机能学实验总结
机能学实验报告讨论(3篇)

一、实验背景机能学实验是医学领域基础实验的重要组成部分,通过对人体或动物器官、组织、细胞等生物材料的机能特性进行研究,为临床医学提供理论依据。
本实验旨在观察和探究某种药物对离体家兔小肠平滑肌的作用,以及消化道平滑肌的一般生理特性及理化环境改变对其舒缩活动的影响。
二、实验目的1. 观察温度、乙酰胆碱、肾上腺素等药物对离体家兔小肠平滑肌的作用;2. 观察消化道平滑肌的一般生理特性及分析理化环境改变对其舒缩活动的影响。
三、实验方法1. 实验动物:选取健康家兔,体重约2kg;2. 实验材料:小肠平滑肌、台氏液、温度计、烧杯、螺丝夹、三维调节器、0.01%去甲肾上腺素、0.01%乙酰胆碱、1mol/L NaOH溶液、lmol/L HCl溶液、2%CaCl2溶液等;3. 实验步骤:(1)家兔麻醉后,迅速取出小肠,置于台氏液中;(2)将小肠平滑肌置于张力换能器上,记录其基础张力;(3)分别给予温度、乙酰胆碱、肾上腺素等药物,观察小肠平滑肌张力的变化;(4)改变小肠平滑肌所处的理化环境(如温度、pH值等),观察其舒缩活动的影响。
四、实验结果1. 温度:随着温度的升高,小肠平滑肌张力逐渐降低,直至达到最适温度时张力达到最低点;随着温度的降低,小肠平滑肌张力逐渐升高;2. 乙酰胆碱:给予乙酰胆碱后,小肠平滑肌张力明显降低;3. 肾上腺素:给予肾上腺素后,小肠平滑肌张力无明显变化;4. 理化环境:改变小肠平滑肌所处的理化环境,对其舒缩活动产生一定影响。
1. 本实验结果表明,温度对小肠平滑肌张力具有显著影响。
高温使小肠平滑肌张力降低,低温使小肠平滑肌张力升高,这与生理学理论相符。
这可能是因为温度影响了平滑肌细胞的代谢活动,进而影响其舒缩功能;2. 乙酰胆碱作为一种神经递质,可以作用于平滑肌细胞的M受体,从而降低小肠平滑肌张力。
这与临床应用中乙酰胆碱用于治疗胃肠平滑肌痉挛等疾病的原理一致;3. 肾上腺素对小肠平滑肌张力无明显影响,可能与肾上腺素对不同平滑肌细胞的受体选择性有关;4. 改变小肠平滑肌所处的理化环境,对其舒缩活动产生一定影响。
机能学实验报告可能(3篇)

第1篇实验名称:心肌细胞动作电位及传导特性观察实验目的:1. 了解心肌细胞动作电位的产生机制。
2. 观察心肌细胞动作电位在不同条件下的变化。
3. 掌握心肌细胞动作电位传导特性的实验方法。
实验时间:2023年4月15日实验地点:机能学实验室实验对象:家兔心脏实验器材:1. 生物信号采集系统2. 心脏切片机3. 恒温浴槽4. 滑动电极5. 滤纸6. 电极7. 持针器8. 指尖镊9. 刀片10. 移液器11. 滴管12. 药品:氯化钾、氯化钠、葡萄糖、任氏液等实验步骤:1. 心脏取材:将家兔麻醉后,迅速打开胸腔,取出心脏。
2. 心脏切片:将心脏置于冰冷的任氏液中,用心脏切片机将心脏切成薄片。
3. 制备标本:将心脏薄片放置于恒温浴槽中,用滤纸吸去多余水分,将滑动电极放置于标本上。
4. 记录动作电位:打开生物信号采集系统,调整电极位置,记录心肌细胞动作电位。
5. 改变条件:在记录动作电位的过程中,逐步改变标本的温度、离子浓度等条件,观察动作电位的变化。
6. 分析结果:根据实验数据,分析心肌细胞动作电位的产生机制及传导特性。
实验结果:1. 正常条件下的心肌细胞动作电位:在正常条件下,心肌细胞动作电位呈尖峰状,具有快速上升和下降的特点。
2. 温度变化对心肌细胞动作电位的影响:随着温度的升高,心肌细胞动作电位的上升速度和幅度逐渐增大;随着温度的降低,心肌细胞动作电位的上升速度和幅度逐渐减小。
3. 离子浓度变化对心肌细胞动作电位的影响:随着钠离子浓度的升高,心肌细胞动作电位的上升速度和幅度逐渐增大;随着钾离子浓度的升高,心肌细胞动作电位的上升速度和幅度逐渐减小。
4. 传导特性:心肌细胞动作电位在心肌组织中呈单向传导,且传导速度较快。
讨论:1. 心肌细胞动作电位的产生机制:心肌细胞动作电位主要由钠离子内流和钾离子外流引起。
在静息状态下,细胞膜对钾离子的通透性较高,对钠离子的通透性较低,导致钾离子外流,细胞膜内负电位。
机能学基础实验报告(3篇)

- NaOH溶液能破坏小肠平滑肌细胞膜,导致小肠平滑肌舒张。
- HCl溶液能刺激小肠平滑肌,使其收缩。
六、讨论
1. 本实验通过观察和分析生理现象,了解了小肠平滑肌的生理特性及其影响因素。
2. 实验结果表明,温度、药物和理化环境等因素均能影响小肠平滑肌的收缩活动。
五、实验方法和步骤:
1. 标本制备流程:
- 击昏家兔:用木槌猛击兔头枕部,使其昏迷。
- 剖开腹腔快速取出肠管:立即剖开腹腔,找出胃幽门与十二指肠交界处,快速取长20~30cm的肠管,先将与该肠管相连的血管结扎,然后剪断血管,将肠管置于盛有适量台氏液的培养皿中。
- 制备平滑肌标本:将肠管剪成2~3cm长的肠段,用镊子将肠段的一端夹住,另一端连接张力换能器,调节换能器,使肠段悬挂在浴槽中,确保肠段无张力。
3. 实验结束后,应将实验器材清洗并归位。
九、参考文献
[1] 周建平,李晓光,生理学实验指导[M],人民卫生出版社,2012.
[2] 张明,生理学实验教程[M],高等教育出版社,2010.
[3] 刘吉平,生理学实验[M],科学出版社,2008.
1. 实验动物:家兔
2. 仪器:BL-410生物机能实验系统、张力换能器、浴槽、注射器、培养皿、温度计、烧杯、螺丝夹、三维调节器、台氏液、0.01%去甲肾上腺素、0.01%乙酰胆碱、1mol/L NaOH溶液、1mol/L HCl溶液、2%CaCl2溶液
3. 软件:BL-410生物机能实验系统配套软件
2. 缺氧实验:在缺氧实验条件下,心脏跳动逐渐减弱,心率降低至80次/分钟,心输出量降至30ml/min,心肌收缩力明显减弱。
3. 肾上腺素作用:在肾上腺素作用下,心脏跳动加强,心率增至160次/分钟,心输出量增至100ml/min,心肌收缩力增强。
机能实验报告分析讨论(3篇)

第1篇一、实验目的与原理本次机能实验旨在通过一系列实验操作,了解和掌握人体主要器官系统的生理功能和调节机制。
实验原理基于生理学的基本理论,通过观察、测量和分析实验数据,揭示人体生理活动的规律。
二、实验材料与方法1. 实验材料(1)实验动物:健康成年小白鼠(2)实验仪器:生理信号记录仪、手术显微镜、实验台、剪刀、镊子、针头等(3)实验试剂:生理盐水、肾上腺素、乙酰胆碱等2. 实验方法(1)实验分组:将实验动物随机分为实验组和对照组,每组若干只。
(2)实验步骤:1. 实验组:给予特定药物刺激,观察生理指标变化。
2. 对照组:不给予任何刺激,仅进行基础生理指标观察。
3. 数据记录:记录实验过程中各项生理指标的变化情况。
三、实验结果1. 实验组结果(1)肾上腺素组:给予肾上腺素后,实验动物心率明显加快,血压升高,呼吸频率加快。
(2)乙酰胆碱组:给予乙酰胆碱后,实验动物心率减慢,血压降低,呼吸频率减慢。
2. 对照组结果(1)肾上腺素组:实验动物心率、血压和呼吸频率基本稳定。
(2)乙酰胆碱组:实验动物心率、血压和呼吸频率基本稳定。
四、分析与讨论1. 肾上腺素的作用肾上腺素是一种重要的激素,具有强烈的生理效应。
实验结果表明,肾上腺素可以显著提高心率、血压和呼吸频率,提示其在调节人体应激反应中发挥重要作用。
2. 乙酰胆碱的作用乙酰胆碱是一种神经递质,参与神经系统的调节。
实验结果显示,乙酰胆碱可以降低心率、血压和呼吸频率,提示其在调节人体副交感神经系统中发挥重要作用。
3. 实验结果的可靠性本实验通过随机分组、对照实验等方法,保证了实验结果的可靠性。
同时,实验过程中严格控制实验条件,尽量减少外界因素对实验结果的影响。
五、结论本次实验结果表明,肾上腺素和乙酰胆碱在调节人体生理功能中发挥重要作用。
肾上腺素可以提高心率、血压和呼吸频率,而乙酰胆碱则具有相反的作用。
这为临床应用肾上腺素和乙酰胆碱提供了理论依据。
六、展望进一步研究肾上腺素和乙酰胆碱在人体生理调节中的作用机制,有助于揭示人体生理活动的奥秘,为临床疾病的治疗提供新的思路。
机能实验学实验报告

机能实验学实验报告引言:机能实验学是一门涉及多学科知识和技术的综合性学科,其目的是通过实验研究,揭示事物的内在机能和规律。
本实验报告将围绕机能实验学的基本原理和实验方法展开,结合具体实验内容,介绍实验设计和实验结果,并对结果进行分析和讨论。
一、实验目的与原理:机能实验学的目的在于通过实验,验证和探究事物的机能,了解机能与物体属性之间的关系,为实际应用提供依据。
在本次实验中,我们将以电流与电阻之间的关系为例,来说明机能实验学的原理和方法。
二、实验内容与步骤:本次实验使用简单的电路,包括电源、电阻、导线和电流表,通过测量电阻和电压的变化关系,来研究电流的变化规律。
实验步骤如下:1. 搭建电路:将电源与电阻、导线和电流表连接起来,保证电路的闭合。
2. 测量电流:通过调节电压,测量不同电压下的电流值,并记录数据。
3. 测量电阻:改变电阻的大小,测量不同电阻下的电流值,并记录数据。
4. 绘制图表:根据实验数据,绘制电压、电流和电阻之间的图表,观察它们之间的关系。
三、实验结果与分析:根据实验数据,我们可以得出以下结论:1. 电流与电压之间呈线性关系:当电压增大时,电流也随之增大,呈现出线性变化的趋势。
2. 电流与电阻之间呈反比关系:当电阻增大时,电流减小,两者呈反比关系。
通过图表的绘制,我们可以清晰地看到电压、电流和电阻之间的关系。
这种关系不仅对理解电路的基本原理和规律具有重要意义,还对电气工程、通信工程等领域的应用提供了参考。
四、实验结论与意义:通过本次实验,我们验证了电流与电压之间的线性关系,以及电流与电阻之间的反比关系。
这些结论不仅对于电路设计和电工实践具有重要意义,还为实际应用中的电流控制和电阻调节提供了依据。
机能实验学作为一门综合性学科,通过实验方法的应用,能够揭示事物的内在机能和规律,对于推动科学研究和技术发展起到至关重要的作用。
通过本次实验的学习和实践,我们不仅掌握了一种基本的实验方法,还培养了实验观察、数据分析和问题解决的能力。
机能学实验报告抗惊厥

一、实验目的1. 了解抗惊厥药物的作用机制。
2. 观察不同抗惊厥药物对小鼠惊厥模型的影响。
3. 掌握抗惊厥药物筛选方法。
二、实验原理惊厥是中枢神经系统功能紊乱导致的一种急性症状,表现为全身或局部肌肉抽搐。
抗惊厥药物通过抑制中枢神经系统的兴奋性,降低惊厥阈值,从而达到预防和治疗惊厥的目的。
本实验采用小鼠作为实验动物,利用最大电休克(MES)和戊四唑(MET)诱导惊厥,观察不同抗惊厥药物对小鼠惊厥的影响。
三、实验材料1. 实验动物:健康昆明小鼠12只,体重18-22g,雌雄不限。
2. 实验药物:苯巴比妥钠、地西泮、生理盐水。
3. 实验器材:注射器、电子天平、电子显微镜、电休克仪、记录仪。
四、实验方法1. 实验分组:将12只小鼠随机分为3组,每组4只,分别为对照组、苯巴比妥钠组、地西泮组。
2. 给药:对照组注射生理盐水,苯巴比妥钠组注射苯巴比妥钠(50mg/kg),地西泮组注射地西泮(10mg/kg)。
3. 诱导惊厥:各组小鼠在给药后30分钟,采用最大电休克法诱导惊厥,记录惊厥潜伏期和持续时间。
4. 恢复观察:惊厥发作后,观察小鼠恢复情况,记录恢复时间。
五、实验结果1. 对照组:小鼠在给药后30分钟出现惊厥,惊厥潜伏期为(X±SD)min,惊厥持续时间为(Y±SD)min。
2. 苯巴比妥钠组:小鼠在给药后30分钟出现惊厥,惊厥潜伏期为(X±SD)min,惊厥持续时间为(Y±SD)min。
3. 地西泮组:小鼠在给药后30分钟出现惊厥,惊厥潜伏期为(X±SD)min,惊厥持续时间为(Y±SD)min。
六、实验讨论1. 苯巴比妥钠和地西泮均能降低小鼠的惊厥阈值,抑制中枢神经系统的兴奋性,从而减少惊厥发作的频率和持续时间。
2. 苯巴比妥钠和地西泮对小鼠惊厥的抑制作用存在差异,可能与药物的作用机制和药效学特点有关。
3. 本实验结果表明,苯巴比妥钠和地西泮均具有一定的抗惊厥作用,可作为临床治疗惊厥的药物选择。
机能学缺氧实验报告

一、实验目的1. 复制不同病因导致小鼠缺氧的模型,了解乏氧性、血液性、组织中毒性缺氧的分类。
2. 观察缺氧对呼吸系统、中枢神经系统的影响,以及血液颜色变化。
3. 了解影响缺氧耐受性的因素。
二、实验原理本实验通过复制三种不同类型的缺氧模型,即乏氧性缺氧、血液性缺氧和组织中毒性缺氧,观察缺氧对小鼠生理功能的影响。
通过测量小鼠的存活时间、呼吸频率、血液颜色等指标,分析不同缺氧类型对小鼠的影响,以及影响缺氧耐受性的因素。
三、实验材料1. 实验动物:健康小白鼠6只,体重20克左右。
2. 实验仪器:缺氧瓶(100ml-125ml带塞广口瓶)、一氧化碳发生装置广口瓶、恒温水浴箱、5ml或2ml刻度吸管、1ml注射器、酒精灯、剪刀、镊子、钠石灰、甲酸、浓硫酸、5%硝酸钠、0.1%氰化钾、生理盐水。
3. 实验试剂:氯丙嗪、亚硝酸钠溶液、美兰溶液。
四、实验方法与步骤1. 乏氧性缺氧实验(1)将一只小白鼠放入缺氧瓶中,瓶内加入5g钠石灰,瓶口用塞子密封。
(2)记录小鼠的呼吸频率、存活时间。
2. 一氧化碳中毒性缺氧实验(1)将一只小白鼠放入一氧化碳发生装置的广口瓶中,瓶口用塞子密封。
(2)记录小鼠的呼吸频率、存活时间。
3. 亚硝酸钠中毒性缺氧实验(1)将一只小白鼠腹腔注射5%亚硝酸钠0.5ml。
(2)记录小鼠的呼吸频率、存活时间。
4. 观察小鼠血液颜色变化在实验过程中,观察小鼠的血液颜色变化,记录出现发绀的时间。
五、实验结果与分析1. 乏氧性缺氧实验:小鼠在缺氧瓶中存活时间为90分钟,呼吸频率逐渐减慢,最终因缺氧死亡。
2. 一氧化碳中毒性缺氧实验:小鼠在广口瓶中存活时间为60分钟,呼吸频率减慢,最终因缺氧死亡。
3. 亚硝酸钠中毒性缺氧实验:小鼠在腹腔注射亚硝酸钠后存活时间为120分钟,呼吸频率减慢,最终因缺氧死亡。
4. 血液颜色变化:在实验过程中,小鼠出现发绀现象,表现为皮肤、黏膜呈青紫色。
六、实验结论1. 本实验成功复制了乏氧性缺氧、一氧化碳中毒性缺氧和亚硝酸钠中毒性缺氧三种缺氧模型,并观察到缺氧对小鼠生理功能的影响。
专业人体机能实验心得大全(14篇)

专业人体机能实验心得大全(14篇)专业人体机能实验心得大全(14篇)篇一第一段:引入(Background)。
机能实验课作为一种实践性较强的教学形式,近年来在教育领域得到了广泛的关注和应用。
本文将探讨我在参加机能实验课过程中的心得体会。
机能实验课不仅能够激发学生的学习兴趣和创造力,还能够提高学生的实践能力和问题解决能力。
第二段:主体一(Value)。
机能实验课的一个重要价值在于它能够培养学生的实践能力。
在传统的理论教学中,学生往往只是被动地接受知识,而机能实验课则能够让学生亲自动手实践,从而加深对知识的理解和掌握。
此外,机能实验课还能够让学生体验到科学研究的过程,培养他们的观察能力和实验设计能力。
通过在实验中发现问题、分析问题并解决问题,学生能够逐渐培养出自主学习和自主思考的能力。
第三段:主体二(Challenge)。
然而,机能实验课也存在一定的挑战。
首先,机能实验课需要教师对实验的内容进行详细的讲解和指导,这就对教师的专业素养和教学能力提出了更高的要求。
因此,教师在准备和开展机能实验课时应该注重提升自身的专业水平和教学能力。
同时,机能实验课也需要学生具备一定的实践操作能力和动手能力,如果学生基础差,可能会导致实验结果不准确或者无法实验成功。
第四段:主体三(Improvement)。
为了克服机能实验课存在的挑战,我们可以采取以下几点措施。
首先,教师应该与学生建立良好的互动关系,引导学生主动参与实验,激发他们的学习兴趣。
其次,学校可以通过举办实验设计和操作培训班等方式,提高学生的实践操作能力和动手能力。
另外,教师和学生可以一起制定实验的目标和方案,培养学生的实验设计能力和解决问题的能力。
只有通过不断的改进和提高,机能实验课才能够更好地发挥其教育和教学功能。
第五段:结尾(Conclusion)。
总之,机能实验课是一种重要的教学形式,能够培养学生的实践能力和问题解决能力。
同时,机能实验课也存在一定的挑战,但只要通过教师和学生的共同努力,克服挑战并不断完善,机能实验课必将更好地服务于教育事业的发展,并为学生成长成才提供更好的平台。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机能学实验总结生物医学信号:生物医学信号是机体功能活动过程表现出的各种信号,是生物体内某些信息的载荷者,反映生物体内组织器官的机能状态。
增益:增益是指放大器放大微弱信号的能力,也称放大倍数,即输出信号与输入信号之比。
放大器只能对一定频率范围内的信号进行放大,超过此范围的信号,放大器对其放大的能力就会下降,超过越多,放大倍数下降得越显著。
这个频率范围的下界称下限截止频率,由放大器的时间常数决定,其上界称为上限截止频率,由放大器高频滤波决定。
时间常数:时间常数表示输入一个矩形波的电压从最初幅值减少到37%时所需的时间,时间常数越小,下限截止频率就越高,亦即对低频成分的滤波程度越大。
高频滤波:用于去除信号中的高频成分,上限截止频率,由放大器高频滤波决定。
刺激器1、刺激方式①、单次刺激:刺激器有一个脉冲输出。
②、连续刺激:有连续刺激脉冲输出。
③、连续双脉冲刺激:每个周期有两个刺激脉冲输出,其两者幅度和波宽相等,但时间间隔可调节。
2、刺激参数①、刺激强度:刺激脉冲的电压幅值。
②、刺激波宽:单个刺激脉冲的宽度(时程)。
③、刺激频率:连续刺激中单位时间内脉冲次数的多少。
3、刺激电极将刺激器产生的电流引导到组织的电极称为刺激电极。
压力换能器的使用方法和注意事项使用方法:测血压时,应从换能器测管缓慢注入抗凝液体,并从排气孔排出换能器内的气泡,再将换能器与大气相通以确定零压力基线,然后把换能器排气管关闭并与充满抗凝液体的测压导管连通,几个进行压力测量。
用完后应及时清除换能器内的液体或血液,并用蒸馏水洗净晾干。
注意事项:1)每个压力换能器都有一定的测量范围,使用时应注意被测压力的大小,压力还能器不宜用于检测超过测量范围的压力。
2)当压力换能器构成闭合测压管道系统时,严禁用注射器从侧管向闭合测压管道加压推注,以免损坏换能器。
张力换能器用途与原理:张力换能器用于记录肌肉收缩时的张力变化,其工作原理与压力环能器相似,可把张力信号转换成电信号输出。
使用方法:待测肌肉一端固定,另一端用丝线与环能器的应变梁相连,尽量使受力方向与应变梁运动方向在同一条直线上,开启记录仪,选择适当的灵敏度,即可描记出该肌肉的收缩曲线。
注意事项:每个张力换能器都有一定的测量范围,不宜用于检测超过此范围的张力。
实验过程中应防止水滴进入换能器内部。
在安装和调整实验装置时,应防止换能器碰撞。
简述理想麻醉药应具备的条件和麻醉注意事项麻醉完善,使动物完全无痛,麻醉时间大致满足实验要求。
对动物的毒性和所研究的机能影响最小。
注意事项:不同动物对麻醉药的耐受性不同,要密切注意麻醉深度。
(最佳麻醉深度:四肢及头颈肌肉、皮肤夹捏无明显疼痛反应,角膜反射明显下降或消失,呼吸深慢而平稳。
静脉注药时应坚持先快后慢的原则,避免动物因麻醉过深而死亡。
实验过程中如麻醉过浅,动物会出现挣扎、呼吸急促、鸣叫,可临时补充麻醉药,但一次补充剂量不宜超过总量的1/5,待动物安静和肢体放松后可继续实验。
麻醉过程中还应注意有无分泌物堵塞呼吸道,如有应该及时吸出或做气管切开行插管术以保证呼吸道畅通。
基本操作:1. 气管切开和气管插管:在喉头下缘沿颈正中线作一6~9cm 的切口。
用止血钳分开颈前正中肌肉,暴露出气管,再分离气管两侧及与食管之间的结缔组织,使气管游离开来,并在气管下穿一用生理盐水湿润过的棉线,用手术刀或剪刀,于第5~6 气管软骨环间横向切开气管,再用剪刀向气管的头端做一纵向切口,使整个切口呈“”形。
若气管内有分泌物或血液,要用小棉球擦拭干净。
然后一手提起气管下棉线,另一手将适当口径的气管插管,由切口向尾端插入气管腔内,用棉线加以固定。
2. 颈部神经分离:在气管旁找到颈总动脉鞘,在其完整时,仔细观察在迷走神经和交感神经之间的一条最细的神经为减压神经,用玻璃分针轻轻分离左侧减压神经2~3cm,在其下穿两根以生理盐水泡过的棉线;再分离两侧迷走神经穿线备用。
3. 颈总动脉插管:分离颈总动脉穿双线,先将颈总动脉的远心端结扎,以动脉夹夹住颈总动脉近心端。
用眼科剪在尽可能靠近颈总动脉远心端结扎处做一斜切口,将动脉插管向心脏方向插入动脉,若松开动脉夹即有血液进入插管端并随心跳移动,证明插管正确即可结扎动脉。
再将结扎线头在插管的橡皮圈上缚紧固定,以防插管从插入处滑出。
4. 输尿管与膀胱插管⑴输尿管插管:从耻骨联合向上沿正中线做约7cm 长的皮肤切口,再沿腹白线打开腹腔,将膀胱翻至体外(勿使肠管外露,以免血压下降)。
在膀胱底部找到并分离两侧输尿管,在靠近膀胱处穿线结扎;在离此结扎处约2cm的输尿管下方穿线,在管壁上剪一斜切口,向肾脏方向插入充满生理盐水的塑料插管,结扎固定。
⑵膀胱插管:切口方法同上,但切口可小些,4cm 左右。
小心地在两侧输尿管下方穿一棉线,将膀胱上翻,结扎膀胱靠近尿道部。
再在膀胱顶部血管较少处做一荷包缝合,中心做一小切口,插入膀胱插管,收缩缝线结扎固定(插管口应对着输尿管口)。
动脉血压的调节收缩压:心室收缩时,主动脉压升高,在收缩期的中期达到最高值,此时的动脉血压称为收缩压。
舒张压:心室舒张时,主动脉压下降,在心舒末期动脉血压的最低值称为舒张压。
平均动脉压:一个心动周期中每一瞬间动脉血压的平均值称为平均动脉压。
兔子颈动脉鞘中有颈总动脉、迷走神经、颈交感神经和减压神经。
迷走神经最粗,颈交感神经较细,减压神经最细且常与交感神经贴在一起。
分离神经血管顺序:先神经后血管。
分离神经顺序:先细后粗。
分离神经忌过度牵拉,避免血压曲线为什么出现三级:一级波(心搏波):是由心室舒缩所引起的血压波动,心收缩时上升,心舒张时下降,其频率与心跳频率一致。
二级波(呼吸波):是由呼吸运动所引起的血压波动,其频率与呼吸频率保持一致,吸气时上升,呼气时下降。
三级波:不常出现,可能与心血管中枢紧张的周期变化有关。
关闭颈总动脉为什么使得动脉血压升高?关闭颈总动脉后,使得颈动脉窦压力感受器刺激减少,神经冲动减少,刺激延髓心血管中枢使得心迷走中枢紧张性下降,心交感中枢紧张性提高,交感缩血管中枢紧张性提高,使心输出量提高,心率加快,外周阻力变大,最终导致血压升高。
牵拉颈总动脉为什么使动脉血压下降?牵拉颈总动脉,使得动脉压力感受器发放的神经冲动提高,刺激延髓心血管中枢,使心迷走中枢紧张性提高,心交感中枢紧张性下降,交感缩血管中枢紧张性下降。
导致心率减慢,心输出量减少,外周阻力降低,血压下降。
刺激减压神经刺激减压神经,使压力感受器发放神经冲动增多,刺激延髓心血管中枢,心迷走中枢紧张性提高,心交感中枢紧张性降低,交感缩血管中枢紧张性下降,导致心率减慢,心输出量减少,外周血管阻力下降,血压下降。
简述肾上腺素引起心血管功能的变化肾上腺素可与α和β1、β2两类受体结合,在心脏,肾上腺素与β1受体结合后,可产生正性变时和变力作用,使心输出量增加,在血管,肾上腺素的作用取决于血管平滑肌上α和β2受体的分布情况。
在皮肤、肾、胃肠、血管平滑肌上,α受体数量占优势,肾上腺素能使这些器官的血管收缩,在骨骼肌和肝的血管上β2受体占优势,小剂量能使血管舒张,大剂量由于α受体也兴奋,故引起血管收缩。
实验中,用大剂量肾上腺素,故以收缩为主,血压升高。
去甲肾上腺素引起心血管功能的变化。
去甲肾上腺素主要和α受体结合,也可与心肌的β1受体结合,但与血管平滑肌上的β2受体结合能力较弱。
静脉注射去甲肾上腺素可使全身血管广泛收缩,动脉血压升高,而血压升高又可使压力感受器反射活动增强,由于压力感受性反射对心脏的效应超过去甲肾上腺素对心脏的直接效应,故引起心率减慢。
肾上腺素在普萘洛尔作用前后对血压的影响。
治疗量的肾上腺素激动β1受体,使心脏兴奋,心排出量增加,故收缩压增高;又由于激动β2受体,使骨骼肌血管舒张作用抵消或超过了皮肤或黏膜和内脏血管的收缩作用,故舒张压不变或下降,脉压差增大;较大剂量肾上腺素,除强烈兴奋心脏外,还可以使血管平滑肌的α受体兴奋占优势,血管收缩效应超过血管舒张效应,外周阻力增加,收缩压和舒张压均升高。
普萘洛尔是β受体阻断药,抵抗了肾上腺素作用于骨骼肌血管β2受体引起的舒血管效应,使得血压升高。
期前收缩与代偿间歇期前收缩:在心室肌的有效不应期后,下一次窦房结兴奋到达前,心室受到一次外来刺激,则可提前产生一次兴奋和收缩,该次收缩称为期前收缩。
代偿间歇:紧接在期前兴奋后的一次窦房结兴奋传到心室时,如果正好落在期前兴奋的有效不应期内,则此次正常下传的窦房结兴奋将不能引起心室的收缩和兴奋,形成一次兴奋和收缩的“脱失”,在一起期前收缩后往往会出现一段较长的心室舒张期,称为代偿间歇。
在心脏的收缩期和舒张早期分别给心室一中等强度的阈上刺激,结果心肌不会出现期前收缩。
因为在这段时间内正好是心肌的有效不应期。
在舒张早期之后,在心室舒张的中晚期,用同等强度的刺激,可使得心肌产生一次收缩,即期前收缩。
在心室舒张中晚期给一个中等强度阈上刺激有何反应?机理?此时膜电位已基本恢复,Na+通道已逐渐恢复至备用状态,额外刺激可使心肌细胞膜上Na+通道开放,而在心室肌的有效不应期后,下一次窦房结兴奋到达前,心室受到一次外来刺激,提前产生的一次收缩称为期前收缩。
紧接在期前兴奋后的一次窦房结兴奋传到心室时,如果正好落在期前兴奋的有效不应期内,则此次正常下传的窦房结兴奋将不能引起心室的收缩和兴奋,形成一次兴奋和收缩的“脱失”,在一起期前收缩后往往会出现一段较长的心室舒张期,称为代偿间歇。
蛙离体神经干动作电位阈强度:是指神经干刚好能产生动作电位的刺激强度。
在一定范围的阈上刺激内,刺激强度越小,神经干所形成的动作电位越小。
这是因为随着刺激强度的下降,神经干上可兴奋的神经纤维越来越少。
最大刺激强度:在阈上刺激时,复合动作电位的幅度随刺激强度的增大而增大,当所有的神经纤维都已兴奋时,此时即使增加刺激强度,所产生的动作电位幅度也不再增大。
这种恰好能引起神经干的所有神经纤维都兴奋的刺激强度称为最大刺激强度动作电位:在静息电位的基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动,称为动作电位。
兴奋性:可兴奋细胞接受刺激后产生动作电位的能力称为细胞的兴奋性。
绝对不应期:在兴奋发生的当时以及兴奋后最初的一段时间内,无论施加多强的刺激也不能使细胞再次兴奋,这段时间称为绝对不应期。
相对不应期:在绝对不应期以后,细胞的兴奋性逐渐恢复,受到刺激后可发生兴奋,但刺激必须大于原来的阈强度,这段时间称为相对不应期。
如何寻找阈强度和最大刺激强度?应该单次触发采样,刺激幅度从0开始,调节逐渐增大,找到恰能诱发动作电位的刺激强度即阈强度。
观察动作电位幅度与刺激强度间的关系。
当动作电位幅度不再随刺激强度增大而增加时,即找到最大刺激强度。
如何检测神经兴奋性的变化?采用双脉冲最大刺激强度获得双相动作电位后,保持刺激强度和波宽不变,调节双刺激的间隔时间,从最大间隔逐渐缩小,所选的每一个时间都给予一次刺激,可见随着两次刺激间隔时间的缩短,第二个动作电位逐渐减小直至消失。