振动切削与机械加工表面技术的应用与发展

振动切削与机械加工表面技术的应用与发展
振动切削与机械加工表面技术的应用与发展

振动切削与机械加工表面技术的应用与发展

发表时间:2013-01-25T14:06:25.310Z 来源:《教育与发展》2012年第12期供稿作者:江晓瑜

[导读] 表面冷作硬化通常对常温下工作的零件较为有利,有时能提高其疲劳强度,但对高温下工作的零件则不利。

河北省衡水科技工程学校江晓瑜

摘要:本文针对机械加工表面技术的应用与发展,分析了零件加工表面完整性对零件使用性能的影响;讨论了振动切削的原理,指出振动切削是提高零件加工表面完整性的重要方法。

关键词:机械表面加工技术

一、零件加工表面完整性对零件使用性能的影响

1.表面粗糙度对零件使用性能的影响

表面粗糙度反映已加工表面的微观不平度高度。已加工表面粗糙度按其在加工过程中的形成方向分为纵向和横向粗糙度,一般将沿切削速度方向的粗糙度称为纵向粗糙度,垂直于切削速度方向(沿进给运动方向)的粗糙度称为横向粗糙度。一般纵向粗糙度主要决定于切削过程中产生的积屑瘤、鳞刺、刀具的边界磨损及加工过程中的变形与振动;横向粗糙度的产生除上述原因外,更重要的是受残留面积高度及副刀刃对已加工表面的挤压而产生的材料隆起等因素所支配,一般横向粗糙度比纵向粗糙度大得多。

当两个互相摩擦的零件配合时,由于零件表面粗糙不平,只有零件表面一些凸峰相互接触,而不是全部表面配合接触。由于实际接触面积小,因此单位面积上压力很大。当零件相互摩擦时,表面凸峰很快被压扁压平,产生剧烈磨损,从而影响零件的配合性质。同时,粗糙表面的耐腐蚀性比光滑表面差,因为腐蚀性物质容易聚集在粗糙表面的凹谷里和裂缝处,并逐渐扩大其腐蚀作用。

2.冷作硬化对零件使用性能的影响

表面冷作硬化通常对常温下工作的零件较为有利,有时能提高其疲劳强度,但对高温下工作的零件则不利。由于零件表面层硬度在高温作用下发生改变,零件表面层会发生残余应力松驰,塑性变形层内的原子扩散迁移率就会增加,从而导致合金元素加速氧化和晶界层软化。此时,冷作硬化层越深、冷作硬化程度越大、温度越高、时间越长,塑性变形层内上述变化过程就越剧烈,进而导致零件沿冷作硬化层晶界形成表面起始裂纹。起始裂纹进一步扩展就会成为疲劳裂纹,从而使零件疲劳强度下降。切削加工后表面层的硬化程度取决于金属在切削过程中强化、弱化和相变作用的综合结果。当切削过程中强烈变形起主导作用时,已加工表面就产生加工硬化;而当切削温度起主导作用时,往往引起工件表层硬度降低和相变。因此,在加工中增大变形和摩擦都将加剧加工硬化现象,而较高的温度、较低的工件材料熔点则会减轻冷作硬化作用。

3.残余应力对零件使用性能的影响

残余应力是指在没有外力作用情况下零件内部为保持平衡而存留的应力。残余应力的产生原因,一是在切削过程中由于塑性变形而产生的机械应力;二是由于切削加工中切削温度的变化而产生的热应力;三是由于相变引起体积变化而产生的应力。其中,切削表面层由于塑性变形,表面被拉长,基体的弹性变形易恢复,而表层的塑性变形不能恢复,因此表层受压,基体受拉,在表层产生残余压应力;切削温度的升高导致工件温度升高,但工件表层温度高于基体温度,待工件全部冷却后,表层冷却收缩受到基体的牵制,表面产生残余拉应力。影响残余应力的因素多而复杂,试验表明:凡能减小塑性变形和降低切削温度的因素都能使已加工表面的残余应力减小。

综上所述,改善零件加工表面完整性对于改善零件使用性能、延长零件使用寿命十分重要。控制加工表面完整性的方法较多。在普通切削、磨削加工中,可针对不同的加工工艺方法对零件进行表面处理和表面强化,从而得到要求的加工表面粗糙度和表面质量,改善零件加工表面完整性;此外,利用一些新的切削加工技术,如振动切削、低温切削、激光切削、水力切削等,也可达到提高加工表面质量、改善加工表面完整性的目的。

在改善零件加工表面完整性的众多方法中,振动切削技术较易实现且应用效果很好。

二、振动切削技术加强零件加工表面完整性

振动切削的实质是在切削过程中使刀具或工件产生某种有规律的、可控的振动,使切削速度(或进给量、切削深度)按某种规律变化,从而改善切削状态,提高工件表面质量。

振动切削通过改变刀具与工件之间的空间—时间存在条件,从而改变切削加工机理,达到降低切削力和切削热、提高加工质量和加工效率的目的。振动切削是一种脉冲切削,切削时间短,瞬时切入切出,切削时工件还来不及振动,刀具即已离开工件。根据动态切削理论和冲量平衡理论,采用振动切削时切削温度低,工件表面质量好。在振动切削过程中,由于刀具周期性地接触和脱离工件,其运动速度的大小和方向不断改变。振动切削引起刀具速度变化和加速度的产生,使加工精度和表面质量明显提高。振动切削的特点使其在改善零件加工表面完整性方面独具优势。

三、振动切削改善零件加工表面完整性的发展优势

1.降低切削力和切削温度

振动切削时,刀具与工件间相对运动速度的大小和方向均产生周期性变化,被加工材料的弹塑性变形和刀具各接触表面的摩擦系数都较小,且切削力和切削热均以脉冲形式出现,使切削力和切削温度的平均值大幅度下降,从而改善了切削条件,提高了工件加工质量和刀具使用寿命,减小了切削力引起的变形和切削温度引起的表面热损伤、表面热应力及工件热变形,尤其为需要热处理的零件减小热处理变形及裂纹创造了十分有利的条件,容易实现高精密加工。

2.表面粗糙度小、加工精度高

振动切削破坏了积屑瘤的产生条件,同时由于切削力小、切削温度低及工件的刚性化效果,使加工表面粗糙度减小、几何精度提高。在振动切削中,虽然刀刃振动,但在刀刃与工件接触并产生切屑的各个瞬间,刀刃所处位置是保持不变的。由于工件与刀具在切削过程中的位置不随时间变化,从而提高了加工精度。

3.刀具使用寿命长

振动切削时,由于切削力小、切削温度低、冷却充分,切屑的折断和排出都比较容易,可明显提高刀具使用寿命。如振动参数选择适当,一般可使刀具寿命延长几倍至几十倍,对难加工材料和难加工工序应用效果更好。用硬质合金刀具对不锈钢进行超声振动切削试验证明,刀具使用寿命比普通切削方式提高20倍。刀具寿命的延长不仅可节约刀具材料,减少辅助时间,降低加工成本,提高生产效率,而且

高速切削

1. 论述高速切削的特点。 材料去除率高,切削力较小,工件热变形小,工艺系统振动小,可加工各种难加工材料,可实现绿色制造,简化加工工艺流程。高速切削追求高转速、中切深、快进给、多行程的加工工艺,高速切削加工可大大降低加工表面粗糙度,加工表面质量可提高1~2等级。加快产品开发周期,大大降低制造成本。 2.阐述高速切削技术研究体系、关键技术。 数控高速切削加工技术是建立在机床结构与材料、高速主轴系统、高性能CNC控制系统、快速进给系统、高性能刀具材料、数控高速切削加工工艺、高效高精度测试技术等许多相关的软件和硬件技术基础之上的一项复杂的系统工程,是将各单元技术集成的一项综合技术。关键技术:高速切削机理;高速切削刀具技术;高速切削机床技术;高速切削工艺技术;高速加工的测试技术。 3.阐述高速切削发展趋势。 机床结构将会具有更高的刚度和抗振性,使在高转速和高级给情况下刀具具有更长的寿命;将会用完全考虑高速要求的新设计概念来设计机床;在提高机床进给速度的同时保持机床精度;快换主轴;高、低速度的主轴共存;改善轴承技术;改进刀具和主轴的接触条件;更好的动平衡;高速冷却系统。(新一代高速大功率机床的开发和研制;新一代抗热振性好、耐磨性好、寿命长的刀具材料的研制及适宜于高速切削的刀具结构的研究;进一步拓宽高速切削工件材料及其高速切削工艺范围;高速切削机理的深入研究;高速切削动态特性及稳定性的研究;开发适用于高速切削加工状态的监控技术;建立高速切削数据库,开发适于高速切削加工的编程技术以进一步推广高速切削加工技术;基于高速切削工艺,开发推广干式(准干式)切削绿色制造技术;基于高速切削,开发推广高能加工技术) 4结合典型工件材料和加工工艺方法,讨论高速切削的速度范围。 (1)根据工件材料:刚才380m/min以上、铸铁700m/min以上、铜材1000m/min以上、铝材1100m/min以上、塑料1150m/min以上时,认为是合适的速度范围。(2)根据加工工艺方法:车削700~7000m/min,铣削300~6000m/min,钻削200~1100m/min,磨削5000~10000m/min,认为是合适的速度范围。 5讨论高速切削加工的切削力变化规律。 (1)切削用量对切削力的影响:背吃刀量ap增大,切削力成正比增加,背向力和进给力近似成正比增加。进给量f增大,切削力与增大,但切削力的增大与f不成正比(75%)(2)工件材料对切削力的影响:较大的因素主要是工件材料的强度、硬度和塑性。a材料的强度、

机械加工过程中振动的影响

3、振动对工件表面质量的影响及其控制3.1振动对工件表面质量的影响 机械加工中产生的振动,一般说来是一种破坏正常切削过程的有害现象。各种切削和磨削过程都可能发生振动,当速度高、切削金属量大时常会产生较强烈的振动。 切削过程中的振动,会影响加工质量和生产率,严重时甚至会使切削不能继续进行,因此通常都是对切削加工不利的,主要表现在以下几个方面。 (1)影响加工的表而粗糙度。振动频率低时会产生波度,频率高时会产生微观不平度。 (2)影响生产率。加工中产生振动,会限制切削用量的进一步提高,严重时甚至会使切削不能继续进行。 (3)影响刀具寿命。切削过程中的振动可能使刀尖刀刃崩碎,特别是韧性差的刀具材料,如硬质合金、陶瓷等,要注意消振问题。 (4)对机床、夹具等不利。振动使机床、夹具等的零件连接部分松动,间隙增大,刚度和精度降低,同时使用寿命缩短。 此外,强烈的振动及伴随而来的噪声,还会污染环境,危省操作者的身心健康。 对于精密零件的精密加工和超精密加工,其尺寸精度要求多小于m 1μ,表面粗糙度值m .0以下,而且不允许出现波纹。因此,在切削过程中哪怕出现极Raμ 02 其微小的振动,也会导致被加工零件达不到设计的质量要求。 振动对机械加工有不利的一面,但又可以利用振动来更好地切削,如振动磨削、振动研抛、超声波加工等都是利用振动来提高表面质量或生产率的。 机械加工中产生的振动,根据其产生的原因,大体可分为自由振动、强迫振

动和自激振动三大类,如图1所示。 图1 切削加工中振动的类型 3.2自由振动 自由振动是当系统所受的外界干扰力去除后系统本身的衰减振动。由于工艺系统受一些偶然因素的作用(如外界传来的冲击力、机床传动系统中产生的非周期性冲击力、加工材料的局部硬点等引起的冲击力等),系统的平衡被破坏,只靠其弹性恢复力来维持的振动属于自由振动。 在机械加工中,自由振动是最简单的振动,所占振动比率仅5%左右。振动的频率就是系统的固有频率。由于工艺系统的阻尼作用,这类振动会很快衰减。可见,自由振动对机械加工过程影响较小,但是自由振动在一定条件下会诱发产生自激振动。 3.3强迫振动 强迫振动是由外界周期性的干扰力所支持的不衰减振动。

机械加工基本知识

机械加工培训教材 技术篇 机械加工基础知识 2011年8 月 第一部分:机械加工基础知识

一、机床 (一)机床概论 机床是工件加工的工作母机? 一个工件或零件从原始的毛胚状态加工成所需的形状和尺寸,都需在机床上完成. 从加工的对象来分类,机床可以分为: ?金属加工机床 ?木材加工机床 ?石材加工机床等等…. 机械加工的对象大多为金属材料,所以,我们以下涉及的机床只针对金属加工机床. 金属加工机床分类: ?锻压机床---通过压力使工件产生塑形变形,例如:压力机、弯板机、剪板机等等。 ?特种机床---通过特种办法加工工件,例如:电火花机床、线切割机床、激光切割机床、水压切割机床等等。 ?金属切削机床---采用刀具、砂轮等工具,除去工件上多余的材料,将其加工成所需的形状和尺寸的机床,主要包括: 车床:工件与主轴一起旋转,刀具作轴向与径向进给运动.主要用于旋转工件、 盘类零件、轴类零件的加工.车床的分类如下: 根据主轴中心线的方向:卧式车床,立式车床. 根据车床的大小:仪表车床、小型车床、普通车床、大型车床。 根据控制方式:普通(手动)车床、简易数控车床、全功能数控车床 根据控制轴数:普通(手动)车床与数控车床(X、Z轴)、车铣中心(X、Z、C 轴)、复合车铣中心(X、Y、Z、C轴) 根据主轴及刀塔数量:单主轴、双主轴、双刀塔车床。 铣____ 床L刀具旋转,工件与工作台一起作轴向运动。主要用于方型及箱体零件加 工。铣床的分类如下: 根据主轴中心线的方向:卧式铣床,立式铣床. 根据控制方式:普通(手动)铣床、数控铣床 根据控制轴数:普通铣床(X、Y、Z轴)、4轴数控铣床(X、丫、Z、A轴)、5 轴数控铣床(X、丫 Z、A、B轴) 根据主轴数量:双主轴铣床。 镗(铣)床:刀具旋转,工件与工作台一起作轴向运动。主要用于铣削与镗孔。一般为卧式。镗床分类如下: 根据镗床大小:台式镗床、大型落地镗铣床。 根据控制方式:普通(手动)镗床、坐标镗床、数控镗床 根据控制轴数:普通镗床(X、丫Z、B轴)、带W tt的数控镗床(W X、丫、Z、B轴)、带平园盘的数控镗床(W X、丫、Z、B、U轴) 钻床L钻孔用机床。有台式、摇背钻之分,也有数控钻床。 攻丝机床:攻丝用机床。一般钻床也有攻丝功能。 加工中心:带刀库及自动换刀系统的数控铣床或镗床。有钻削中心、立式加工中心、卧式加工中心、卧式镗铣加工中心、龙门加工中心、五面体加工中心、落地镗铣加工中

切削技术在机械加工中的应用详细版

文件编号:GD/FS-6703 (安全管理范本系列) 切削技术在机械加工中的 应用详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

切削技术在机械加工中的应用详细 版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 机械加工是对结构复杂的零件进行再加工,加工工艺复杂,设计到模具、光学元件、集成电路、计算机技术等多个领域。金属切削加工是机械加工必不可少的手段,在机械加工过程中选择合理的切削刀具及切削用量是提高机械加工工件质量的保障,研究数控切削加工技术特点,对于提高加工工件精度具有重要的现实意义。 随着现代工业经济的快速发展,机械制造业在整个国民经济中占有十分重要的地位, 金属切削加工是机械加工过程中必不可少的手段。随着数控技术及刀具技术共同发展的同时,切削刀具及切削速度都得到

了高速发展,在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm进步到5μm,精密级加工中心则从3~5μm进步到1~1.5μm,(高速加工中心)并且超精密加工精度已开端进入纳米级(0.01μm)。刀具材料和涂层技术使用范围不断扩大,涂层硬质合金刀具的切削性能得到大幅提高。新一代高速数控机床特别是高速加工中心的开发应用与超高速切削紧密相关,高速切削还适用于硬切削、干切削和重切削,是提高切削效率的有效手段。 国内外切削技术现状分析 为满足现代机械加工对高效率、高精度、高可靠性的要求,切削刀具表面涂层可有效提高切削刀具使用寿命,使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。 目前先进国度的车削和铣削的切削速度已抵达

高速切削加工技术作业

高速切削加工技术 许磊 (合肥学院机械工程系13机制(1)班 1306011031) 摘要:高速切削加工作为模具制造中最为重要的一项先进制造技术,与传统加工技术相比是质的飞越,具有高生产效率、小切削力、高加工精度、低能耗等特点。可以解决在模具常规切削加工中备受困扰的一系列问题,有着强大的生命力和广阔的应用前景。 关键词:高速加工工艺、高速加工应用、高速加工趋势。 引言:对于某种机械零件而言,高速加工就是以较快的生产节拍进行加工。一个生产节拍:零件送进 →定位夹紧→刀具快进→刀具工进(在线检测)→刀具快退→工具松开、卸下→质量检测等7个基本生产环节。而高速切削是指刀具切削刃相对与零件表面的切削运动(或移动)速度超过普通切削5~10 倍,主要体现在刀具快进、工进及快退三个环节上,是高速加工系统技术中的一个子系统。对于整条自动生产线而言,高速加工的表征是以简捷工艺流程,以较短、较快的生产节拍的生产线进行生产加工。这就要求突破机械加工传统观念,在确保产品质量的前提下,改革原有加工工艺(方式),尽可能地缩短整条生产线的工艺流程。对于某一产品而言,高速加工也意味着企业要以较短的生产周期,完成研发产品的各类信息采集与处理、设计开发、加工制造、市场营销及反馈相关信息。 一、高速切削工艺 加工工艺是成功进行高速切削加工的关键技术之一。选择不当,会使刀具磨损加剧,完全达不到高速加工的目的。高速切削工艺技术包括切削参数、切削路径、刀具材料及刀具几何参数的选择等。 1.切削参数的选择 在高速切削加工中,必须对切削参数进行选择,其中包括刀具接近工件的方向、接近角度、移动的方向和切削过程(顺铣还是逆铣)等. 2.切削路径的选择 切削路径的选择与优化在高速切削加工中,除了刀具材料和刀具几何参数的选择外,还要采取不同的切削路径才能得到较好的切削效果。切削路径优化的目的是提高刀具耐用度,提高切削效率,获得最小的加工变形,提高机床走刀利用率,充分发挥高速加工的优势。主要包括: 1)走刀方向的优化在走刀方向的选择上,以曲面平坦性为评价准则,确定不同的走刀方向选取方案;对 于曲率变化大的曲面以最大曲率半径方向为最优进给方向,对曲率变化小的曲面,以单条刀轨平均长度最长为原则选择走刀方向。 2)刀位轨迹生成按照刀位路径尽可能简化,尽量走直线,路径尽量光滑的要求选择加工策略,选择合适 的插补方法,保证加工面残留高度的要求,采用过渡圆弧的方法处理加工干涉区,这样在加工时就不需要减速,提高加工效率。 3)柔性加减速和断刀的几率。选取合适的加减速方式,减少启动冲击,保持机床的精度,减少刀具颤振。 3.刀具材料的选择 刀具材料的合理选择遵循以下原则: 1)切削刀具材料与加工对象的力学性能匹配,主要指刀具与工件材料的强度、韧性和硬度等力学性能相 匹配,具有优良高温力学性能的刀具尤其适合高速切削加工。对于硬脆刀具(如硬质合金和陶瓷)的磨损起决定作用的主要因素是其力学性能。 2)切削刀具材料与加工对象的物理性能匹配,主要是指刀具与工件材料的熔点、弹性模量、导热系数、 热膨胀系数、抗热冲击能力等物理参数要相匹配。加工导热性差的工件时,应采用导热较好的刀具材料,以使切削热得以迅速传出而降低切削温度。对于精密加工则要选用热膨胀系数小的刀具材料(金刚石等)。高速干切削、高速硬切削和高速加工黑色金属的最高切削速度主要受限于刀具材料的耐热

机械加工基本知识

机械加工培训教材 技术篇 Ⅰ机械加工基础知识 2011年8月 第一部分:机械加工基础知识 一、机床 (一)机床概论 机床是工件加工的工作母机.一个工件或零件从原始的毛胚状态加工成所需的形状和尺寸,都需在机床上完成. 从加工的对象来分类,机床可以分为: ◆金属加工机床 ◆木材加工机床 ◆石材加工机床等等…. 机械加工的对象大多为金属材料,所以,我们以下涉及的机床只针对金属加工机床. 金属加工机床分类: ◆锻压机床---通过压力使工件产生塑形变形,例如:压力机、弯板机、剪板机等等。 ◆特种机床---通过特种办法加工工件,例如:电火花机床、线切割机床、激光切割机床、水压切割机床等等。

◆金属切削机床---采用刀具、砂轮等工具,除去工件上多余的材料, 将其加工成所需的形状和尺寸的机床,主要包括: 车床:工件与主轴一起旋转,刀具作轴向与径向进给运动.主要用于旋转工件、盘类零件、轴类零件的加工.车床的分类如下: 根据主轴中心线的方向:卧式车床,立式车床. 根据车床的大小:仪表车床、小型车床、普通车床、大型车床。 根据控制方式:普通(手动)车床、简易数控车床、全功能数控车床根据控制轴数:普通(手动)车床与数控车床(X、Z轴)、车铣中心(X、Z、C轴)、复合车铣中心(X、Y、Z、C轴) 根据主轴及刀塔数量:单主轴、双主轴、双刀塔车床。 铣床:刀具旋转,工件与工作台一起作轴向运动。主要用于方型及箱体零件加工。铣床的分类如下: 根据主轴中心线的方向:卧式铣床,立式铣床. 根据控制方式:普通(手动)铣床、数控铣床 根据控制轴数:普通铣床(X、Y、Z轴)、4轴数控铣床(X、Y、Z、A 轴)、5轴数控铣床(X、Y、Z、A、B轴) 根据主轴数量:双主轴铣床。 镗(铣)床:刀具旋转,工件与工作台一起作轴向运动。主要用于铣削与镗孔。一般为卧式。镗床分类如下: 根据镗床大小:台式镗床、大型落地镗铣床。 根据控制方式:普通(手动)镗床、坐标镗床、数控镗床

切削加工对制造业发展及技术进步起重要作用

https://www.360docs.net/doc/8018222280.html, 切削加工对制造业发展及技术进步起重要作用 切削加工技术进入了“高速高效”的发展新阶段出现了新的切削工艺如高速切削、高效切削、硬切削、干式切削等以及新的加工方法如插铣、高速螺纹铣等;创新开发了很多先进刀具和工具系统;切削专业的内涵和行业的发展机制都有重大的进展;切削加工效率成倍提高;对制造业的发展和技术进步发挥了重要作用。 刀具产品的创新的速度大加快,刀具的产品结构全面更新 硬质合金成为主要刀具材料;超硬刀具性能提高应用领域扩大;可转位刀具比例增加;整体硬质合金刀具实用化。 涂层技术快速发展,涂层刀具比例增加 效果显著--可成倍地提高刀具寿命或切削效率,影响面广;适应性好--可根据加工对象和使用要求开发相应的牌号;开发速度快--新牌号的开发可通过控制工艺因素实现;功能多--有耐磨的、耐热的、润滑的等不同涂层;涂层已成为快速提高刀具切削性能的最有效途径,被称为提高刀具性能的“兴奋剂”,具有很好的发展前景和应用价值。 刀具应用技术成为切削加工技术新的核心技术 刀柄与刀具装夹技术;切削加工的数据库技术;刀具管理技术;高速旋转刀具的动平衡技术安全技术;铣刀的走刀路线技术 刀具行业成功探索了转型的道路 创新了“面向制造业,面向用户”的经营理念;由传统的刀具制造商销售商转变为切削加工技术的专业供应商和服务商;成为用户企业开发新产品、应用新工艺的技术支撑,必须依靠的技术力量,形成了紧密的合作关系;新的经营机制推动了切削技术的快速发展。 对刀具经销商的影响与要求 要树立新的服务理念,由单纯的商业服务向切削加工技术“服务”转型;要成为刀具企业与用户企业之间沟通的桥梁,服务的前哨,信息的源泉,长期的合作伙伴;要构筑新的竞争优势,由价格竞争转变为服务能力的竞争;要了解切削加工技术的基础知识,并不断提高。本文有上海高科电子公司提供https://www.360docs.net/doc/8018222280.html,

机械制造工艺学第三版王先逵 习题解答

机械制造工艺学习题解答 第五章:机械加工表面质量及其控制(第3版P267) 5-1机械加工表面质量包括哪些具体内容? 答:(P229)机械加工表面质量,其含义包括两个方面的内容: A.加工表面层的几何形貌,主要由以下几部分组成:⑴表面粗糙度;⑵波纹度;⑶纹理方向;⑷表面缺陷。 B.表面层材料的力学物理性能和化学性能,主要反映在以下三个方面:⑴表面层金属冷作硬化;⑵表面层金属的金相组织变化;⑶表面层金属的残余应力。 5-2为什么机器零件一般总是从表面层开始破坏的?加工表面质量对机器使用性能有哪些影响? 答:(P231)(1)由于表面是零件材料的边界,常常承受工作负荷所引起的最大应力和外界介质的侵蚀,表面上有着引起应力集中而导致破坏的微小缺陷,所以这些表面直接与机器零件的使用性能有关。 (2)加工表面质量对机器的耐磨性、耐疲劳性、耐蚀性、零件配合质量都有影响。 5-3车削一铸铁零件的外圆表面,若进给量f=0.40mm/r,车刀刀尖圆弧半径re=3mm,试估算车削后的表面粗糙度。 5-6为什么提高砂轮速度能减小磨削表面的粗糙度数值,而提高工件速度却得到相反的结果?

答:(P224)砂轮速度越高,单位时间内通过被磨表面的磨粒数就越多,工件材料来不及变形,因而工件表面粗糙度值越小。而工件速度增大,单位时间内通过被磨表面的磨粒数减少,塑性变形增加,表面粗糙度值将增大。 5-7为什么在切削加工中一般都会产生冷作硬化现象? 答:(P240)机械加工过程中产生的塑性变形,使晶格扭曲、畸变,晶粒间产生滑移,晶粒被拉长,进一步变形受到阻碍,这些都会使表面层金属的硬度增加,统称为冷作硬化(或称为强化)。 5-8为什么切削速度越大,硬化现象越小?而进给量增大,硬化现象增大? 答:(P240-241)增大切削速度,(1)刀具与工件的作用时间减少,使塑性变形的扩展深度减小,因而冷硬层深度减小;(2)温度增高,弱化倾向增大,冷硬程度降低。而进给量增大时,硬化现象增大的原因是随着进给量的增大,切削力也增大,表层金属的塑性变形加剧,冷硬程度增大。但是,这种情况只是在进给量比较大时才是正确的。 5-11什么是回火烧伤、淬火烧伤和退火烧伤? 答:(P243)磨削淬火钢时,在工件表面形成的瞬时高温将使表层金属产生以下三种金相组织变化:1)如果磨削区的温度未超过淬火钢的相变温度(碳钢的相变温度为720℃,但已超过马氏体的转变温度(中碳钢为300℃,工件表面金属的马氏体将转化为硬度较低的回火组织(索氏体或托氏体),这称为回火烧伤。 2)如果磨削区温度超过了相变温度,再加上冷却液的急冷作用,表层金属会出现二次淬火马氏体织织,硬度比原来的回火马氏体高;在它的下层,因冷却较慢,出现了硬度比原来的回火

高速切削加工技术

高速切削加工技术 高速切削加工技术是21世纪的一种先进制造技术,有着强大的生命力和广阔的应用前景。通过高速切削加工技术可以解决在汽车模具常规切削加工中备受困扰的一系列问题。 近年来,在美国、德国、日本等工业发达国家高速切削加工技术在大部分的模具公司都得到了广泛应用,85%左右的模具电火花成形加工工序已被高速加工所替代。高速加工技术集高效、优质、低耗于一身,已成为国际模具制造工艺中的主流。 我国有关汽车模具高速切削加工技术的研究起步较晚。据国际模协秘书长罗百辉介绍,我国众多模具企业相继从美国、德国、法国、日本等国家购买了大量高速加工设备及切削刀具,并在实践中摸索汽车模具高速切削加工的工艺技术,取得了一些成功经验。但是,一方面,引进设备不等于引进技术。高速切削尤其是大型汽车覆盖件模具的高速切削方面,没有成功的经验可供借鉴,怎样使引进的设备尽快发挥出应有的作用是摆在企业管理者和工程技术人员面前的一大课题;另一方面,技术人员在工作中边学习边应用,摸索、积累了一定的高速切削加工实例、工艺参数和工作经验,怎样将这些宝贵的经验和教训总结保存供其他技术人员借鉴、避免多走弯路也是一项难题。 高速切削加工技术在国内外汽车模具制造行业得到了广泛的应用,并且已取得了巨大的效益,但是高速切削加工的机理和相关理论至今仍不完善,针对汽车模具的高速切削数据库尚未建立。国内外企业选择高速切削刀具参数和高速切削加工参数的方式仍以传统的“试

切”法和“经验”法为主,在加工某一新型材料时,往往需要使用多种刀具进行重复切削试验,研究分析刀具的磨损、破损方式及其原因,从中找出一组最佳的刀具材料和加工参数,如此反覆多次,盲目性大,并且浪费大量的人力、财力和资源。而针对特种材料如合金铸铁、高强度合金钢、超级合金(如钛合金)等材料的高速切削加工,如何根据材料特性选择合适的切削刀具,如何设计合理的切削参数,目前仍在研究和发展中。 通过国内外汽车模具制造行业的高速切削加工技术实践应用,高速切削加工技术具有如下优势: 1、高速切削加工提高了加工速度 高速切削加工以高于常规切削10倍左右的切削速度对汽车模具进行高速切削加工。由于高速机床主轴激振频率远远超过“机床—刀具—工件”系统的固有频率范围,汽车模具加工过程平稳且无冲击。 2、高速切削加工生产效率高 用高速加工中心或高速铣床加工模具,可以在工件一次装夹中完成型面的粗、精加工和汽车模具其他部位的机械加工,即所谓“一次过”技术(One Pass Machining)。高速切削加工技术的应用大大提高了汽车模具的开发速度。 3、高速切削加工可获得高质量的加工表面 由于采取了极小的步距和切深,高速切削加工可获得很高的表面质量,甚至可以省去钳工修光的工序。 4、简化加工工序

(高速切削技术及其应用)

长春汽车工业高等专科学校 继续教育学院 毕业论文(设计)中文题目:高速切削加工技术及其应用的研究 英文题目:High speed cutting technology and its application 毕业专业:汽车机械制造技术 学生姓名:高越 准考证号:290414100432 指导教师:穆春燕 二零一五年八月 独创性声明

本人声明所呈交的论文是本人在导师指导下进行的研究工作和取得的研究成果,除了文中特别加以标注和致谢之处外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得长春汽车工业高等专科学校或其他教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 论文作者签名:签字日期:年月日 学位论文版权使用授权书 本论文作者完全了解长春汽车工业高等专科学校有关保留、使用论文的规定。特授权长春汽车工业高等专科学校可以将论文的全部或部分内容编入有关数据库进行检索,并采用影印、缩印或扫描等复制手段保存、汇编以供查阅和借阅。 (保密的论文在解密后适用本授权说明) 论文作者签名:导师签名: 签字日期:年月日签字日期:年月日

目录 前言 (05) 1.高速切削概念、内容及特点 (06) 1.1高速切削概念 (06) 1.2高速切削的研究内容 (06) 1.3高速切削特点 (07) 2.高速切削的技术体系 (08) 3.高速切削的技术关键及目前解决方案 (08) 3.1高速切削的技术关键 (08) 3.2高速切削关键技术解决方案 (09) (1)高速切削机床 (09) (2)高速切削刀具 (11) (3)C A D/C A M (11) (4)高速切削的数控编程 (11) 4.高速切削加工技术的应用 (12) 4.1高速切削在航空航天工业中的应用 (12) 4.2 高速切削在纤维增强塑料中的应用 (12) 4.3高速切削在模具制造业中的应用 (12) 4.4 高速切削在汽车制造业中的应用 (12) 5.高速切削加工技术的发展前景与展望 (12) 6.答谢辞 (14) 7.参考文献 (14)

机械加工过程中的振动特点及预防措施

机械加工过程中的振动特点及预防措施 在进行机械加工的过程中,工件的表面质量尤为关键,直接关系到工件的使用性能,进而影响到工业生产的稳定运行。在进行机械加工的过程中,由于生产工艺中各项工序的影响会产生振动,由此影响到刀具的加工质量,降低工件的表面质量。为了保证工件的表面质量,要对引起振动的原因进行分析,从而制定出解决的措施,减少振动的发生几率,提高机械加工的质量。 标签:机械加工;强迫振动;自激振动;预防措施 引言 在进行机械加工的过程中,如果出现振动,将会产生非常严重的后果,最直接后果就是影响到工件的表面质量。在正常情况下,刀具与工件之间的距离是按照一定的规范来固定的,如果产生振动,将会对刀具产生附加的动荷载,由此在工件的表面会出现振痕,影响到工件的表面品质以及使用性能。此外,这种振动会严重的磨损到刀具,从而降低刀具的精度和刚度,缩短刀具的使用寿命。振动还会导致机床各连接部位的松动,从而加大间隙,严重时可能会影响到加工的持续。振动所产生的噪声还会影响到工作人员的健康,所以采用相应的措施,减少振动的产生具有重要的意义。 1 机械加工振动的表现和特点 1.1 强迫振动 强迫振动是物体受到一个周期变化的外力作用而产生的振动。如在磨削过程中,由于电动机、高速旋转的砂轮及皮带轮等不平衡,三角皮带的厚薄或长短不一致,油泵工作不平稳等,都会引起机床的强迫振动,它将激起机床各部件之间的相对振动幅值,影响机床加工工件的精度,如粗糙度和圆度。对于刀具或做回转运动的机床,振动还会影响回转精度。强迫振动的特点是:①强迫振动本身不能改变干扰力,干扰力一般与切削过程无关。干扰力消除,振动停止。②强迫振动的频率与外界周期干扰力的频率相同,或是它的整倍数。③干扰力的频率与系统的固有频率的比值等于或接近于 1 时,产生共振,振幅达到最大值。 1.2 自激振动 是由振动系统本身在振动过程中激发产生的交变力所引起的不衰减的振动,就是0激振动。即使不受到任何外界周期性干扰力的作用,振动也会发生。如在磨削过程中砂轮对工件产生的摩擦会引起自激振动。工件、机床系统刚性差,或砂轮特性选择不当,都会使摩擦力加大,从而使自激振动加剧。自激振动的特点是:①自激振动的频率等于或接近系统的固有频率。按频率的高低可分为高频颤振及低频颤振。②自激振动能否产生及其振幅的大小,决定于每一振动内系统所获得的能量与阻尼消耗能量的对比情况。③由于持续自激振动的干扰力是由振动

机械加工基础知识讲解

机械加工基础知识讲解 机械加工是一种用加工机械对工件的外形尺寸或性能进行改变的过程。按被加工的工件处于的温度状态﹐分为冷加工和热加工。一般在常温下加工,并且不引起工件的化学或物相变化﹐称冷加工。一般在高于或低于常温状态的加工﹐会引起工件的化学或物相变化﹐称热加工。冷加工按加工方式的差别可分为切削加工和压力加工。热加工常见有热处理﹐煅造﹐铸造和焊接。另外装配时常常要用到冷热处理。例如:轴承在装配时往往将内圈放入液氮里冷却使其尺寸收缩,将外圈适当加热使其尺寸放大,然后再将其装配在一起。火车的车轮外圈也是用加热的方法将其套在基体上,冷却时即可保证其结合的牢固性(此种方法现在不知道是否还机械制图) 机械加工包括:是灯丝电源绕组、激光切割、重型加工、金属粘结、金属拉拔、等离子切割、精密焊接、辊轧成型、金属板材弯曲成型、模锻、水喷射切割、精密焊接等。 机械加工:广意的机械加工就是凡能用机械手段制造产品的过程;狭意的是用车床、铣床、钻床、磨床、冲压机、压铸机机等专用机械设备制作零件的过程。 PCD的磨削特点与PCD刀具刃磨技术 随着现代科学技术的高速发展,由聚晶金刚石(PCD)、聚晶立方氮化硼(PCBN)等超硬材料制成的刀具品种越来越丰富,其性能也得到不断发展和提高。刀片磨料粒径从数十微米、几微米到纳米级;金刚石、立方氮化硼的含量分为低含量、中等含量和高含量;结合剂既有金属、非金属也有混合材料;PCD层厚度从毫米级到微米级;PCD层与硬质合金衬底的结合方式有平面、波纹面;PCD层有高耐磨、高韧性、高耐热等不同特性。目前PCD、PCBN刀具的应用范围扩大到汽车、航天航空、精密机械、家电、木材、电子电气等行业,用于制作车刀、镗刀、铣刀和钻头、铰刀、锪刀、锯刀、镂刀、剃刀等。 尽管PCD、PCBN刀具发展如此之快,但因其高硬度导致的刀具刃磨困难一直困扰着大多数用户,刀片的重磨也主要由原刀具生产厂家来完成。不仅刀具价格高,交货期长,而且占用企业流动资金。因此,很有必要认真研究PCD的磨削特点及PCD刀具的刃磨技术。 2 PCD刀具的制造工艺 PCD切削刀具的生产工艺流程一般包括抛光、切割、固接、刃磨、质检等。PCD超硬材料毛坯直径通常有1/2、1、2、3、4英寸,其表面一般较粗糙(Ra2~

数控机床中高速切削加工技术的应用

2012年第11卷第15期 产业与科技论坛2012. (11).15Industrial &Science Tribune 数控机床中高速切削加工技术的应用探讨 □吴卫军 【内容摘要】目前高速切削技术以其高效率、低磨损的技术特点,在制造行业内的应用正不断增强,尤其是在精密仪器的制造 上,更是离不开高速切削的技术支持。这一技术对其运行设备要求严格,目前,数控机床是高速切削技术应用的最好平台,该技术也对数控机床设备提出了一定的要求。 【关键词】数控机床;高速切削;电主轴;刀具【作者单位】吴卫军,江苏省东台中等专业学校 当前,社会的发展对制造领域提出了更高的要求,随着生产力的不断提升,高效率、高质量、高节能的机械加工水平已经成为了整个数控加工行业的共同追求。二十世纪三十年代,随着高速切削理念的提出和发展,时至今日,在加工效率和加工质量上兼具优势的高速切削技术已经成为数控机床的首要选择。高速切削是一个相对概念,并且随着时代的进步而不断变化。一般认为高速切削或超高速切削的速度 为普通切削加工的5 10倍[1] 。在汽车制造、航空航天技术、船舶加工以及模具的制造等需要精密加工的领域几乎都能看到高速切削技术的应用,这也反映了高速切削技术在数控机床中占据的位置必将越来越重要的发展趋势。 一、高速切削的效益优势1931年,德国切削物理学家萨洛蒙(Carl.j.Salomon )博士研究成果得出:被加工材料都有一个临界切削速度,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的五至十倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损 随切削速度增大而减小[2] 。高速切削技术这一特性为切削过程带来了必然的高效益,具体表现如下: (一)生产率上的优势。高速切削首先带来了切削速度的提升,速度的改变使相同时间内的切削量至少提高四倍,这就使得加工工序的高度集中变为了可能。常规的切削过程经常要把工件按加工的精细程度进行划分,分工序进行分别加工,这种情况需要占用一定的工件装卸和搬运时间。采用高速切削技术后,可以将繁复的加工工序简单化,以前要分工进行的步骤都可以集中在同一道工序内进行加工,而且基本上不会对工件的精度和质量造成影响。此外,由于高速切削技术的引入,切削刀具的使用寿命大大地延长了,在另一方面也能够减少刀具替换和托盘交换的时间,从而极大地提高工件的生产率。 (二)加工精度上的优势。高速切削技术不仅不会降低工件的加工精度,反而能够做到工件质量的提升,这不得不说是高速切削的魅力所在。 1.工件所受切削力变小。高速切削的技术原理不同于常规的切削技术,在切削时运行速度高,切削力却比较小,切削速度的提高和切削力的减小,使得工件因夹压受力导致形状 异化的可能性大大降低, 故而大大地提升了工件的合格率,这种切削技术尤其适用于一些较细长、较纤薄的精密部件的加工。 2.工件受热降低。在常规切削加工中,由于切削带来的高温也是导致部分工件变形的主要原因之一。采用高温切削技术以后,由于切削热量的降低及切屑的迅速散热效果,工件受热量大大降低,这也基本上避免了由于高温受热所造成的工件变形。 由于高速切削在这两方面的技术优势,制造出来的工件 往往在尺寸要求、 表面平整性、光滑性等方面具有较高的精度,这是常规切削工艺所难以比拟的。 二、高速切削加工技术对数控机床提出的要求 高速切削技术对使用设备在运行速度、设备精度及稳定程度上都有较高的要求。目前,数控机床是最符合高速切削加工技术要求的加工设备。然而, 当前的数控机床还存在提升和进步的空间,在“软件”和“硬件”两方面都有待于进一步 的改善和提升,以便更好地适应先进的高速切削技术的内在要求。具体如下: (一)采用电主轴作为数控机床的主轴。主轴单元的设计,是实现高速加工的最关键的技术领域之一,同时也是高速加工机床最为关键的部件,它不仅要能在很高的转速下旋转, 而且要有很高的同轴度,高的传递力矩和传动功率、良好的散热或冷却装置,要经过严格的动平衡矫正,主轴部件的设计要保证具有良好的动态和热态特性,具有极高的角加减速度来保证在极短的时间内实现升降速和指定位置的准停[3] 。而电主轴能够保证机床主轴和发电机的转子轴合二为一,在运行的平稳性上达到更好的效果。并且电主轴在温度的保持上具有一定的独到之处,对于温差的控制水平更为先进,在轴承支撑和润滑方面采用了最新的技术,保证了主轴的使用寿命和高性能。 (二)改善伺服单元的性能。切削速度的提升需要与之配套的进给,才能更好地体现先进的高速切削技术的工作水平。由于主轴转速的提高,机床进给速度也必须大幅提高(60m /min 以上),以保持刀具每齿或每转进给量基本不变,从而保证加工表面质量和刀具寿命。每故而在数控机床伺服单元的性能上,应尽量采用响应速度较高的配套设施。在 · 57·

机械加工中的强迫振动现象分析

机械加工中的强迫振动现象分析 沈庆玲 (七台河煤碳职业技术培训学院) 摘 要:主要介绍了机械加工中强迫振动产生的原因及减少强迫振动的途径。关键词:机械加工;强迫振动;误差;隔振 中图分类号:U469105 文献标识码:C 文章编号:1008-3383(2004)03-0062-01 机械加工过程中,在工件和刀具之间常产生振 动。产生振动时,工艺系统的正常切削过程便受到干扰和破坏,从而零件加工表面出现振纹,降低了零件的加工精度和表面质量。 机械加工过程中产生的振动,按其产生的原因来分,可分为自由振动、受迫振动和自激振动三大类。自由振动往往是由于切削力的突然变化或其他外力的冲击等原因所引起的。这种振动一般可以迅速衰减,因此对机械加工过程中的影响较小。而受迫振动和自激振动都是不能自然衰减而且危害较大的振动。下面主要对强迫振动进行简单的分析。 1 强迫振动产生的原因 机械加工中的强迫振动,是一种由工艺系统内部或外部周期交变的激振力作用下引起的振动。机械加工中引起工艺系统强迫振动的激振力,主要来自以下几方面。 111 机床上高速回转的零件的不平衡 机床上高速回转零件较多,如电动机转子、带轮、主轴、卡盘和工件、 磨床的砂轮等,由于不平衡而产生激振力F (即离心惯性力)。如图1所示是一个安装在简支梁上的电动机,以ω的角速度旋转时,假如由于电动机转子不平衡而产生离心力F n ,则F n 沿X 方向的分力F x (F x =F n cos ωt )就是该梁的外界周期干扰力。在这一干扰力的作用下,简支梁将作不衰减的振动。 图1 强迫振动力学模型 112 机床传动系统中的误差 机床传动系统中的齿轮,由于制造和装配误差 而产生周期性的激振力。此外,皮带接缝,轴承滚动体尺寸差和液压传动中油液脉动等各种因素均可能引起工艺系统强迫振动。 113 切削过程中本身的不均匀性 切削过程中的间歇特性,如铣削、拉削及车削带有键槽的断续表面等,由于间歇切削而引起切削的周期性变化,从而激起振动。 114 外部振源 由邻近设备(如冲压设备、龙门刨等)工作时的强烈振动通过地基传来,使工艺系统产生相同(或整倍数)频率的强迫振动。 综合上面的讨论,可以看出强迫振动的主要特点有以下几方面。 (1)强迫振动是在外界周期性干扰力的作用下产生的,但振动本身并不能引起干扰力的变化。当干扰力停止时,则工艺系统的振动也随着停止。 (2)不管振动系统本身的固有频率如何,强迫振动的频率总是与外界干扰力的频率相同。 (3)强迫振动的振幅大小在很大程度上决定于干扰力的频率与系统固有频率的比值λ。当比值等于或接近1时,振幅将达到量大值,这种现象通常称为“共振”。 (4)强迫振动的振幅大小还与干扰力、系统刚度及其阻尼系数有关。 2 减小强迫振动的措施和途径 (1)减少或消除振源的激振力:例如精确平衡各回转零件、部件,对电动机的转子和砂轮不但要进行静平衡,而且要进行动平衡。轴承的制造精度以及装配和调试质量常常对减小强迫振动有较大的影响。 (2)隔振:即在振动的路线中安放具有弹性性能的隔振装置,使振源所产生的大部分振动由隔振装置来吸收,以减小振源对加工过程中的干扰。如将机床安置在防振地基上及在振源与刀具和工件之间设置弹簧或橡皮垫片等 。 (3)提高工艺系统的刚度及增大阻尼,其目的是使强迫振动的频率远离系统的固有频率。如使其避开共振区,使在λ≤0或λ≥0的情况下加工,采用刮研接触面来提高部件的刚度。 (4)采用阻尼器:通过阻尼作用,将振动能量转换成热能散失掉,以达到减振目的。 以上分析了机械加工中强迫振动的原因及特点、减小振动的措施和途径,随着科学技术的发展,也将有更好的措施。 收稿日期:2004-01-08 2004年 第3期(总第121期) 黑龙江交通科技 HEI LONG J I ANG J I AOTONG KE J I No.3,2004 (Sum No.121)

机械加工工艺基础知识点总结精编版

机械加工工艺基础知识 点总结 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

机械加工工艺基础知识点总结 一、机械零件的精度 1.了解极限与配合的术语、定义和相关标准。理解配合制、公差等级及配合种类。掌握极限尺寸、偏差、公差的简单计算和配合性质的判断。 基本术语:尺寸、基本尺寸、实际尺寸、极限尺寸、尺寸偏差、上偏差、下偏差、(尺寸)公差、标准公差及等级(20个公差等级,IT01精度最高;IT18最低)、公差带位置(基本偏差,了解孔、轴各28个基本偏差代号)。 配合制: (1)基孔制、基轴制;配合制选用;会区分孔、轴基本偏差代号。 (2)了解配合制的选用方法。 (3)配合类型:间隙、过渡、过盈配合 (4)会根据给定的孔、轴配合制或尺寸公差带,判断配合类型。 公差与配合的标注 (1)零件尺寸标注 (2)配合尺寸标注 2.了解形状、位置公差、表面粗糙度的基本概念。理解形位公差及公差带。 几何公差概念: 1)形状公差:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度。 2)位置公差:位置度、同心度、同轴度。作用:控制形状、位置、方向误差。3)方向公差:平行度、垂直度、倾斜度、线轮廓度、面轮廓度。 4)跳动公差:圆跳动、全跳动。 几何公差带: 1)几何公差带 2)几何公差形状 3)识读 3.正确选择和熟练使用常用通用量具(如钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺等)及专用量具(如螺纹规、平面样板等),并能对零件进行准确测量。 常用量具: (1)种类:钢直尺、游标卡尺、千分尺、量缸表、直角尺、刀口尺、万能角尺。 (2)识读:刻度,示值大小判断。 (3)调整与使用及注意事项:校对零点,测量力控制。 专用量具: (1)种类:螺纹规、平面角度样板。 (2)调整与使用及注意事项 量具的保养 (1)使用前擦拭干净 (2)精密量具不能量毛坯或运动着的工伯 (3)用力适度,不测高温工件 (4)摆放,不能当工具使用 (5)干量具清理

高速切削加工技术的现状和发展

高速切削加工技术的现状和发展(1) 中国工程院院士、山东大学艾兴教授 一、概述 机械加工的发展趋势是高效率、高精度、高柔性和绿色化,切削加工的发展方向是高速切削加工,在发达国家,它正成为切削加工的主流。50年来,切削技术的极大进步说明了这一点:今天切削速度高达8000m/min,材料切除率达150~1500cm3/min,超硬刀具材料硬度达3000~8000HV,强度达1000Mpa,加工精度从10um到0.1um。干(准)切削日益广泛应用。随切削速度提高,切削力降低大致为25~30%以上;切削温度增加逐步缓慢;加工表面粗糙度降低1~2级;生产效率提高,生产成本降低。 高速切削技术不只是一项先进技术,它的发展和推广应用将带动整个制造业的进步和效益的提高。在国外,20世纪30年代德国Salomon博士提出高速切削理念以来,经半个世纪的探索和研究,随数控机床和刀具技术的进步,80年代末和90年代初开始应用并快速发展到广泛应用于航空航天、汽车、模具制造业加工铝、镁合金、钢、铸铁及其合金、超级合金及碳纤维增强塑料等复合材料,其中加工铸铁和铝合金最为普遍。 不同材料的高速切削加工速度范围 高速切削技术在国内起步较晚,20世纪80年代中期开始研究陶瓷刀具高速切削淬硬钢并在生产中应用,其后引起对高速切削加工的普遍关注,目前主要还是以高速钢、硬质合金刀具为主,硬质合金刀具切削速度≤100~200m/min,高速钢刀具在40m/min以内。但在汽车、模具、航空和工程机械制造业进口了一大批数控机床和加工中心,国内也生产了一批数控机床,随着高速切削的深入研究,这些行业有的已逐步应用高速切削加工技术,并取得很好的经济效益。 二、高速切削加工理论基础 (1) 切屑形成特征 不同材料在不同状态下的切屑形态: (a) 供货状态,切削速度127.2m/min (b)硬度325HB,切削速度125.5m/min

机械加工材料基本知识

Q195 、Q215 ,用于铆钉、开口销等及冲压零件和焊接构件。 Q235 、Q255 ,用于螺栓、螺母、拉杆、连杆及建筑、桥梁结 构件。 Q275 ,用于强度较高转轴、心轴、齿轮等。 Q345 ,用于船舶、桥梁、车辆、大型钢结构。 08 钢,含碳量低,塑性好,主要用于制造冷冲压零件。 10、20 钢,常用于制造冲压件和焊接件。也常用于制造渗碳件。 35、40、45、50 钢属中碳钢,经热处理后可获得良好的综合力学性能,主要用制造齿轮、套筒、轴类零件等。这几种钢在机械制造中应用非常广泛。 T7、T8 钢,用于制造具有较高韧性的工具,如冲头、凿子等。 T9、T10、T11 钢,用作要求中等韧性、高硬度的刃具,如钻头、 丝锥、锯条等。 T12、T13 钢,用于要求更高硬度、高耐磨性的锉刀、拉丝模具 等。 (二)合金钢 合金钢的分类方法有多种,常见的有以下两种。 (1)按用途分类? 分为三类:

合金结构钢,用于制造各种性能要求更高的机械零件和工程构 件; 合金结构钢,用于制造各种性能要求更高的刃具、量具和模具; 特殊性能钢,具有特殊物理和化学性能的钢,如不锈钢、耐热钢、 耐磨钢等。 (2)铵合金元素总含量多少分类? 分为三类: 低合金钢,合金元素总含量小于5%; 中合金钢,合金元素总含量为5%- 10%; 高合金钢,合金元素总含量大于10%。 2.合金钢牌号的表示方法 合金钢是按钢材的含碳量以及所含合金元素的种类和数量编号 的。 ①钢号首部是表示含碳量以及所含合金结构钢与碳素结构钢相同,以万分之一的碳作为单位,如首部数字为45,则表示平均含碳量为%;合金工具钢以千分之一的碳作为单位,如首部数字为 5,则表示平均含碳量为%。 ②在表示含碳量的数字后面,用元素的化学符号表示出所含的 合金元素。合金元素的含量以百分之几表示,当平均含量小于%时,只标明元素符号,不标含量。如25Mn2V表示平均含碳量为%含

相关文档
最新文档