理论力学18—动能定理
理论力学公式

定轴转动刚体上一点的速度和加速度:(角量与线量的关系)1.点的运动✶ 矢量法22 , , )(dt rd dtv d a dtr d v t r r ==== 点的合成运动re a v v v +=r e a a a a +=(牵连运动为平动时)k r e a a a a a ++=(牵连运动为转动时)其中, ),sin(2 , 2r e r e k r e k v v a v a ωωω=⨯=ωR v =ετR a =2ωR a n =全加速度:2),(ωε=n atg 轮系的传动比:nn n n i Z Z R R n n i ωωωωωωωωωω13221111221212112 ,-⋅⋅⋅⋅======ωω , ⋅=+=AB v v v v BA BA A B 为图形角速度22 , , )(dtd dt d dt d t f ϕωεϕωϕ====质心运动定理M a c = ∑F ≡ R2. 动量矩定理:平行移轴定理刚体平面运动微分方程三.动能定理平面运动刚体的动能:四. 达朗伯原理对整个质点系,主动力系、约束反力系、惯性力系形式上构成平衡力系。
这就是质点系的达朗伯原理。
可用方程表示为:质点系相对质心的动量矩定理∑==)()( )(e C e i C r C M F m dtL d ετ⋅=AB a BA 2ω⋅=AB an BAω,ε分别为图形的角速度,角加速度nBABA A B a a a a ++=τ∑=-WT T 12质点系动能定理的积分形式∑==)()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理)(22)( e zz e zz M dt d I M I ==∴ϕε或—刚体定轴转动微分方程2222221 21)(2121ωωωC C C I v M d M I +=+=T 2'md I I zC z +=∑∑==∴)( , )(e C C C F m I F a m ε()d d e i pF t=∑用动静法求解动力学问题时,对平面任意力系,刚体平面运动可分解为随基点(质点C )的平动:绕通过质心轴的转动:根据动静法,有)()()(0=++=++∑∑∑∑∑∑i OiOiOiiiQ mN m F m Q NF CQ a M R -=εC QC I M -=(3)02/cos , 0)((2)0sin , 0(1)0cos , 0000=-⋅==+-==-+=∑∑∑QA AnQ nA n Q A M l m g F mR m g R F R m g R F ϕϕϕτττ。
动能定理(3) 山东建筑大学理论力学

1 2
m1vE2
1 2
1 12
m1l 2
2 AB
vA
1 12
(9m2
2m1
sin 2
)v
2 A
A
m1g
m2g
ABC
B
E
vB
vE
A
T
1 12
(9m2
2m1
sin 2
)vA2
系统的总功率:
P m1g vE cos
m1g
vA 2
cot
代入功率方程:
dT = dt i
dWi dt
i
Pi
B E
v2
0
Ws
v W
将上式对时间求导,并注意 dv a, ds v
dt
dt
解得:
a
WR 2
(JO
W g
R2 )
O
sP
v W
例 题 已知: m ,R, f , 。
求: 纯滚时盘心的加速度。
解:取系统为研究对象
T1 0
T2
1 2
mvC2
1 2
JC 2
T2
3 4
mvC2
vC
R
s
C
vC
F mg
FN
结论与讨论
关于几个动力学定理 的综合应用
动量定理、动量矩定理和动能定理的比较
分析和解决复杂系统的动力学问题时,选择哪一个定理的 原则是:
1、所要求的运动量在所选择的定理中能不能比较容易地 表达出来;
2、在所选择的定理表达式中,不出现相关的未知力。
对于由多个刚体组成的复杂系统,求解动力学问题时,如 果选用动量定理或动量矩定理,需要将系统拆开,不仅涉及 的方程数目比较多,而且会涉及求解联立方程。
理论力学课件 动能定理

z m2 m3 C rC O x' x 而
i
mi m1 y
ri
y'
mn
1 2 1 2 T= mvC mi vri 2 2
d m v m i ri dt i i 0
质点系的动能,等于系统随质心平移的动能与相 对于质心平移参考系运动的动能之和。
2012年5月3日 Thursday 理论力学CAI 4
第13章
动 能 定 理
动量定理和动量矩定理是用矢量法研究动力学问 题,而动能定理用能量法研究动力学问题。能量法不 仅在机械运动的研究中有重要的应用,而且是沟通机 械运动和其它形式运动的桥梁。动能定理建立了与运 动有关的物理量—动能和作用力的物理量—功之间的 联系,这是一种能量传递的规律。
2012年5月3日 Thursday
Fx =0, Fy =0, Fz =-mg
F mgk
W mgdz mg ( z1 z 2 )
z1 z2
对于质点系
2012年5月3日 Thursday
W mg ( z C 1 z C 2 )
理论力学CAI 11
重力的功与重心运动的高度差成正比,与路径无关。
② 弹性力的功
Jz——刚体对轴的转动惯量
2012年5月3日 Thursday 理论力学CAI 3
z'
柯尼希(Koenig) 定理
质点系动能计算
1 1 T mi vi2 mi (vC vri ) 2 2 2 1 1 2 2 mi vC mi vri mi (vC vri ) 2 2 1 2 1 2 mvC mi vri vC mi vri 2 2 1 2 1 2 mvC mi vri 2 2
第八章 动能定理

第八章动能定理引言应用动力学基本方程是解决运动变化与力之间的关系的基本方法,但在许多实际问题中,特别是研究运动过程较复杂的质点系问题时,要列出每一个质点的运动方程十分困难。
动能定理建立了物体动能变化与受力所作的功之间的关系,应用动能定理解决动力学问题,淡化了具体的运动过程,使计算得到简化。
在物理中,质点的动能定理已作为重点内容进行了研究。
在理论力学中,动能定理的基本意义与物理所讲的完全相同。
为了避免重复,在本章,重点对动能定理的应用范围进行拓宽。
基本要求1、加深对功和动能概念的理种功和动能的求法,2、加深对动能定理的理解,理的应用。
3、了解功率和效率的概念第一节力的功一、功的概念物体受力的作用后,其运动状态将发生改变,这种改变不仅与力的大小和方向有关,还与物体在力的作用下所走过的路程有关。
功就是描述力在一段路程中对物体的积累效应,我们将(不变的)力F在物体运动方向上的投影F cos 与物体所走过的路程S的乘积,称为力F在路程S中对物体所作的功。
即:W F S =cos α在上式中,α表示力F 与运动方向的夹角,α<90°时,力作正功;反之力做负功。
可见,功是一个只有大小、正负而没有方向的量,是一个代数量。
功的单位由力和路程的单位来确定,在国际单位制中,功的单位是焦耳(J ),即:焦耳=牛顿⨯米(1J 1N m =⋅)若在变力F作用下物体沿曲线运动,则可将路程S 分成为无限多个小微段dS,并将dS 视为直线,将该微段内的力F视为常力。
力在此微段上所作的功称为元功,用dW 表示。
即dW F dS =⋅cos α若求变力F在一段路程S 上所作的功,可对元功积分。
即:W dW F dSSS ==⎰⎰cos α二、几种常见力的功 1、重力的功重力的功等于物体的重力与物体重心始末位置的高度差的乘积,即W G h =±可见,重力的功只与物体的始末位置有关,而与物体运动的具体路径无关。
理论力学 动能定理

mg A2 v2=0
l0
v0
F
(a)
(b)
(c)
24
动力学 解:
质点系的 动能定理
取平台为研究对象。从平衡位置A1(图a)运动到最大下
沉位置A2(图b),平台的初动能 T1=mv02/2 ,而末动能 T2=0 。
弹簧的初变形1= s=mg/k,末变形 2= s+s ,作用在平台上
解:取整个系统为研究对象
W
(F )
0.9 2mg mg (0.6 0.15) 1.35mg 2
T1 0
T2 1 1 2m 0.92 2 1 mv2 2 3 2
0.9 v
T2 5 mv2 6
代入到T2 T1 W ( F ) 得
v 3.98m/s
动能定理
各种运动形式存在能量转换和功的关系, 在机械运动中则表现为动能定理,与动量定理 和动量矩定理用矢量法研究不同,动能定理从
能量角度研究动力学问题,建立了与运动有关
的物理量—动能和作用力的物理量—功之间的 联系,有时可以方便有效地解决动力学问题 。
3
动力学
力的功 § 14-1 力的功
力的功是力沿路程累积效应的度量。 质点在常力F作用下,力F的功定义为:
1.平动刚体
3.平面运动刚体
1 T J P 2 (P为速度瞬心) 2
J P J C Md
2
1 1 1 1 2 2 2 2 2 J C M (d ) M vC J C 2 2 2 2
19
动力学 [例2]
质点系和刚体的 动能
坦克或拖拉机履带单位长度质量为r ,轮的半径为r, 轮轴之间的距离为d,坦克或拖拉机前进的速度为v0 。求全 部履带的总动能。
理论力学第13章动能定理

在理论力学中,动能被定义为物体运动时的能量,其大小与物体的质量和速度有关。根据牛顿第二定律,物体的动量改变量等于作用在物体上的外力的冲量。因此,如果一个力在一段时间内作用在一个物体上,那么这个力就会使物体的动量发生改变,从而产生动能的变化。
动能的定义
外力的功
外力的功等于力的大小与物体在力的方向上发生的位移的乘积。
总结词
外力的功是指力对物体运动所产生的效应,其大小等于力的大小与物体在力的方向上发生的位移的乘积。这是物理学中功的定义,也是计算外力对物体所做功的基本方法。
详细描述
VS
系统动能的增量等于合外力对系统所做的功。
详细描述
系统动能的增量是指在一个过程中,系统动能的增加量。这个增量可以通过计算合外力对系统所做的功来得到。如果合外力对系统做正功,则系统动能增加;如果合外力对系统做负功,则系统动能减少。因此,系统动能的增量与合外力对系统所做的功有直接的关系。
总结词
系统动能的增量
03
CHAPTER
动能定理的应用
适用于单个质点在力的作用下运动的情况,计算质点的动能变化。
单个质点的动能定理指出,质点在力的作用下运动时,外力对质点所做的功等于质点动能的增量。这个定理是理论力学中研究质点运动的基本定理之一,可以用来解决各种实际问题。
总结词
详细描述
单个质点的动能定理
动能定理是能量守恒定律在动力学中的具体表现,是解决动力学问题的有力工具。
动能定理适用于一切宏观低速的物体,对于微观、高速适用于狭义相对论。
动能定理适用于直线运动,对于曲线运动需要积分形式进行处理。
动能定理的适用范围
02
CHAPTER
动能定理的基本内容
总结词
理论力学动能定理解析
对于线性弹簧,在此位置的弹簧力 F k
因此,弹簧力的功为
W12
1 2
k (12
2 2
)
B B1
FB1
FB
1
2
FA1
A1
FA
FA2
A
A2
B2 FB2
(3) 质点系的外力(主动力)的功
① 质点系的重力的功
设质点系内任一质点的质量为mi,当它由初位置点Ai
(xi1, yi1, zi1) 运动到末位置点Bi (xi2 , yi2 , zi2 )
在势力场中,质点从点M运动到任选的点M0,有势 力所作的功称为质点在点M相对于点M0的势能。以V表 示为
M0
M0
V F dr (Fxdx Fydy Fzdz)
M
M
点M0的势能等于零,称为零势能点。在势力场中, 势能的大小是相对于零势能点而言的。零势能点可以 任意选取,对于不同的零势能点,在势力场中同一位 置的势能可有不同的数值。
1 2
mvC2
Te
是质点系随质心平移的动能,亦 可称为牵连运动动能;
1 2
mi
vr2i
Tr
是质点系相对质心转动的动能,亦可 称为相对运动动能;
T
1 2
mvC2
1 2
mi
vr2i
或 Ta Te Tr
(2) 刚体的动能
(a)平移刚体的动能
T
1 m
2i
vi2
1 2
vC2
mi
即
T
1 2
mvC2
(1) 重力场中的势能
重力场中,以铅垂轴为z轴,z0处为零势能点。质点于 z坐标处的势能V等于重力mg由z到z0处所作的功,即
第十二章 动能定理
2. 受力分析 只有重力做功。
3. 建立动力学方程 用动能定理。
v C
A
c
θ
R
★理论力学电子教案
vC (R r) vC / r (R r)/ r
第12章 动能定理
T1 0
T2
1 2
m vC2
1 2
JC2
3 4
m(R
r )22
W12 mg (R r)(1 cos )
力功之和可以不为零。如引力。
2. 刚体间的理想约束做功之和为零。
为什么?
★理论力学电子教案
第12章 动能定理
12
五、功率
单位时间内力(或力偶)所做的功。
P
W
F
dr
F
v
dt dt
力做功之功率
或P W M d M 力偶(力矩)做功之功率
dt
dt
功率的单位:瓦(W)
1.重力功
F FW k
W12
M 2 F
dr
z2
FW
dz FW
z1 z2
M1
z1
2.弹F性力k功r l0 r0
其中r0为r方向的单位矢量,l0为原长
W
F
dr
kr
l0 r0 dr
kr l0 r dr kr l0 dr r
1W 1N 1m / s
★理论力学电子教案
第12章 动能定理
13
例题 鼓轮内半径为r,外半径为R,在常力F作用下作 纯滚动。试求F在s上所作的功。
动能定理
X=0,Y=0,Z=-P
2
理论力学讲义
由求功的解析表达式有:
W = − ∫ Pdz = P( z1 − z 2 )
z1 z2
可见重力的功等于质点的重量与起始位置的高度差的乘机, 与质点运动的路 径无关。当质点位置降低时,功为正值;反之,功为 负值。
2 弹性力的功:
设质点与长为 l 0 的弹簧相连沿轨迹 A1 A2 ,由 A1 移 至 A2 。设 A 点矢径为 r ,单位矢径为 r0 ,则
式中 v 是 F 作用点的速度 在 N 一定的情况下, Fτ 与 v 成反比。如汽车上坡时,由于需要较大的牵引 力,故一般选用低速挡。 作用在定轴转动刚体上力的功率 dϕ δW N= = Mz = M zω dt dt 功率的量纲:
[N ] = [W ] [T ]
在国际单位制中,功率单位为: 瓦特(w) 瓦特=J / s (kw)
x=
∴v =
mg , k
m ⋅g k
§13-3 质点系的动能定理
1. 质点系的动能: 质点系的动能等于质点系中各质点动能之和。即:
n 1 2 T = ∑ mi v i i =1 2
下面将给出刚体动能的计算公式: (1) 平动刚体的动能:
n 1 1 2 1 2 T = ∑ mi vi = vc ⋅ ∑ mi = Mvc2 2 2 i =1 2
[W]=[F][L]
在 SI 中,功的单位为:J(焦耳) 。1J=1Nm 在工程单位制中,功的单位为:kg f m. 下面介绍几种常见力的功的计算方法: 三.常见力的功:
1 重力的功:
设质点重 P,由 M 1 ( x1 , y1 , z1 ) 处沿曲线移 至 M 2 ( x 2 , y 2 , z 2 ) 。重力的投影为:
理论力学课件:动能定理
动能定理
【例12-8】 C618车床的主轴转速n=42r/min时,其切削力
P=14.3kN,若工件直径d=115mm,电动机到主轴的机械效率
η=0.76。求此时电动机的功率为多少?
解 由式(12-12)得切削力P 的功率:
动能定理
12.5 势力场 势能及机械能守恒定理
动能定理
动能定理
12.4 功率 功率方程
1.功率
在单位时间内力所做的功称为功率。它是衡量机器工作
能力的一个重要指标。
δW 是dt时间内力的元功,则功率为
动能定理
由于元功为δW =Ft·ds,因此
即,力的功率等于切向力与力作用点速度的乘积
力矩的元功为δW =M·dφ,则
即,力矩的功率等于力矩与物体转动角速度的乘积。
动能定理
动能定理
12.1 力的功
12.2 质点 质点系的动能
12.3 质点与质点系的动能定理
12.4 功率 功率方程
12.5 势力场 势能及机械能守恒定理
12.6 动力学普遍定理及综合应用
思考题
动能定理
12.1 力 的 功
工程实际中,一物体受力的作用所引起运动状态的变化,
不仅取决于力的大小和方向,而且与物体在力的作用下经过
的功。
动能定理
图12-15
动能定理பைடு நூலகம்
【例12-4】 在图12-16中,为测定摩擦系数f,把矿车置于
斜坡上的A 点处,让其无初速下滑。当它达到B 点时,靠惯性
又往前滑行一段路程,在C 点处停止。求摩擦系数f0,已知S1、
S2 和h。
图12-16
动能定理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
T
A
15 cm
B
20 cm
PT
F
a
N
20
20
WT 0 T cosa d x 0 20
20 x d x 200 N cm
(20 x)2 152
再计算F的功:
由题意:
d1
2.5 0.5
5cm
T
A
15 cm
B
20 cm
d2 5 20 25cm
因此F在整个过程中所作的功为
在介绍动能定理之前,先介绍有关的物理量:功 与动能。
18.1力的功
18.1.1 常力的功
设物体在常力F作用下沿直线走过路程s,如图, 则力所作的功W定义为
W F cos s F s
功是代数量。它表示力在一段路程上的累积作用效应, 因此功为累积量。在国际单位制中,功的单位为:J (焦耳), 1J=1 N·m。
l 22
lvA
cosj)
18.3 动能定理
1. 质点的动能定理
取质点运动微分方程的矢量形式 mdv F dt
在方程两边点乘dr,得
mdv dr F dr dt
因dr=v dt,于是上式可写成
mv dv F d r
或
d(1 mv2 ) δW
2
质点动能的增量 等于作用在质点 上的力的元功。
18.1 力的功
上两式可写成矢量点乘积形式
δW F dr
W M2 F dr M1
称为矢径法表示的功的计算公式。
在直角坐标系中
F Fx i Fy j Fz k , dr dxi dy j dzk
δW Fxdx Fydy Fzdz
W
M2 M1
连,在图示位置圆柱作纯滚动,中心速度为v,杆与水平线的
夹角=45o,求该瞬时系统的动能。
I
B
解: T总 TA TAB
TA
3 4
Mv2
C
v
A
I 为AB杆的瞬心 v IA
v l sin
II
1 12
ml 2
m
l 2 2
1 ml2 3
TAB
1 2
第十八章 动能定理
• 力的功 • 质点和质点系的动能 • 动能定理 • 普遍定理的综合应用举例 • 功率·功率方程·机械效率
引言
前两章是以动量和冲量为基础,建立了质点或质 点系运动量的变化与外力及外力作用时间之间的关系。 本章以功和动能为基础,建立质点或质点系动能的改 变和力的功之间的关系,即动能定理。不同于动量定 理和动量矩定理,动能定理是从能量的角度来分析质 点和质点系的动力学问题,有时是更为方便和有效的。 同时,它还可以建立机械运动与其它形式运动之间的 联系。
WF
1 2
k
(d12
d
2 2
)
1 0.5(52 2
252 )
150 N cm
因此所有力的功为
W WT WF 200 150 50 N cm
18.2 质点和质点系的动能
1. 质点的动能 设质点的质量为m,速度为v,则质点的动能为
T 1 mv2 2
动能是标量,在国际单位制中动能的单位是焦耳(J)。
T
1 2
mi vi2
1 2
miri2 2
1 2
2
miri2
1 2
J z2
18.2 质点和质点系的动能
(3) 平面运动刚体的动能
T
1 2
J P 2
因为JP=JC + md 2
C
P
所以
T
1 2
(JC
md 2
m(d
)2
因为d·=vC ,于是得
微段的质量 d m P 1 d r lg
微段的动能
dT
1 2
d
m vr2
P 2r 2
2gl
sin 2
a
d
r
杆OA的动能是
C
P dr
O1
B
A
T
l
dT
l P 2r 2 sin2 a d r Pl 22 sin2 a
0
0 2gl
6g
例4 求椭圆规的动能,其中OC、AB为均质细杆,质量为m和 2m,长为a和2a,滑块A和B质量均为m,曲柄OC的角速度为
度。
解:取系统为研究对象,假设圆盘 中心向下产生位移 s时速度达到vc。
T1 0
vC
T2
3 4
mvC2
j
力的功: W12 mgssin j
s
C
F
mg FN
由动能定理得:
3 4
mvC2
0
mgs sin
j
解得:
a 2 g sin j
3
例8 卷扬机如图,鼓轮在常力偶M的作用下将圆柱上拉。已
知鼓轮的半径为R1,质量为m1,质量分布在轮缘上;圆柱的 半径为R2,质量为m2,质量均匀分布。设斜坡的倾角为α, 圆柱只滚不滑。系统从静止开始运动,求圆柱中心C经过路
M mg M2 y
z2
W12
z2 z1
(mg)dz
mg(z1
z2
)
常见力的功
对于质点系,其重力所作的功为
W12 mi g (zi1 zi2 ) ( mi zi1 mi zi2 )g (MzC1 MzC2 )g Mg(zC1 zC2 )
由此可见,重力的功仅与重心的始末位置有关,而与 重心走过的路径无关。
• 光滑铰支座和固定端约束,其约束力也不作功。
• 光滑铰链(中间铰链)、刚性二力杆及不可伸长的细绳 作为系统内的约束时,约束力作功之和等于零。
• 滑动摩擦力作负功。
• 当轮子在固定面上只滚不滑时,滚动摩擦力不作功。
• 变形元件的内力(气缸内气体压力、弹簧力等)作功; 刚体所有内力作功的和等于零。
例7 已知: m ,R, f ,j 。求纯滚动时盘心的加速
18.3 动能定理
d(1 mv2 ) δW 2
积分上式,得
v2 v1
d(
1mv2 2
)
W12
或
1 2
mv22
1 2
mv12
W12
在质点运动的某个过程中,质点动能的改变量 等于作用于质点的力作的功。
18.3 动能定理
2. 质点系的动能定理
设质点系由n个质点组成,第i个质点的质量为mi, 速度为vi,根据质点的动能定理的微分形式,有
vA2
(
1 2
l)2
2vA
1 2
l
cosj
vA2
1 4
l 22
lvA
cosj
则杆的动能
A
vA
jl
B
A
j
vA vCA vC
vA
B
T
1 2
mvC2
1 2
JC2
1 2
m(vA2
1 4
l 22
lvA
cosj)
1 2
(
1 12
ml2 )2
1 2
m(vA2
1 3
常见力的功
2) 弹力的功
物体受到弹性力
的作用, 作用点的轨 A1
迹 为 图 示 曲 线 A1A2,
在弹簧的弹性极限内,
r1
弹性力的大小与其变
形量d 成正比。设弹
l0
簧原长为l0 , 则弹性 力为
F k(r l0 )r0
W12
A2 F dr =
A1
A2 A1
k
(r
l0
)r0
dr
d
F A0
A dr
r
r0
r2 A2
O
常见力的功
因为
r0
dr
r r
dr
1 2r
d(r
r)
1 2r
dr 2
dr
于是
W12
r2 r1
k(r
l0 )dr
1 2
k
(r1
l0 )2
(r2
l0 )2
或
W12
1 2
k
(d
2 1
d
2 2
)
弹性力作的功只与弹簧在初始和末了位置的变形量有 关,与力的作用点A的轨迹形状无关。
所有力所作的元功之和。
对上式积分,得
T2 T1 W12
质点系在某一运动过程中,起点和终点的 动能的改变量,等于作用于质点系的全部力在 这一过程中所作的功之和。
18.3 动能定理
3. 理想约束及内力作功
• 对于光滑固定面和一端固定的绳索等约束,其约束力 都垂直于力作用点的位移,约束力不作功。
常见力的功
3) 定轴转动刚体上作用力的功
z
设作用在定轴转动刚体上A点的力为F,
F
将该力分解为Ft、Fn和Fb,
Ft F cos
当刚体转动时,转角j与弧长s的关系为
ds Rdj
R为力作用点A到轴的垂距。力F的元 功为