BCD码对应的十进制数0—9。因为显示译码器电路输出高电平,所以应该采用共阴极LED数码管。 编码与译码的过程刚好相反。通过编码器可对一个有效输入信号生成一组二进制代码。有的编码器设有使能端,用来控制允许编码或禁止编码。 优先编码器的功能是允许同时在几个输入端有输入信号,编码器按输入信号排定的优先顺序,只对同时输入的几个信号中优先权最

土三轴压缩试验报告完整版

土三轴压缩试验报告 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验六土三轴压缩试验 实验人:学号: (一)、试验目的 1、了解三轴剪切试验的基本原理; 2、掌握三轴剪切试验的基本操作方法; 3、了解三轴剪切试验不同排水条件的控制方法和孔隙压力的测量原理; 4、进一步巩固抗剪强度的基本理论。 (二)、试验原理 三轴剪切试验是用来测定试件在某一固定周围压力下的抗剪强度,然后根据三个以上试件,在不同周围压力下测得的抗剪强度,利用莫尔-库仑破坏准则确定土的抗剪强度参数。 三轴剪切试验可分为不固结不排水试验(UU)、固结不排水试验(CU)以及固结排水剪试验(CD)。 1、不固结不排水试验:试件在周围压力和轴向压力下直至破坏的全过程中均不允许排水,土样从开始加载至试样剪坏,土中的含水率始终保持不变,可测得总抗剪强度指标和UCU; 2、固结不排水试验:试样先在周围压力下让土体排水固结,待固结稳定后,再在不排水条件下施加轴向压力直至破坏,可同时测定总抗剪强度指标和CUCCU或有效抗剪强度指标和C及孔隙水压力系数; 3、固结排水剪试验:试样先在周围压力下排水固结,然后允许在充分排水的条件下增加轴向压力直至破坏,可测得总抗剪强度指标和dCd。(三)、试验仪器设备 1、三轴剪力仪(分为应力控制式和应变控制式两种)。

应变控制式三轴剪力仪有以下几个组成部分(图8-1): 图8-1 应变控制式三轴剪切仪 1-调压桶;2-周围压力表;3-周围压力阀;4-排水阀;5-体变管;6-排水管;7-变形量表;8-测力环;9-排气孔;10-轴向加压设备;11-压力室;12-量管阀;13-零位指标器;14-孔隙压力表;15-量管;16-孔隙压力阀;17-离合器;18-手轮;19-马达;20-变速箱。 (1)三轴压力室压力室是三轴仪的主要组成部分,它是由一个金属上盖、底座以及透明有机玻璃圆筒组成的密闭容器,压力室底座通常有3个小孔分别与围压系统以及体积变形和孔隙水压力量测系统相连。 (2)轴向加荷传动系统采用电动机带动多级变速的齿轮箱,或者采用可控硅无级调速,根据土样性质及试验方法确定加荷速率,通过传动系统使土样压力室自下而上的移动,使试件承受轴向压力。 (3)轴向压力测量系统通常的试验中,轴向压力由测力计(测力环或称应变圈等等)来反映土体的轴向荷重,测力计为线性和重复性较好的金属弹性体组成,测力计的受压变形由百分表测读。轴向压力系统也可由荷重传感器来代替。 (4)周围压力稳压系统采用调压阀控制,调压阀当控制到某一固定压力后,它将压力室的压力进行自动补偿而达到周围压力的稳定。 (5)孔隙水压力测量系统孔隙水压力由孔隙水压力传感器测得。 (6)轴向应变(位移)测量装置轴向距离采用大量程百分表(0~30mm百分表)或位移传感器测得。 (7)反压力体变系统由体变管和反压力稳定控制系统组成,以模拟土体的实际应力状态或提高试件的饱和度以及测量试件的体积变化。

动三轴仪(循环三轴仪)美国GEOCOMP

美国GEOCOMP应力路径三轴仪简介 用途: 循环三轴系统由LoadTrac II加载架和 FlowTrac II流量泵组成,该系统可以全 自动完成土的循环(动)三轴试验,例如 土的动强度试验与砂土的抗液化强度 试验,从而得到土的动强度参数或剪切 模量与阻尼比等。 环球香港科技是美国GEOCOMP在中 国的唯一的,独家代理。 概述: LoadTrac II + FlowTrac II循环三轴试 验系统包括:安放试样的三轴压力室、 计算机控制的加载架、计算机控制的分别施加围压和反压的两个液压泵、提供循环加载的高性能线性的伺服作动器(更新速率为每秒500次)、精确控制循环加载的微处理器、以及控制试验并采集数据的电脑。 特点: 用户geocomp专业控制软件设置试验参数、数据记录方式及处理试验报告。用户可以设置饱和、固结和循环加载试验的参数。试验过程中可以显示当前值和系统实时状态信息。采集的数据可以储存在系统的硬盘中。 技术参数:

cyclic triaxial testing of soils. Minimum man-time is required. The LoadTrac II/FlowTrac-II Cyclic consists of a triaxial cell to retain the sample, a load frame with computer-controlled platen for static loading, two computer-controlled flow pumps to control chamber pressure and back pressure, a high performance linear actuator servo control actuator for cyclic loading with update rates of 500 times per second, a micro-processor for accurately controlling cyclic loading, a PC with a Pentium processor to control the test, and to log test data. Editing and reporting is built-in to the test and control software program. The unit arrives in a completely self-contained system with all necessary equipment. The LoadTrac II/FlowTrac II Cyclic system is menu driven. The Windows? XP, Vista, 7 based software allows users to define the conditions for running the test, logging test data and reporting results. Users can specify the values for controlling the saturation, consolidation and cyclic loading of a test. During testing, current data and system status information is displayed. Collected data are written to a file on the system's hard drive. The reporting software performs all required calculations and permits users a variety of options in graphing and generating test data. (US) / 220 VAC/50Hz (international) TYPE OF CY-CLIC Load controlled sinusoidal shape LOAD-ING CYCLIC RATE Up to 10 Hz OPTIONS TO END TEST ④Maximum number of cycles ④Maximum strain REPORTING OPTIONS ④Load, displacement, sample, and cell vs. cycle number ④Shear stress, strain, p-p strain, excess pore pressure vs. cycle number ④Shear stress vs. axial strain ④Shear stress vs. normal stress ④Automatic or user specified scaling on any of above plots ④Plotting to monitor, printer, plotter, or file TEST CELL Modified triaxial cell with accessories UNIT SYS-TEMS U.S., English, metric and SI changeable at any time before, during

三轴压缩实验

三轴压缩实验 (实验性质:综合性实验) 一、概述 1910年摩尔(Mohr )提出材料的破坏是剪切破坏,并指出在破坏面上的剪应力τ是为该面上法向应力σ的函数,即 ()f f τσ= 这个函数在f τσ-坐标中是一条曲线,称为摩尔包线,如图4-1实线所示。摩尔包线表示材料受到不同应力作用达到极限状态时,滑动面上法向应力σ与剪应力f τ的关系。土的摩尔包线通常可以近似地用直线表示,如图4-1虚线所示,该直线方程就是库仑定律所表示的方程(c tg τσ?=+)。由库仑公式表示摩尔包线的 土体强度理论可称为摩尔-库仑强度理论。 图4-1 摩尔包线 当土体中任意一点在某一平面上的剪应力达到土的抗剪强度时,就发生剪切破坏,该点也即处于极限平衡状态。 根据材料力学,设某一土体单元上作用着的大、小主应力分别为1σ和3σ,则在土体内与大主应力1σ作用面成任意角α的平面a a -上的正应力σ和剪应力τ,可用 τσ-坐标系中直径为13()σσ-的摩尔应力圆上的一点(逆时针旋转2α,如图4-2 中之A 点)的坐标大小来表示,即 13131311 ()()cos 2221 ()sin 22 σσσσσα τσσα =++-=- 将抗剪强度包线与摩尔应力画在同一张坐标纸上,如图4-3所示。它们之间的关系可以有三种情况:①整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ),说明通过该点的任意平面上的剪应力都小于土的抗剪强度,因此不会发生剪切破坏;②摩尔压力圆与抗剪强度包线相割(圆Ⅲ),表明该点某些平面上的剪应力已超过了土的抗剪强度,事实上该应力圆所代表的应力状态是不存在的;③摩尔应力圆与抗剪强度包线相切(圆Ⅱ),切点为A 点,说明在A 点所代表的平面上,剪应力正好等于土的抗剪强度,即该点处于极限平衡状态,圆Ⅱ称为极限应力圆。

相关文档
最新文档